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Cross-reactive human B cell and T cell epitopes
between influenza A and B viruses
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Abstract

Influenza A and B viruses form different genera, which were originally distinguished by antigenic differences in their
nucleoproteins and matrix 1 proteins. Cross-protection between these two genera has not been observed in animal
experiments, which is consistent with the low homology in viral proteins common to both viruses except for one
of three polymerase proteins, polymerase basic 1 (PB1). Recently, however, antibody and CD4+ T cell epitopes
conserved between the two genera were identified in humans. A protective antibody epitope was located in the
stalk region of the surface glycoprotein, hemagglutinin, and a CD4+ T cell epitope was located in the fusion
peptide of the hemagglutinin. The fusion peptide was also found to contain antibody epitopes in humans and
animals. A short stretch of well-conserved peptide was also identified in the other surface glycoprotein,
neuraminidase, and antibodies binding to this peptide were generated by peptide immunization in rabbits.
Although PB1, the only protein which has relatively high overall sequence homology between influenza A and B
viruses, is not considered an immunodominant protein in the T cell responses to influenza A virus infection, amino
acid sequence comparisons show that a considerable number of previously identified T cell epitopes in the PB1 of
influenza A viruses are conserved in the PB1 of influenza B viruses. These data indicate that B and T cell cross-
reactivity exists between influenza A and B viruses, which may have modulatory effects on the disease process and
recovery. Although the antibody titers and the specific T cell frequencies induced by natural infection or standard
vaccination may not be high enough to provide cross protection in humans, it might be possible to develop
immunization strategies to induce these cross-reactive responses more efficiently.

Keywords: Influenza A virus, Influenza B virus, Cross-reactive B cell epitopes, Cross-reactive T cell epitopes,
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Introduction
Human influenza is a highly contagious acute respiratory
illness that is responsible for significant morbidity and ex-
cess mortality especially in the elderly and the very young
worldwide. On average 5% to 20% of the population in the
United States acquires influenza every year with more than
200,000 people hospitalized from influenza complications,
while influenza-related deaths range from 3000 to 49,000
(“Seasonal Influenza: The Disease” by Centers for Disease
Control and Prevention (http://www.cdc.gov/flu/about/
disease/index.htm)). Causative agents, influenza A and
B viruses, belong to the family Orthomyxoviridae [1].
Influenza C viruses cause milder respiratory illnesses than
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influenza A and B viruses [2]. They were originally distin-
guished by antigenic differences in their nucleoprotein
(NP) and matrix 1 protein (M1). The type A influenza vi-
ruses are further divided into subtypes based on the antige-
nicity of surface glycoproteins, hemagglutinin (HA) and
neuraminidase (NA). Currently there are 17 HA subtypes
(H1-H17) and 10 NA subtypes (N1-N10) [3,4]. Influenza A
viruses cause pandemic and seasonal epidemics, and influ-
enza B viruses are responsible for widespread epidemics
every 3 to 4 years [5]. Mortality rates are higher in epi-
demics caused by influenza A virus H3N2 subtypes than
those by H1N1 subtypes or by influenza B viruses in recent
years. Influenza A viruses have a broad host range includ-
ing mammals and birds, while influenza B and C viruses
are primarily pathogens of humans [5].
Influenza A and B viruses are more similar to each

other than to influenza C viruses in terms of genome
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Table 1 Amino acid homology between influenza A and B
viral proteins

Protein name Size in
influenza Aa

Size in
influenza Bb

Amino acid (aa)
identityc

Polymerase basic 2 (PB2) 759 aa 770 aa 37%

Polymerase basic 1 (PB1) 757 aa 752 aa 58%

Polymerase acid (PA) 716 aa 726 aa 35%

Hemagglutinin (HA) 566 aa 584 aa,
585 aad

18%

Nucleoprotein (NP) 498 aa 560 aa 36%

Neuraminidase (NA) 469 aa 466 aa 20%

Matrix protein 1 (M1) 252 aa 248 aa 27%

Matrix protein 2 (M2)e 97 aa 109 aa 7%

Nonstructural protein 1
(NS1)

219 aa,
230 aaf

281 aa,
282 aag

14%

NS2/nuclear export
protein (NEP)

