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Abstract

Background: High resolution melting analysis (HRM) is a rapid and cost-effective technique for the characterisation
of PCR amplicons. Because the reverse genetics of segmented influenza A viruses allows the generation of
numerous influenza A virus reassortants within a short time, methods for the rapid selection of the correct
recombinants are very useful.

Methods: PCR primer pairs covering the single nucleotide polymorphism (SNP) positions of two different influenza
A H5N1 strains were designed. Reassortants of the two different H5N1 isolates were used as a model to prove the
suitability of HRM for the selection of the correct recombinants. Furthermore, two different cycler instruments were
compared.

Results: Both cycler instruments generated comparable average melting peaks, which allowed the easy
identification and selection of the correct cloned segments or reassorted viruses.

Conclusions: HRM is a highly suitable method for the rapid and precise characterisation of cloned influenza A genomes.
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Background
Influenza A viruses (IAV) are pathogens of major import-
ance in both public health and veterinary medicine and
have a high socio-economic impact. Research has generated
a substantial increase in our knowledge of influenza viruses
in recent years. A technique that has revolutionised influ-
enza research is plasmid-based reverse genetics, which en-
ables the generation of custom-designed recombinant
viruses [1,2]. Routine cloning procedures are the standard
for manipulating the viral genome and thus facilitate basic
and applied research. The comparative segment exchange
between different influenza virus strains with plasmid-
based sequences and the subsequent generation of designed
influenza virus reassortants is a major research technique
because it facilitates studies on many topics, such as the
molecular basis of IAV pathogenesis.
To date, the sequencing of cloned influenza segment

plasmids and generated reassortant viruses has been ne-
cessary to confirm the successful implementation of
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reproduction in any medium, provided the or
sequence mutations. However, novel versatile technologies
for the rapid and precise detection of mutations or single
nucleotide polymorphisms (SNP) are currently available.
In this study, we describe the application of “High-Reso-
lution Melt (HRM) Analysis” for the verification of newly
generated IAV reassortants (with mutations in a single
segment) as an exemplary practical approach.
The principle of HRM analysis is based on the melting

(dissociation) behaviour of DNA as it changes its transi-
tion from double- to single-strand status in the presence
of a saturating fluorescent DNA-binding dye [3]. Melting
analysis detects differences in the PCR amplicons that
depend on the length, base composition, and strand base
pairing of the amplicon. Genotyping, microbial detec-
tion, and species identification are the main fields in
current HRM analysis [4-8]. Diagnostic strategies using
HRM analysis have also been developed for influenza A
subtyping and the detection of resistance to neuraminid-
ase inhibitors from human samples [9-13].
Our study focused on the identification of influenza A

viruses that were generated in vitro using a reverse gen-
etics technology [14] through HRM analysis.
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:donata.kalthoff@fli.bund.de
http://creativecommons.org/licenses/by/2.0


Kalthoff et al. Virology Journal 2013, 10:284 Page 2 of 5
http://www.virologyj.com/content/10/1/284
Results and discussion
Figure 1 shows a comparison of the average melting
peaks of the individual RNA segments of both influenza
virus strains. The most distinct melting peaks were
obtained for those segments with three SNPs (two cyto-
sines and one guanine), whereas the corresponding se-
quence consisted of adenine and thymines, such as that
obtained for segments 3 and 6 (Figure 1 and Table 1).
However, as few as two SNPs within a sequence resulted
Figure 1 Melting peaks detected by HRM analyses of eight segments
between the melting peaks is indicated above the columns. (A) Melting pe
detected using the Eco Cycler system. The values represent the average of
standard deviation.
in an explicit differentiation of 0.88°C and 0.9°C, e.g., as
obtained for segment 7 (Figure 1 and Table 1). The
smallest melting peak differences were obtained for
segments 2 and 8 (values < 0.49/0.6, Figure 1), which
exhibited four SNPs consisting of three cytosines/gua-
nines and one adenine/thymine in one sequence com-
pared with three adenines/thymines and one cytosine/
guanine in the other sequence. Therefore, the SNP
length is less pivotal than the SNP composition for the
of two closely related HPAIV strains. The numerical difference
aks detected using the Light Cycler system. (B) Melting peaks
the eight RNA preparations tested. The error bars indicate the



