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Abstract

Background: Simian T-cell lymphoma/leukemia virus-1 (STLV-1) infection of non-human primates can serve as a

model for human T-cell lymphoma/leukemia virus infection.

Methods: Two tantalus and 2 patas monkeys were transfused with intraspecies whole blood infected with STLV-1.
Infection was determined by ELISA, western blot and DNA PCR analyses. The entire genome of the STLV-1 Tan 90
strain and some of the STVL-1 Pat74 strain were amplified using over-lapping primer-pairs and subsequently
sequenced.

Results: Followup studies conducted over 2 years indicated that all 4 monkeys remained healthy despite being
infected with STLV-1, as determined by PCR, cloning and sequencing analyses. ELISA and Western blot analyses
indicated that both patas monkeys seroconverted within 2 months of transfusion, while one tantalus monkey
required one year to seroconvert and the other never fully seroconverted. The tantalus monkey which never fully
seroconverted, failed to react to HTLV-1 p24 Gag antigen. Sequence analyses indicated that, while unique, the
deduced p24 Gag amino acid sequence of the STLV-1 Tan 90 strain used for infection was still highly homologous
to the HTLV-1 p24 Gag amino acids present in the ELISA and WB assays. However, a mutation in the pol sequence
of STLV-1 Tan 90 encoded a putative stop codon, while a common deletion in the pol/rex regulatory gene causes
significant changes in the Pol, and p27 Rex proteins. These same mutations were also observed in the viral DNA of

both recipient infected tantalus monkeys and were not present in the STLV-1 Pat 74 strain.

Conclusion: Our data suggest that seroconversion to STLV-1 infection may be prolonged due to the above
mutations, and that compensatory molecular events must have occurred to allow for virus transmission.

Introduction

The primate T-cell lymphoma/leukemia viruses (PTLV)
are comprised of at least four, and possibly six, distinct
species that infect both simians (STLV) and/or humans
(HTLV) [1,2]. Relative to other primate retroviruses (e.g.
HIV, SIV), PTLV transmission is often characterized by
slow or indeterminate seroconversion [3,4]. HTLV-1 is
associated with a variety of clinical disorders including
T-cell lymphomas and leukemias, neurodegenerative
disease, polymyositis, arthritis and uveitis [5]. STLV-1
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has also been shown to cause T-cell lymphomas and
leukemias [6-8]. Hence, STLV-1 infection of non-human
primates could serve as a model for human PTLV infec-
tion, seroconversion, and disease pathogenesis.

In the past, we described that STLV-I infection was
endemic among Chlorocebus (African green monkeys)
and Erythrocebus patas (African red monkeys) in Central
African Republic [9,10]. Two unique strains, STLV-1 Tan
90 and STLV-1 Pat 74 from a Chlorocebus tantalus and a
Erthrocebus patas, respectively, were identified. These
strains diverge from the prototype Japanese HTLV-I
(ATK) isolate by 7.1% and 5%, respectively, and from each
other by 9.3%. Herein, we describe experimental intraspe-
cies transmission of these two strains resulting in varied
seroconversion patterns. An extensive sequence analysis
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was conducted on both strains to seek an explanation(s)
for the observed differences in seroconversion.

Results

During the entire two year observation period all three
tantalus and three patas monkeys remained healthy. Their
complete blood counts, CD4 and CD8 counts remained
stable and within normal limits (data not shown). None of
the animals developed clinical signs of a PTLV- associated
disease.

The serological and PCR analyses on the tantalus and
patas monkeys transfused with whole blood from Tan
90 and Pat 74, are shown in Table 1. As can be seen, fol-
lowing transfusion, all monkeys were ultimately shown
to be infected by PCR analyses for the STLV-1 pol and
pX genes (Table 1). Sequence analyses of the amplified
DNA indicated that the tantalus and patas monkeys
were infected with the STLV-I isolates that they had
been inoculated with; i.e. STLV-1 Tan90 and STLV-1 Pat
74, respectively (Figure 1).
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Interestingly, while the patas monkeys had fully sero-
converted by 2 months post-transfusion, both tantalus
monkeys displayed prolonged seroconversion patterns.
Both Tan 95 and Tan 97 took a year to become ELISA
positive, and Tan 95 was still Western blot indetermin-
ate at 2 yr post transfusion, never reacting to the Gag
p24 protein (Table 1, Figure 2). In addition, the intensity
of the WB reactivities of Tan 95 serum was much less
than that of the sera from the other monkeys. Because
STLV-1 Tan 90 is a relatively divergent African STLV-1
isolate, it was plausible that its p24 gag gene might be
defective or that its cognate protein might be quite
different from the Japanese HTLV-1 p24 antigen utilized
in the Western blot [9-11]. Hence, we amplified, cloned
and sequenced the p24 gag gene of STLV-1 Tan 90
(Figure 3). As can be seen, there are only minimal amino
acid changes in the Tan 90 isolate relative to other
PTLV-1 isolates.