121 aa 122 aa,
123 aah

21%

aAmino acid sequences are from influenza A/California/07/2009(H1N1)
(GenBank protein accession number: AFM72841, AFM72840, AFM72839,
AFM72832, AFM72836, AFM72835, AFM72833, AFM72834, AFM72837 and
AFM72838), A/Brisbane/10/2007(H3N2) (ACI26328, ACI26326, ACI26325,
ACI26318, ACI26322, ACI26321, ACI26319, ACI26320, ACI26323 and ACI26324).
bAmino acid sequences are from influenza B/Wisconsin/01/2010 (B/Yamagata/16/
88-lineage) (AFH57963, AFH57962, AFH57961, AFH57953, AFH57958, AFH57957,
AFH57954, AFH57955, AFH57959 and AFH57960) and B/Brisbane/60/2008
(B/Victoria/2/87-like lineage) (AFH57919, AFH57918, AFH57917, AFH57909,
AFH57914, AFH57913, AFH57910, AFH57911, AFH57915 and AFH57916).
cConserved amino acids among four viruses. Denominators are the proteins
of A/California/07/2009(H1N1).
d584 aa for B/Wisconsin/01/2010 and 585 aa for B/Brisbane/60/2008.
eCorresponding influenza B virus protein is BM2 [19].
f219 aa for A/California/07/2009(H1N1) and 230 aa
for A/Brisbane/10/2007(H3N2).
g281 aa for B/Wisconsin/01/2010 and 282 aa for B/Brisbane/60/2008.
h122 aa for B/Wisconsin/01/2010 and 123 aa for B/Brisbane/60/2008.
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organization and protein homology [6-11]. Influenza A
and B viruses have eight negative sense RNA segments as
a genome, while influenza C viruses have seven [12].
These eight segments encode for more than eleven pro-
teins with ten of them common between influenza A and
B viruses [12,13]. The structure of influenza A and B
virus particles are very similar by electron microscopy
[14]. However, cross-protection between influenza A and
B viruses was not observed in mouse experiments
performed almost a half century ago [15]. Schulman
and Kilbourne compared mice previously infected with in-
fluenza A virus H1N1 subtype or influenza B virus in an
aerosol challenge experiment with influenza A virus H2N2
subtype and found no difference in pulmonary virus titers
from one to four days after challenge (in a separate experi-
ment, the same challenge dose killed 100% of previously
uninfected mice and 13.3% of A/H1N1 subtype-immune
mice, which suggested the presence of heterosubtypic im-
munity between A/H1N1 and A/H2N2 subtypes). They
also found no difference in pulmonary virus titers after
influenza B virus challenge between A/H1N1 subtype-
immune mice and previously uninfected mice [15]. In
recent papers influenza B virus infection was used as a
negative control in experiments analyzing heterosubtypic
immunity among influenza A virus subtypes in mice [16]
and ferrets [17]. The challenge doses chosen in the mouse
experiments were the lowest dose to kill 100% of
unimmunized mice. It was stated in the text that influenza
B virus immunization did not protect mice from influenza
A virus challenge in pilot experiments, although in some
experiments using wild type mice, influenza B virus-
immune mice showed survival from 25% to 44% against
A/H1N1 or A/H3N2 virus challenge (in the same ex-
periments A/H1N1- or A/H3N2-immune mice showed
survival rates from 86% to 100% against heterosubtypic
challenge) [16]. In ferret experiments, infection with
various influenza virus A/H1N1 strains or an influenza
virus B strain did not produce cross-reactive anti-
body responses between influenza A and B viruses in
hemagglutination inhibition or neutralization assays [17].
Overall the animal experiments are limited because of
the absence of T cell studies, but the antibody studies
and challenge results are consistent with the low amino
acid homology between influenza A and B viral proteins
[13]. One difference between infection in humans and
animal experiments is that humans are infected and vac-
cinated with influenza virus repeatedly throughout their
life while animals in these experiments experienced in-
fection or vaccination only once or twice.
Table 1 compares the ten viral proteins common in in-

fluenza A and B viruses. Viral strains for comparison
were selected from recent vaccine strains for which all
viral protein sequences were available from GenBank.
The NP and the M1 being used for distinguishing A and
B types have 36% and 27% homology respectively. As
expected from the presence of many subtypes in influenza
A viruses, the HA and the NA have lower homology (18%
for the HA and 20% for the NA) than the NP and the M1.
Nonstructural protein 1 (NS1) and NS2/nuclear export
protein (NEP) are in a similar range as the HA and the
NA. There is almost no homology at the amino acid level
between influenza A viruses’ matrix 2 protein (M2) and in-
fluenza B viruses’ BM2. Among three polymerases the
polymerase basic 2 (PB2) and the polymerase acid (PA)
have a similar homology range as NP, but the polymerase
basic 1 (PB1) has a much higher homology, 58%, than any
of the other influenza viral proteins [6,18].
In this review, we will summarize recent reports includ-