Table 1 Virus segment-specific PCR primers and corresponding SNPs

Designation Sequence 5‘→3’ Amplicon length (bp) No. of SNP SNPs in R65 (top row)
versus R1959 (bottom row) = *

Segment 1 (PB2)
R65-PB2-1648Fw GGTCCTGAGTCAGTGCTTG 94 4 GAAT

R65–PB2-1742Rv CGGTTCAAACTCCATCTTATTGT ACGG

Segment 2 (PB1)
R65-PB1-1524Fw ATTTGTAGCCAATTTCAGTATGGA 128 4 CAGG

R65-PB1-1652Rv TGAAGAGCCATCTGAGCTG TGTA

Segment 3 (PA)
R65-PA-1547Fw GATCCCACTTGAGGAATGATAC 78 3 TTA

R65-PA-1625Rv CAGTACTTTTCCCACTTGTGTG CCG

Segment 4 (HA)
R65-HA 204Fw ATCTAGAYGGAGTGAAGCCTC 85 3 GCC

R65-HA 289Rv TAAGACCATTCCGGCACATTG ATT

Segment 5 (NP)
R65-NP-355Fw TGGGTGAGAGAGCTGATTCTGTACG 113 3 ATT

R65-NP-468Rv TGGAATGCCATATCATCAGGTG GCC

Segment 6 (NA)
R65-NA-1156Fw GGTCAGGATATAGCGGGAG 84 3 CGC

R65-NA-1240Rv ATTAACTCAACCCAGAAACAAGG TAT

Segment 7 (M)
R65-M-119Fw TTTGCAGGAAAGAACACCGATC 93 2 CC

R65-M-212Rv CAAATCCCAACATCCCTTTAGTC TT

Segment 8 (NS)
R65-NS1-224Fw GCGAATTCTGGAGGAGGAG 112 4 CACC

R65-NS1-336Rv AAGGGAACCTGTCACTTTCTG TGAT
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generation of large differences between the melting
peaks of two segment sequences.
In total, 18 different viruses were engineered by reverse

genetics (two ancestor viruses, eight viruses consisting of
seven segments from strain R65 and one segment from
strain R1959, and eight viruses consisting of seven seg-
ments from R1959 and one segment from R65). The RNA
preparations of these 18 viruses were tested on both cycler
systems, and all eight segments of each virus were evalu-
ated. All of the virus strains were correctly identified using
both cycler systems (Additional file 1: Table S1).
The average melting peaks detected by the Eco cycler

system did not differ by more than 0.3°C from the aver-
age melting peaks detected with the Light cycler system.
However, the melting peaks detected with the Light cy-
cler system exhibited lower standard deviations com-
pared with those obtained with the Eco cycler system.
Nevertheless, the average differences between the melt-
ing peaks of the individual influenza segments obtained
with both cycler systems exhibited very similar values
(Figure 1). Although the classical approach used for the
verification of recombinant influenza reassortants is
based on sequencing the relevant parts of the viral gen-
ome, our approach identified the reassortant gene segment
composition directly through the HRM technique. A pre-
requisite for this method is a set of primer pairs that cover
all of the SNP positions that distinguish the viral seg-
ments. Therefore, sufficient sequence information must be
available before suitable primers can be designed.
In our opinion, the use of universal primers, i.e., primers

that are applicable to all influenza genomes, is unfavourable
because the efforts and costs associated with the design of
specific primers for each tested sequence are low. In
addition primer design of universal primers that generated
an amplicon suitable for HRM analysis for all divergent in-
fluenza viruses would be hard to achieve.
The virus strains tested in this study were selected be-

cause they are closely related and thus difficult to differ-
entiate. However, the applied system discriminated the
sequences correctly without any problems, and the dis-
tinction of more distantly related sequences (comprising
more SNP positions) should therefore be even easier
using the proposed HRM analysis. Further potential ap-
plications of this technology include the screening of
genetically engineered influenza viruses to determine
whether reassortment or mutation has occurred and the
identification of reassortant viruses from field samples.

Conclusion
In conclusion, HRM is a valuable tool for the rapid and
easy identification of reassortant influenza viruses in
various settings because the total costs for genotyping by
HRM are low, i.e., only a simple PCR system and a gen-
eric dye are needed.