In addition to their slower seroconversion to STLV-1,
the target tantalus monkeys took longer than the patas

Table 1 Chronology of serological (ELISA & WB) and PCR analyses of monkeys experimentally infected with STLV-1

Tan 90 or STLV-1 Pat 74

Target SIV  Inoculumn  Months ELISA WB
monkey engzrxre Status * rgp21 p19 p24 p26 p28 p32 p36 gp46 p55 rgp46 PCRA
Tan95  +  STLV-1 Tan 90 0 - - - - - - - - - - - -
2 - - - - - - - - - - - -
4 - - - - - - - - - - +
1 - [ - ++ - + - + - - - +
12 \ + ++ - + + - +++ +
24 + \ + ++ - + + + - + o+t +
Tan97 - STLV-1 Tan 90 0 - - - - - - - - - - - -
2 - - - - - - - - - - - -
4 - - - - - - - - - - +
1 - + + S S + ++ + + + +
12 + +H+ A A A A e +++ +
24 + + B o o e o + +
Pat 73 - STLV-1 Pat 74 0 - - - - - - - - - - - -
2 + + 4+ ++ ++ + + + +
4 + + 4+ A A A + + +
5 + + ++ A A e A A e+ + o+t +
16 + + ++ A A e + + +
Patt - STLV-1 Pat 74 0 - - - - - - - - - - - -
2 + + + +++ + ++ 4+ ++ + + + +
4 + + e e e o o o o S o e + + +
5 + + +++ A A A A A + + +
16 + + B e i e e e o o o o e S o S + +

* WB status = + if reactivity to both Gag p24 and Env gp46 original were observed, | + indeterminate, and - if no reactivity at all. The intensity of the WB was rated

as ranging from negative (-) to 4 +.

A PCR was performed for both pol and pX genes. All + samples were + for both, and all - samples were - for both.
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Pat77 sssssaas Cessssssannasssnsannsans Cisssanaana
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ATK TTGGAGACTGTGTACAAGGCGACTGGTGCCCCATCTCTGGGGACTATGTTCGGCCCGCCTACATCGTCACGCCCTACTGGCCACCTGTCCAGAGCATCA
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ATK GATCACCTGGGACCCCAT

Tan90 ecsectseacsaans Teasal
Tan95 ssssisssssaaTeanaC
Tan97 ssesissasaans Teasal
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Pat73 ssessssssssaaasTans
Pat77 eseeiscssssnasToas

Figure 1 Alignment of pol (A) and pX (B) sequences from tantalus or patas monkeys infected with either STLV-1 (Tan 90) or STLV-I
(Pat 74). Base changes from the prototypic HTLV-I (ATK) sequence are shown. The last digit of the number is above the corresponding base.

monkeys to become PCR positive for STLV-1 DNA in
their peripheral blood mononuclear cell (PBMC) (Table 1).
When they did become STLV-1 positive, it was at a lower
copy number (10) than the patas monkeys (100); although
by 12 months, all infected monkeys stabilized at a viral
load of 100 copies of STLV-1 DNA/ug PBMC DNA.