ing ours identifying B and T cell epitopes cross-reactive be-
tween influenza A and B viruses and re-evaluate existing
data on T cell responses to influenza A viruses in view of
cross-reactivity to influenza B viruses. We will refer to
other review articles dealing with B and T cell epitopes
shared within influenza A viruses [20-25] and concentrate
on cross-reactivity between influenza A and B viruses in
this report.
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Review
B and T cell epitopes in the fusion peptide of the HA
Although the overall homology between the HAs of influ-
enza A and B viruses is only 18% (Table 1), there is a short
stretch of well-conserved peptide (Figure 1) [26-28], which
overlaps with the fusion peptide (underlined in Figure 1)
[5,28]. Immunogenicity of the fusion peptide was first an-
alyzed in 1982 by Atassi and Webster [29]. They found
that sera obtained from infected humans, and from rabbits
and goats immunized with adjuvanted HA protein had
binding antibodies cross-reactive to the fusion peptides.
Immunization with the synthetic peptides (GLFGAIAGFIE
for A virus and GFFGAIAGFIE for B virus) induced pep-
tide specific antibodies in rabbits, but these antibodies
(antisera) were not neutralizing. Peptide immunization
(with complete Freund’s adjuvant) did not protect mice
B/Brisbane/60/2008 [AFH57909] M
B/Wisconsin/01/2010 [AFH57953] M
A/California/07/2009(H1N1) [AFM72832] M
A/Brisbane/10/2007(H3N2)   [ACI26318] M

*

NVTGVIPLTTTPTKSHFANLKGTETRGKLCPKCLNCTDLDVALGRPKCTGK
NVTGVIPLTTTPTKSYFANLKGTRTRGKLCPDCLNCTDLDVALGRPMCVGT
TVTHSVNLLED-----KHNGKLCKLRGVAPLHLGKCNIAGWILGNPECESL
EVTNATELVQS-----SSTGEICDSP-HQILDGENCTLIDALLGDPQCDGF
**    *          . :          .  :*.  .  ** * * . 

INAENAPGGPYKIGTSGSCPNITNGNGFFATMAWAVPKNDKNKTATNPLTI
IDAEKAPGGPYRLGTSGSCPNATSKIGFFATMAWAVPK-DNYKNATNPLTV
PKTSSWPNHDSNKGVTAACPHAGAK-SFYKNLIWLVKKGNSYPKLS-----
NESFNWTGVTQN-GTSSACIRRSNN-SFFSRLNWLTHLKFKYPALN-----
.: . ..   . *.:.:* .     .*:  : * .    .    .     

VSQIGGFPNQTEDGGLPQSGRIVVDYMVQKSGKTGTITYQRGILLPQKVWC
VSQIGDFPDQTEDGGLPQSGRIVVDYMMQKPGKTGTIVYQRGVLLPQKVWC
KPEIAIRPKVRD-----REGRMNYYWTLVEPGDKITFEATGNLVVPRYAFA
IPNIGSRPRVRN-----IPSRISIYWTIVKPGDILLINSTGNLIAPRGYFK
.:*.  *   :       .*:   : : :.*.   :    .:: *:  : 

HA1 domain HA2 domain         
IWVKT-PLKLANGTKYRPPAKLLKERGFFGAIAGFLEGGWEGMIAGWHGYT
IWVKT-PLKLANGTKYRPPAKLLKERGFFGAIAGFLEGGWEGMIAGWHGYT
KYVKSTKLRLATGLRNIP---SIQSRGLFGAIAGFIEGGWTGMVDGWYGYH
RYVKQNTLKLATGMRNVP---EKQTRGIFGAIAGFIENGWEGMVDGWYGFR
:**   *:**.* :  *     : **:*******:*.** **: **:*:

--B cell-
-----CD4 T----

NEILELDEKVDDLRADTISSQIELAVLLSNEGIINSEDEHLLALERKLKKM
NEILELDEKVDDLRADTISSQIELAVLLSNEGIINSEDEHLLALERKLKKM
KRIENLNKKVDDGFLDIWTYNAELLVLLENERTLDYHDSNVKNLYEKVRSQ
GRIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFEKTKKQ
.* :*:: *:*   *  : : ** * *.*:  ::  *..:  * .* :. 