Methods
Viruses, primers, and isolation of viral RNA
Two highly pathogenic avian influenza viruses (HPAIV)
of subtype H5N1: A/swan/Germany/R65/2006 [Gisaid:
EPI103081, EPI103089, EPI103087, EPI103075, EPI103085,
EPI103077, EPI103079, and EPI103083] and A/Beijing
duck/Germany/R1959/2007 [EPI171617, EPI171618, EPI1-
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71619, EPI171620, EPI171621, EPI171622, EPI171623, and
EPI171624] were genetically engineered (13, Eck unpub-
lished). The reassortant viruses, which were composed of
seven segments of one H5N1 strain and one segment of
the sister strain, were engineered; these reassortants are
called “7 + 1 reassortants”. Figure 2 summarises the unique
segment composition of each of the 18 strains generated in
this study. Stocks of the original wild-type viruses (R65/06
and R1959/07) were prepared using embryonated chicken
eggs. The recombinant virus was rescued as described pre-
viously [15] and propagated using Madin-Darby canine
kidney cells (MDCK, collection of cell lines in veterinary
medicine, FLI Insel Riems, RIE1061). The viral RNA was
extracted from the cell culture or allantoic fluid using the
QIAamp viral RNA kit (Qiagen) according to the manufac-
turer’s instructions.

Primer design
The sequence alignment of the original virus strains was
used to identify the SNP positions, and specific primers
were designed to cover these SNP sequences in each of
the eight segments. Therefore, eight primer pairs were
designed to obtain an amplicon length ranging from
78 bp to 128 bp. The SNPs consisted of at least two and
at the most four nucleotides (Table 1).

Quantitative RT-PCR
A one-step reverse transcription quantitative polymerase
chain reaction (RT-qPCR) protocol was performed using
the real-time ready RNA-virus-master kit (Roche Applied
Science, Mannheim, Germany). The RT-qPCR assay was
optimised using a total volume of 10 μl. Briefly, for each
Figure 2 Genomic segment composition of the analysed influenza a s
single PCR reaction, 5.05 μl of RNase-free water, 2.0 μl of
5× reaction buffer, 0.2 μl of 50× enzyme-blend, 0.5 μl of
the primer mix (20 pmol/μl of both primers), and 0.25 μl
of LightCycler ResoLight dye (Roche) were pooled to gen-
erate a master mix. Then, 2 μl of the RNA template was
added to each reaction. The RT-qPCR reactions were
performed on both an LightCycler 480 II instrument
(Roche) and an Eco Real-Time PCR System (Illumina, San
Diego, USA) using a single temperature profile: 8 min at
58°C (reverse transcription), 30 sec at 95°C (inactiva-
tion reverse transcriptase/activation Taq polymerase), and
45 cycles of 1 sec at 95°C (denaturation), 20 sec at 55°C
(annealing), and 1 sec at 72°C (elongation). The quantifica-
tion was analysed within each annealing step.

High-resolution melting analysis
The HRM curves were obtained by incubating the PCR
products at 95°C for 1 min and then subjecting them to
a renaturation step of 70°C for 2 min. In the following
melting step, in which the temperature was increased from
70°C to 90°C, 23 fluorescence signal acquisitions per de-
gree centigrade were detected with the Light cycler system
(ramp rate of 0.02°C/s), whereas the Eco Cycler system
detected 10 signals per degree centigrade (ramp rate of
0.08°C/s). The analyses of the HRM data were performed
using the Light Cycler Software (Version 1.5) and the
Eco™ Software (v3.0.16.0), respectively (fluorescence signal
normalisation is implemented in the software).
The individual RNA segments of the 18 virus strains

(reassortants and wild type) were tested on both the
Light Cycler system and the Eco Cycler system. The Cq-
values determined ranged from 14.2 to 29.1, and Figure 1
trains.
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shows the average value of eight replicates. The RNA
(non-DNA) amplification results were verified by analys-
ing one dataset after it was subjected to DNAse treat-
ment (data available upon request).
Additional file 1: Table S1 presents the results of all of

the analysed viral reassortants as row data, and Additional
file 2: Figure S1 summarises the derivative plots for each
influenza virus segment.

Additional files

Additional file 1: Table S1. Virus segment specific melting peak values.

Additional file 2: Figure S1. Derivative plots representing the data for
all eight influenza A virus segments. The plots were generated using the
Light Cycler System.
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