We decided to completely sequence STLV-1 Tan 90
(GenBank accession #AF074966), and partially sequence
STLV-1 Pat 74 (GenBank accession # 1.20354.1) to ascer-
tain whether sequence differences could explain the
different STLV-1 viral loads and seroconversion rates
observed in the recipient tantalus and patas monkeys.
The complete LTR DNA sequences and deduced indi-
vidual protein amino acid sequences of STLV-1 Tan 90
relative to HTLV-1 ATK are shown in Additional file 1.
The organization of the LTR of both viral strains is iden-
tical. Complete Us, R, and Us regions are identified.
Within these regions there are no major differences in
the poly (A) signal, TATA box promoter, distal, and
proximal 21 bp enhancer regions, capsite, the sequences
encoding the basic leucine zipper factor (bZ1P910), the

EtS protein binding domain, the splice donor site, the
Rex core site, and the primer binding site (PBS). The
STLV-1 Pat 74 LTR sequence was similarly arranged and
conserved (data not shown). Both HTLV-1 ATK and
STLV-1 Tan 90 contained the same number and loca-
tions of putative methylation sites, 5" to their promoters,
but STLV-1 Pat 74 had two methylation sites (-291
and -60) altered from CpG to ApG which would render
them methylase insensitive. Theoretically, this would
make STLV-1 Pat 74 less susceptible to down modu-
lation of viral RNA transcription by DNA methylation.
Relative to HTLV-1 ATK, there were changes in both
the STLV-1 Tan 90 and STLV-1 Pat 74 middle 21 bp
repeat enhancer sequences. The former had a G-A tran-
sition outside of any consensus DNA protein binding
domain, while the latter had an A-G transition in
domain A (AP-2 consensus site). The effects of these
changes are unknown. Throughout their genomes, con-
sensus splice donor and splice acceptor sites found in
HTLV-1 ATK were conserved in both STLV-1 Tan 90
and STLV-1 Pat 74 (data not shown).
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Figure 2 Western blot profiles of various human and non-human
primates infected with HTLV-I or STLV-I. The Tan 95, 97, and Patas
73 and 77 samples were drawn two years post infection. A positive
result is considered to be a reactivity to both p24 and gp46 or
rgp46. All other reactivities are indeterminate.

As can be seen (Additional file 1), there are minimal
amino acid differences between the deduced prototypic
HTLV-1 ATK and STLV-1 Tan 90 Gag, Protease, Env,
Tax, p21 Rex and P13" proteins. The stop codon in the
ATK Pro is probably a sequencing error because this is
not observed in any other PTLV-1 strain. It is difficult to
know whether any of these minor changes could effect
STLV-1 Tan 90 replication. There are greater amino acid
differences in the p30" and p12' proteins, but again it is
unclear how much this would affect their function.
However, a C to T base substitution at position 2560 in
the STLV-1 Tan 90 pol gene creates an early stop codon,
and a deletion of an A at position 5140 in the pol gene
eliminates a terminal stop codon present in the HTLV-1
ATK protein (Additional file 1 and Figure 4). This same
deletion also causes an early frameshift in the p27 Rex
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protein, such that it is initially translated in the Tax
reading frame, and then, because of splicing, results in a
nonsense sequence (Additional file 1 and Figure 4).
None of these changes are present in the STLV-1 Pat 74
sequence, nor in any other published PTLV-1 sequence
(Additional file 1 and Figure 4). However, both muta-
tions are present in the STLV-1 Tan 95 and 97 sequen-
ces (Additional file 1 and Figure 4), indicating that,
while they may affect the replication rate of STLV-1 Tan
90, they did not prevent its transmission to other
monbkeys.

Discussion

Over presumably tens of thousands of years the PTLV
have been disseminated among human and non-human
primates throughout the planet. While phylogenetic data
indicate that this dissemination has been predominantly
intraspecies, evidence for episodic interspecies trans-
mission exits as well [10,12-14]. It is unclear whether
the replication rate or the pathogenicity of a particular
substrain of the PTLV will be the same in all primates.
In an effort to study the PTLV further, we established
non-human primate models starting with the intra-
species transmission of two highly divergent isolates,
STLV-1 Tan 90 and STLV-1 Pat 74. The data presented
herein, indicate that successful infection can be achieved
by transfusing whole blood from infected tantalus and
patas monkeys to target animals of the same species. As
anticipated, there was no evidence of genetic drift in the
STLV-1 pol and pX sequences analyzed between the
original isolates and those found in the PBMC of the tar-
get animals. Also, none of the animals developed overt
clinical disease during the 2-3 year followup period.