ASLNDDGLDNHTILLYYSTAASSLAVTLMIAIFVVYMVSRDNVSCSICL
ASLNDDGLDNHTILLYYSTAASSLAVTLMLAIFIVYMVSRDNVSCSICL
DGVKLESTRIYQILAIYSTVASSLVLVVSLGAISFWMCSNGSLQCRICI
KGVELKSG-YKDWILWISFAISCFLLCVALLGFIMWACQKGNIRCNICI
.:: ..      :   * . *.: : : :  : .:  ....: * **:

Figure 1 Comparison of the HA protein amino acid sequences among
CLUSTALW (available at http://www.genome.jp/tools/clustalw/). Protein acc
names. The fusion peptide is underlined [28]. B cell and CD4+ T cell epitop
from infection with either influenza A or B viruses
(ten 50% lethal dose (LD50)), although monoclonal anti-
bodies established from immunized mice were neutralizing
in vitro (the antisera were not) [29].
More than 20 years later there is renewed interest in

the fusion peptide as a target of antibodies [27,30-32].
Chun et al. analyzed the NCBI influenza virus resource
database and identified 14-amino acid peptides in the fu-
sion peptide, G(L/I/F)FGAIAGFIE(G/N)GW, which have
only two positions with amino acid variations among all
influenza A and B viruses [27]. Antibodies (called Uni-1
antiserum) raised in rabbits against one of these peptides
(conjugated to the keyhole limpet hemocyanin (KLH)
mixed with Freund’s adjuvant), GLFGAIAGFIEGGW,
were able to bind to both influenza A (subtypes H1-H13
were tested) and B viruses [27]. Contrary to the previous
KAIIVLLMVVTS-----------NADRICTGITSSNSPHVVKTATQGEV
KAIIVLLMVVTS-----------NADRICTGITSSNSPHVVKTATQGEV
KAILVVLLYTFATA---------NADTLCIGYHANNSTDTVDTVLEKNV
KTIIALSYILCLVFTQKLPGNDNSTATLCLGHHAVPNGTIVKTITNDQI
*:*:.:                 .:  :* *  :  .   *.*  : ::

IPSARVSILHEVRPVTSGCFPIMHDRTKIRQLPNLLRGYEHIRLSTHNV
TPSAKASILHEVRPVTSGCFPIMHDRTKIRQLPNLLRGYENIRLSTQNV
S-TASSWSYIVETPSSDNGTCYPGDFIDYEELREQLSSVSSF-ERFEIF
Q-NKKWDLFVERSKAYSN--CYPYDVPDYASLRSLVASSG----TLEFN
  .             ..      *  .  .* . : .        .  

EVPYICTEGEDQITVWGFHSDDETQMAKLYGDSKPQKFTSSANGVTTHY
EVPYICTEGEDQITVWGFHSDBKXQMKSLYGDSNPQKFTSSANGVTTHY
-KSYINDKGKEVLVLWGIHHPSTSADQQSLYQNADAYVFVGSSRYSKKF
-VTMPNNEKFDKLYIWGVHHPGTDNDQIFLYAQASGRITVSTKRSQQTV
  .    :  : : :**.*             .    .  .:.      

ASG--RSKVIKGSLPLIGEADCLHEKYGGLNKSKPYYTGEHAKAIGNCP
ASG--RSKVIKGSLPLIGEADCLHEKYGGLNKSKPYYTGEHAKAIGNCP
MERNAGSGIIISDTPVHDCNTTCQTPKGAINTSLPFQN-IHPITIGKCP
IRSGKSS-IMRSDAPIGKCNSECITPNGSIPNDKPFQN-VNRITYGACP
      * :: .. *:           *.: .. *: .  :  : * **

SHGAHGVAVAADLKSTQEAINKITKNLNSLSELEVKNLQRLSGAMDELH
SHGAHGVAVAADLKSTQEAINKITKNLNSLSELEVKNLQRLSGAMDELH
HQNEQGSGYAADLKSTQNAIDEITNKVNSVIEKMNTQFTAVGKEFNHLE
HQNSEGIGQAADLKSTQAAIDQINGKLNRLIGKTNEKFHQIEKEFSEVE
:. .* . ******** **::*. ::* :      ::  :   :..:.

LGPSAVEIGNGCFETKHKCNQTCLDRIAAGTFDAGEFSLPTFDSLNITA
LGPSAVDIGNGCFETKHKCNQTCLDRIAAGTFNAGEFSLPTFDSLNITA
LKNNAKEIGNGCFEFYHKCDNTCMESVKNGTYDYPKYSEEAKLNR-EEI
LRENAEDMGNGCFKIYHKCDNACIGSIRNGTYDHDVYRDEALNNR-FQI
*  .* ::*****:  ***:::*:  :  **::   :   :  .     

influenza A and B viruses. Multiple alignment was performed by
ession numbers are shown in brackets next to influenza virus strain
es are also shown.

http://www.genome.jp/tools/clustalw/
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report by Atassi and Webster, the Uni-1 antiserum showed
neutralizing activity against live influenza A/H1N1 and
A/H3N2 viruses and an A/H5N1 pseudotype virus
in vitro through inhibition of viral fusion with the cells
[31] (the Uni-1 antiserum was not tested against influ-
enza B virus).
Stanekova et al. showed that peptide immunization

with the fusion peptide (the first 38 amino acids of HA2
domain of influenza A/Mississippi/1/85(H3N2) strain
conjugated to the KLH mixed with Freund’s adjuvant)
produced anti-fusion peptide antibodies and protected
mice against mild challenge with homologous and heter-
ologous (H1N1 or H7N1) viruses (1 and 2 LD50) [32,33].
Prabhu et al. established a monoclonal antibody from
mice immunized with recombinant H5 HA protein
(an uncleaved HA0 mixed with adjuvant) whose epitope
was mapped to the fusion peptide (GLFGAIAGF). This
antibody, MAb 1C9, had no detectable hemagglutination
inhibition or neutralization titer, but inhibited cell fusion
in vitro and protected mice against live virus challenge
with H5N1 subtype (5 LD50) [30]. Liu et al. reported that
DNA vaccination with full-length HA cDNA (seasonal
and 2009 pandemic H1) did not induce antibodies bind-
ing to GLFGAIAGFIE peptide in mice [34].
In these four mouse experiments BALB/c mice were

used for immunization, suggesting that anti-fusion pep-
tide antibody production may depend on immunization
strategy. Immunization with purified whole HA protein
induced a neutralizing anti-fusion peptide antibody
[30]. Immunization with the fourteen-amino acid peptide
[29] and the thirty eight-amino acid peptide [32,33] also
induced anti-fusion peptide antibody. The former failed
to protect mice against challenge, while the latter
protected, which may be explained by the difference
of challenge doses (10 versus 1 and 2 LD50). Hybrid-
omas from the former immunization did produce the
fusion-peptide specific antibodies which were neutralizing
in vitro [29]. In contrast DNA immunization failed to in-
duce detectable antibody response specific to the fusion
peptide [34].
Liu et al. also reported that they did not detect anti-

bodies binding to GLFGAIAGFIE peptide in the sera of
adult humans, which is different from the report by
Atassi and Webster [29], although subjects were very
different temporally (1982 versus 2008–9 before 2009
H1N1 pandemic) and geographically (US versus China).
We identified a CD4+ T cell epitope which was also

located in the fusion peptide when we were analyzing
T cell responses to the H2 HA [35]. We detected
interferon-γ responses to the H2 HA peptides in PBMCs
obtained from donors who were born years after influenza
A virus H2N2 subtype disappeared from circulation in the
human population (it was replaced by H3N2 subtype in
1968) suggesting the presence of highly conserved T cell
epitopes in the HA of influenza A viruses. Further analyses
identified a CD4+ T cell epitope (RG(L/I/F)FGAIAGF(I/L)
E(G/N)G)a in the fusion peptide. Since the fusion peptide
is highly conserved in both influenza A and B viruses, we
decided to test the cross-reactivity of a CD4+ T cell line
generated from one of the donors’ PBMCs. As expected
the T cell line secreted interferon-γ and tumor necrosis
factor-α after stimulation with influenza A/H1N1 (seasonal
and 2009 pandemic), A/H2N1, A/H3N2, A/H5N1 and B
viruses and lysed target cells infected with these viruses or
pulsed with the purified HA proteins. The epitope is likely
to be restricted by the HLA-DR (the epitope peptide is
likely to be restricted by the HLA-DRB1*09 allele but can
also bind to the HLA-DRB1*01 allele) [35]. CD4+ T cells
can control influenza virus infection by producing inflam-
matory cytokines and chemokines, directly lysing infected
cells, and by helping B cells and CD8+ T cells [36,37].
Wilkinson et al. showed that the frequencies of pre-
existing influenza-specific CD4 T cells correlated with
disease protection against experimental challenge when
the subjects did not have hemagglutination inhibition
antibodies to the challenge strain [38].
A CD8+ T cell epitope was also identified in the fusion

peptide. Gianfrani et al. identified peptides which had an
HLA-A2.1 binding motif and bound to the HLA-A2.1
molecule (GLFGAIAGFI) within the fusion peptide based
on the sequence of influenza virus A/Puerto Rico/8/34
(H1N1) strain [39]. This HLA-A2.1-binding peptide, how-
ever, was not considered an epitope in their report because
immunization with the peptide did not induce cyto-
toxic T cells response in HLA-A2.1/Kb transgenic
mice. Several years later Kosor Krnic et al. generated
a peptide/MHC class I tetramer with this peptide and
detected the peptide-specific CD8+ T cells in humans
proving that the peptide is indeed the HLA-A2.1-re-
stricted CD8+ T cell epitope [40]. Although neither of
these papers tested the cross-reactivity of this CD8+ T
cell epitope, it may not be cross-reactive to influenza B
viruses when we consider the amino acid change from
leucine/isoleucine to phenylalanine at one of the anchor
residues (2nd position).