Interestingly, the Tan 95 and Tan 97 monkeys had
prolonged seroconversion rates and different patterns
compared to the Pat 73 and Pat 77 monkeys. It is doubt-
ful that the PCR analyses, which confirmed infection in
the tantalus monkeys, are false positives because they
were performed three times and considerable effort was
made to prevent and detect PCR “carryover”. Also the
STLV-1 sequences characterized in these two target
monkeys are identical to the unique sequences of the
STLV-1 Tan 90 strain with which they were inoculated.
Finally, both monkeys eventually made antibodies to the
HTLV-1 antigens utilized in the ELISA and Western blot
assays, albeit Tan 95 never made detectable antibodies
to the HTLV-I p24.

The diminished antibody response to the HTLV-I p24
antigen by Tan 95 could be explained if the STLV-1 Tan
90 isolate’s p24 Gag antigen was highly divergent form
prototype HTLV-1, but, in fact, it is not (Figure 3). This
is consistent with the fact that the original tantalus
monkey infected with STLV-1 Tan 90 was positive in
both the ELISA and WB assays used herein [9,10]. Also,
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Figure 3 Amino acid sequence alignment of the STLV-I (Tan 90) p24 Gag protein compared to various HTLV-I isolates and the HTLV-II
(MoT) isolate. The changes from the prototypic HTLV-I (ATK) isolate are shown.

it has been well established that many conserved sero-
reactive epitopes exist among the PTLV and even bovine
leukemia virus p24 Gag antigens [3,10-12,15,16].

It is doubtful that the difference between the serocon-
version patterns between the tantalus and patas monkeys
was due to quantitatively different innocula of STLV-1.
However, the initial levels of STLV-1 DNA in the expe-
rimentally infected Tan 95 and Tan 97 monkeys were
very low relative to those of the target patas monkeys,
suggesting that a lower replication rate was the cause of
the slower seroconversion.

It is difficult to say if the pre-existing SIV infection in
Tan 95 had anything to do with its aberrant serocon-
version. SIV is not felt to be pathogenic in African green
monkeys and, by all analyses, Tan 95 was healthy and im-
munocompetent [17]. Delayed seroconversion to PTLV
infection has been described before for both HTLV-1 and
HTLV-2 naturally infected humans, and STLV-1 naturally
infected non-human primates [3,4,10]. This phenomenon
probably has more to do with the rate and pattern of
PTLV protein expression than with the immune status of
the host. Possible explanations for the inefficient expres-
sion of HTLV-1 proteins have included the presence of
defective proviral DNA, the low rate of production of
singly spliced and unspliced viral mRNA and the presence
of natural antisense viral RNA [13,18]. While other
changes such as differences in LTR methylation sites and
the middle 21 bp enhancer sequence may play a role, it
would seem most likely that the stop codon mutation in

the pol gene found in STLV-1 Tan 90 is a major reason for
the slow seroconversion rates observed in Tan 95 and
Tan 97. The fact that STLV-1 Tan 90 was transmitted to
both Tan 95 and Tan 97 indicates that this mutation is
not lethal. However, it would presumably require either
one or more molecular events, such as read through
termination suppression or using a downstream AUG
translational start site, for functional STLV-1 Tan 90 Pol
proteins to be produced [19]. Such a downstream start
site is present not too far from the amino terminus of
STLV-1 Tan 90 pol RNA (Additional file 1) While the
predicted large Pol protein, due to the deletion at po-
sition 5140, might still produce a functional integrase
protein, it is possible that proteolytic activity could
cleave it into a smaller molecule [20].