B cell epitope in the stalk region of the HA
A protective antibody epitope cross-reactive to influenza
A and B viruses was also located in the stalk region of
the HA. Dreyfus et al. cloned human monoclonal anti-
bodies from B cells from volunteers vaccinated with the
seasonal influenza vaccine and one of these antibodies,
CR9114, bound to both influenza A and B viruses tested.
Although the monoclonal antibody neutralized only in-
fluenza A viruses in vitro, it protected mice against both
influenza A and B viruses challenge. This monoclonal
antibody was found to bind to the stalk (stem) region of
the HA [41].
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The stalk-specific antibodies tend to have broader neu-
tralizing activity than the conventional globular head-
specific antibodies among influenza A viruses and are
being studied extensively (reviewed in [21]) including
immunization strategies to efficiently induce the stalk-
specific antibodies [42,43]. As mentioned in the intro-
duction, we will not discuss details about influenza virus
A subtype-cross-reactive antibodies here, but it should
be pointed out that these antibodies bind to conform-
ational epitopes [44] and that influenza A/New Jersey/
1976(H1N1) and A/California/04/2009(H1N1) vaccines
(inactivated vaccines), both of which are of swine-origin,
boosted the stalk-specific antibodies in humans suggesting
that vaccines containing viruses whose globular head of
the HA are substantially different from seasonal strains are
capable of boosting titers of the stalk-specific antibodies
[45]. Prime/boost vaccination with plasmid DNA encoding
the HA cDNA followed by seasonal vaccine also induced
the stalk-specific antibodies in a number of different ani-
mals including non-human primates [46]. HA protein
without the globular head (containing the fusion peptide)
is also being studied as an vaccine antigen to induce the
B/Brisbane/60/2008         [AFH57913]             M
B/Wisconsin/01/2010        [AFH57957]             M
A/California/07/2009(H1N1) [AFM72835]             M
A/Brisbane/10/2007(H3N2)   [ACI26321]             M

*

TMPLDCANASNVQAVNRSATKGVTLLLPEPEWTYPRLSCPGSTFQKALLIS
IMPLDCANASNVQAVNRSATKGVTLLLPEPEWTYPRLSCPGSTFQKALLIS
QSVITYENNTWVNQTYVNISNTNFAAGQSVVSVKLAGNSSLCPVSGWAIYS
MLCEPTIIERNITEIVYLTNTTIEKEICPKLAEYRNWSKPQCDITGFAPFS

:       ..                . . . .      *

DRNKLRHLISVKLGKIPTVENSIFHMAAWSGSACHDGKEWTYIGVDGPDNN
DRNKLRHLISVKLGKIPTVENSIFHMAAWSGSACHDGREWTYIGVDGPDSN
DRSPYRTLMSCPIGEVPSPYNSRFESVAWSASACHDGINWLTIGISGPDNG
DRTPYRTLLMNELG-VPFHLGTKQVCIAWSSSSCHDGKAWLHVCITGDDKN
**.  * *:   :* :*   .:     ***.*:****  *  : : * *..

SECRFLKIREGRIIKEIFPTGRVKHTEECTCGFASNKTIECACRDNSYTAK
SECRFLKIREGRIIKEIFPTGRVKHTEECTCGFASNKTIECACRDNSYTAK
ASYKIFRIEKGKIVKSVEMNAPNYHYEECSCYPDS-SEITCVCRDNWHGSN
ADTKILFIEEGKIVHTSTLSGSAQHVEECSCYPRY-PGVRCVCRDNWKGSN
:. ::: *.:*:*::    ..   * ***:*       : *.****   ::

IKGGFVHQRMESKIGRWYSRTMSKTERMGMGLYVKYDGDPWADSDALAFSG
IKGGFVHQRMASKIGRWYSRTMSKTKRMGMGLYVKYDGDPWTDSEALALSG
VKG----FSFKYGNGVWIGRTKSISSRNGFEMIWDPNGWTGTDNNFSIKQD
VKG----WAFDDGNDVWMGRTISEKSRLGYETFKVIEGWSNPKSKLQINRQ
:**      :    . * .** * ..* *       :* . ....     

AATAIYCLMGSGQLLWDTVTGVDMAL----
AATAIYCLMGSGQLLWDTVTGVNMTL----
GSSISFCGVNSDTVGWSWPDGAELPFTIDK
NSIVVFCGTSGTYGTGSWPDGADINLMPI-
:   :*  ..     .   *.:: :    

Figure 2 Comparison of the NA protein amino acid sequences among
CLUSTALW (available at http://www.genome.jp/tools/clustalw/). Protein acc
names. The conserved peptide studied by Gravel et al. [51] is underlined, a
activity [52] are shaded.
stalk-specific antibodies [42,47,48]. One study estimated
that ~0.001% of the total immunoglobulin G were these
stalk-specific antibodies (subtype-cross-reactive among
Group 1 HAs) [49]. How common are antibodies like
CR9114 among the stalk-specific antibodies is not known.
It is interesting and important to know if these

immunization strategies can also induce the fusion
peptide-specific antibodies.

B cell epitope in the NA
Some antibodies against the NA can bind near its cata-
lytic site and inhibit virus release from infected cells and
these epitopes are conformational [50]. A short stretch of
well-conserved peptide among influenza A and B viruses
was identified in the NA by Gravel et al. [51], which in-
cludes residues necessary for the enzymatic function
[52]. The peptide shows amino acid sequence variation
only at one position [51] (Figure 2). Immunization
with a peptide designed based on the type A virus sequence
(the nine-amino acid long conserved peptide was conju-
gated to the KLH with a spacer) induced antibodies cross-
reactive to the NA proteins from both influenza A and B
LP--STIQTLTLFLTSGGVLLSLYVSASLSYLLYSDILLKFSPTEITAP
LP--STIQTLTLFLTSGGVLLSLYVSASLSYLLYSDILLKFSRTEITAP
NPNQKIITIGSVCMTIGMANLILQIGNIISIWISHSIQLGNQNQIETCN
NPNQKIITIGSVSLTISTICFFMQIAILITTVTLHFKQYEFNSPPNNQV
 * . *   :: :* .   : : :.  ::           .    .  

PHRFGETKGNSAPLIIREPFIACGPNECKHFALTHYAAQPGGYYNGTRG
PHRFGETKGNSAPLIIREPFIACGPKECKHFALTHYAAQPGGYYNGTRE
KDNSVRIGSKGDVFVIREPFISCSPLECRTFFLTQGALLNDKHSNGTIK
KDNSIRLSAGGDIWVTREPYVSCDPDKCYQFALGQGTTLNNVHSNDTVR
 ..  .  . .   : ***:::*.* :*  * * : :   . : *.*  

ALLKVKYGEAYTDTYHSYANKILRTQESACNCIGGNCYLMITDGSASGV
ALLKIKYGEAYTDTYHSYAKNILRTQESACNCIGGDCYLMITDGPASGI
AVAVLKYNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSNGQ
ATASFIYNGRLVDSIVSWSKEILRTQESECVCINGTCTVVMTDGSASGK
*   . *.   .*:  *: ::******* * *:.* *  ::***.:.*

RPFVKLNVETDTAEIRLMCTDTYLDTPRPNDGSITG-PCESNGDKGSGG
RPFVKLNVETDTAEIRLMCTETYLDTPRPNDGSITG-PCESNGDKGSGG
RPWVSFNQNLEYQIG-YICSGIFGDNPRPNDKTGS---CGPVSSNGANG
RPIVDINIKDHSTVSSYVCSGLVGDTPRKNDSSSSSHCLDPNNEEGGHG
** *.:* : .      :*:    *.** ** : :     . ..:*. *

VMVSMKEPGWYSFGFEIK----DKKCDVPCIGIEMVHDGGKE---TWHS
VMVSMEEPGWYSFGFEIK----DKKCDVPCIGIEMVHDGGKT---TWHS
IVG-INEWSGYSGSFVQHPELTGLDCIRPCFWVELIRGRPKE-NTIWTS
VIVDRGNRSGYSGIFSVE----GKSCINRCFYVELIRGRKEETEVLWTS
::    : . **  *  .    . .*   *: :*:::.  :     * *

influenza A and B viruses. Multiple alignment was performed by
ession numbers are shown in brackets next to influenza virus strain
nd amino acid residues considered to be involved in the enzymatic

http://www.genome.jp/tools/clustalw/


Table 2 Conservation of T cell epitopes identified in the PB1 of influenza A and B viruses

Peptide
locationa

Peptide sequence of
influenza A PB1b

Corresponding peptide in
influenza B PB1c

Amino acid
identityd

Restricting
allele

Reference

1-15 MDVNPTLLFLKVPAQ *NI**YF**ID**(I/V)* 8/15 DR supertype [54]

7-14 LLFLKVPA F**ID**(I/V) 4/8 A2 supertype [54]

30-38 YSHGTGTGY ********* 9/9 A1 supertype [55]

41-49 DTVNRTHQY ***I***** 8/9 A26 [60]

92-106 MAFLEESHPGIFENS LDRMD*E***L*QAA 5/15 DR supertype [54]

166-174 FLKDVMESM *CQ*IID*L 3/9 A2 [60]