The changes observed in the p27 Rex protein of STLV-1
Tan 90 would seemingly render it non-functional. Because
Rex regulates expression of unspliced PTLV-1 RNAs, it
would seem obvious that the STLV-1 Tan 90 would repli-
cate more slowly in the host relative to other published
PTLV strains, including STLV-1 Pat 74 [21]. In particular,
a non-functional p27 Rex protein would result in less Gag
p24 expression. Our data would indicate that a fully func-
tional p27 Rex protein is not absolutely required for
in vivo STLV-1 transmission. Whether p21 Rex could par-
tially replace p27 Rex is unclear, but certainly possible;
although it localizes to the cytoplasm rather than the
nucleus [22,23]. Another possible “rescue” mechanism for
translation of the STLV-1 Tan 90 p27 Rex protein could
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Figure 4 Alignment of partial nucleotide sequences of the rex gene for all patas and tantalus STLV-1 strains used in this study
compared to other different HTLV-1 strains. The base deletions at position 5164 (ATK EMBL#) fro the tantalus strains, respectively, are shown
as dashes which would create a frameshift and allow for missense translation of p27 Rex accordingly. p21 Rex would not be affected because it
utilizes a translational start site downstream from the deletions. ATK is the consensus Japanese HTLV-1 strain used for comparative analysis with
its translated amino acids displayed above each codon. Areas of identity are indicated by the symbol (-) and deletions shown by the symbol (—).
Letters displayed in parenthesis below a sequence represent an alteration in an amino acid codon at that position. For clarity, the missense
translations of the STLVs are not shown. The alignment was ended at the 5’ splice junction for rex located in the env gene of the viral genome.
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be a ribosomal frameshift [24,25]. Retroviral frameshifting
usually occurs on an slippery heptanucleotide of the form
XXXYYYZ. Two tRNAs bound to nucleotides 2 to 7 of
this site simultaneously slip 1 to 2 bases leftward onto
nucleotides 1 to 6 stimulated in part by a secondary
structure in the downstream mRNA molecule called a
pseudoknot. While the STLV-1 Tan 90 Rex RNA sequence
does not have a “slippery” heptanucleotide at the site of
the initial frameshift mutation, it does have a CCCAAAG
heptanucleotide not too far downstream (Figure 4).
There is also an alternative splice site just downstream
from the deletion in the STLV-1 Tan 90 pol/rex genes. If
utilized, instead of the routine splice site, an in-frame
p27 Rex protein with a variable amino terminus would
be produced.

An interesting question is how frequent the mutations
observed in STLV-1 Tan 90 occur in other wild-type
PTLV-1 strains and what their clinical implications
might be. While it might seem intuitive that a slower
replicating PTLV-1 strain might be less oncogenic,
others have postulated that repression of virus expres-
sion, particularly by p30", might allow for evasion of
immunodestruction of virus infected cells and a higher
probability of T-lymphocytic transformation [26]. Further,

epidemiological studies would seem warranted to answer
the above questions.

Methods

Animal trapping, infection and sampling

Wild C. tantalus and E. patas monkeys were captured in
Central African Republic. Approval for collecting simian
specimens was granted by the Comité Consultatif
D’Ethique en Experimtation Animale (C.C.E.E.A.) de
I'Ecole Inter-Etats des Sciences et Medicine Veterinaires
de Dakur. As previously described, two of these mon-
keys, Tan 90 and Pat 74, were found to be infected with
the unique STLV-1 strains Tan 90 and Pat 74 [9,10], re-
spectively. Two tantalus monkeys (Tan 95 and 97) and 2
patas monkeys (Pat 73 and 77) were found to be con-
sistently negative for STLV-1 by serological, PCR and
virus culture analyses [10]. One of these monkeys, Tan
95, was found to be infected with the simian immu-
nodeficiency virus (SIV) [17]. All of the monkeys were
deemed to be healthy without signs of leukemia nor
immunodeficiency. All had normal CD4 counts (range
660-1200/mm?>), CD8 counts (range 100-500 cells/mm?),
and immunoglobulin levels (eg IgG range 1000—
3000 mg/dL). These animals were tested for STLV three
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times in the months prior to inoculation including the
day of inoculation.

Three ml of whole blood collected in EDTA from Tan
90 were transfused into both Tan 95 and Tan 97, and an
equivalent amount of whole blood from Pat 74 was
transfused into Pat 73 and Pat 77. Quantitative DNA
PCR indicated that the STLV-1 viral load in these ino-
cula were approximately the same (100 copies of STLV-
1 DNA per pg of primate DNA). The experimentally
and naturally infected monkeys were monitored for an
additional two years with routine physical exams, exa-
mination of their complete blood count, differential
CD4 and CD8 counts, and immunoglobulin levels.
Periodically, aliquots of their heparinized whole blood
were separated into plasma and PBMC and examined
for STLV-1 antibodies and DNA, respectively.

Serological assays

Plasma were analyzed using an HTLV-1 whole viral
antigen ELISA (Diagnostic Biotechnology Singapore)
and a Western blot kit (Diagnostic Biotechnology),
which in addition to HTLV-1 whole viral antigens, also
includes recombinant HTLV-1 rgp21 and rgp46 Env
peptides [11]. US Public Health criteria were used to
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designate a serologic result as positive, negative or in-
dertminate [27].

PCR

One pg of organically extracted DNA from the monkey
PBMC was amplified and detected via PCR using the
PTLV 1/2 generic pol (SK110/SK111) and tax (SK43/
SK44) primers, and the HTLV-1/STLV-1 specific
detector SK112 and the PTLV 1/2 generic detector
SK45, as previously described [12]. All samples were
also analyzed for primate pB-globin DNA as previously
described to assure that amplifiable DNA was present in
the sample [12]. All PCR assays were done in triplicate.
In order to avoid false positives due to “carryover” of
previously amplified DNA, all pre- and post- PCR steps
were conducted in completely different facilities by
different personnel. In addition, all amplifications of the
above regions done in our laboratory utilize dUTP
rather than TTP, and all amplifications were subjected
to PCR sterilization with uracil glycosylase [28]. Finally,
all primers contain 5 non-viral non-primate linker
sequences, which, in addition to facilitating the cloning
of amplified DNA (see below), allow for the use of
“signature primers” for the detection of “carryover”
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Figure 5 Schematic representation of overlapping PCR primer pairs utilized to amplify the entire STLV-1 genome of strain Tan 90. The
numbers above the primer notations are according to their position in the EMBL consensus HTLV-I sequence while the length of the fragment
contributed by each primer pair is shown in between. The DNA amplicons produced were cloned and sequenced to further investigate the
molecular identity of STLV-I Tan 90.
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DNA. Accordingly, all STLV-1 PCR positive samples
were reanalyzed with “signature primers” and found to
be negative for “carryover” DNA [29]. Quantification
was estimated by comparison of hybridization signals to
a serially diluted positive control, and also by serially
diluting the input DNA sample and calculation of the
Poisson distribution in the original sample. This assay is
100% and 58% sensitive down to concentrations of 10
copies and 1 copy per aliquot, respectively.

To examine the gag p24 (bases 1214-1855 as per
the EMBL numbering system) region of the STLV-1
strains, the following overlapping primers were uti-
lized: HTIL (715-734)+ (TACTGGCTCGGAGCCAG
CAG); HTIG (1499-1479) — (GACCGGCTAAGGGG
TTATAAC); HTIG (1423-1444) + (CCATCACCAGCA
GCTAGATAGC); AND HTIG (1919-1899) - (AGTG
GCCTGCTTTCCCGCACC). The probe utilized was
HTIG (1475-1507) + d (ACAGGTTATAACCCATTAGCC
GGTCCCCTCCGT). The bases are all listed 5’ to 3.

Cloning and sequencing
Cloning of the p24, pol and pX PCR amplified products,
listed above, was accomplished by digesting the DNA with
Kpn I and Sstl, and subsequent ligation into M13mp18.
The ligation mixes were used to transfect competent
KT8052 (ung-) E. Coli cells plated with media containing
5-bromo-4chloro-33indolyl B-D galactoside and isopropyl
B-D thiogalactoside [10,30]. Positive clones were detected
by plaque hybridization with the appropriate specific oli-
gonucleotide probe (see above) and the DNA from the
positive plaques was sequenced by the dideoxynucleotide
chain termination method [31]. The full length sequence
of STLV-1 Tan 90 and the partial sequence of STLV-1 Pat
74 were derived using a series of overlapping PCR
primers, probes, cloning and sequencing, as previously
described (Figure 5) [9]. Sequencing was performed in
both directions and all major changes were verified in at
least five clones.

Nucleotide sequence alignments were generated using
a commercial software package [32].

Additional file

Additional file 1: Nucleic acid (LTR) and amino acid sequences of
HTLV-1 ATK and STLV-1 Tan 90. Areas of homology are indicated by
the symbol (-), deletions by (=) and stop codons by (*). The various base
or amino acid substitutions are as indicated. In the LTR the junctions
between U3, R and U5 are shown, the three 21 bp repeat enhancer
sequences are underlined, the primer binding site (PBS) is overlined. The
basic leucine zipper factor (bZ1P910), poly A signal, TATA box promoter
(AP site, splice donor (SD) and rex core sites are labeled. Functional areas
of the PTLV-1 Tax primer are identified.
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