238-246 RRAIATPGM ******A*I 7/9 B27 [61]

254-262 FVEALARSI V**N**KN* 5/9 A2 supertype [54]

257-265 TLARSICEK N**KN***N 5/9 A3 supertype [54]

263-271 CEKLEQSGL **N****** 8/9 B44 [54]

316-330 RMFLAMITYITRNQP *I****TER***DS* 9/15 DR supertype [54]

347-355 KMARLGKGY *I******F 7/9 B62 [60]

349-357 ARLGKGYMF ******F*I 7/9 B27 [60]

357-364 FESKSMKL IT**TKR* 3/8 B44 [54]

404-418 SPGMMMGMFNMLSTV *************** 15/15 DR supertype [54]

407-415 MMMGMFNML ********* 9/9 A2 supertype [54]

408-422 MMGMFNMLSTVLGVS **************A 14/15 DR supertype [54]

412-421 FNMLSTVLGV ********** 10/10 A2 supertype [54]

413-421 NMLSTVLGV ********** 9/9 A*0201 [39]

471-480 KLVGINMSKK **L*(*/V)***** 8~9/10 A3 supertype [55]

488-497 GTFEFTSFFY *M*****M** 8/10 A3 supertype [55]

489-497 TFEFTSFFY M*****M** 7/9 A1 supertype [54]

490-497 FEFTSFFY *****M** 7/8 B44 [54]

496-505 FYRYGFVANF ***D***S** 8/10 A24 supertype [55]

501-509 FVANFSMEL **S**A**(*/I) 6~7/9 A2 supertype [54]

505-514 FSMELPSFGV *A**(*/I)***** 8~9/10 A2 supertype [54]

509-517 LPSFGVSGI (*/I)*****A*V 6~7/9 B7 [54]

540-548 GPATAQMAL ******T*I 7/9 B7 [60]

566-574 TQIQTRRSF SKVEGK*MK 1/9 B62 [60]

590-599 LVSDGGPNLY **A*****I* 8/10 A1 supertype [55]

591-599 VSDGGPNLY *A*****I* 7/9 A1 [62]

741-749 AEIMKICST EKA*AHLGE 1/9 B44 [54]

21-38 TFPYTGDPPYSHGTGTGY ******V*********** 17/18 CD8 [63]

43-60 VNRTHQYSEKGKWTTNTE *I***E**N***QY(I/V)SD(V/I) 9/18 ? [63]

57-73 TNTETGAPQLNPIDGPL (I/V)SD(V/I)**CTM(V/I)D*TN*** 6/17 ? [63]

64-82 PQLNPIDGPLPEDNEPSGY (T/A/V)MVD*TN**********A* 12/19 ? [63]

86-103 DCVLEAMAFLEESHPGIF ******LDRMD*E***L* 11/18 ? [63]

123-140 TQGRQTYDWTLNRNQPAA ******F***VC****** 15/18 ? [63]

270-287 GLPVGGNEKKAKLANVVR *************S*A*A 15/18 ? [63]

316-333 RMFLAMITYITRNQPEWF *I****TER***DS*I** 11/18 ? [63]

395-428 LLIDGTASLSPGMMMGMFNMLSTVLGVSILNLGQ FNEE***********************AA*GIKN 24/34 ? [64]

402-419 SLSPGMMMGMFNMLSTVL ****************** 18/18 CD4 [63]

410-426 GMFNMLSTVLGVSILNL ************AA*GI 13/17 ? [63]
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Table 2 Conservation of T cell epitopes identified in the PB1 of influenza A and B viruses (Continued)

417-433 TVLGVSILNLGQKRYTK *****AA*GIKNIGNKE 6/17 CD4 [63]

432-449 TKTTYWWDGLQSSDDFAL GNKE*L************ 13/18 CD4 [63]

447-463 FALIVNAPNYAGIQAGV ***F***KDE*TCME*I 8/17 ? [65]

470-486 CKLVGINMSKKKSYINR ***L*(*/V)********C*E 13~14/17 ? [63]

498-514 RYGFVANFSMELPSFGV *D***S**A**(*/I)***** 13~14/17 CD8 [63]

505-521 FSMELPSFGVSGINESA *A**(*/I)*****A*V**** 13~14/17 ? [63]

548–564 LQLFIKDYRYTYRCHRG I****A******K**** 14/17 ? [65]

562-579 HRGDTQIQTRRSFELKKL ****SKVEGK*MKII*E* 7/18 ? [63]

705-722 YRRPVGISSMVEAMVSRA **K***QH**L***AH*L 11/18 CD8 [63]
aBased on the PB1 of A/Puerto Rico/8/34(H1N1) (NP_040985).
bAmino acid sequence in the original publication.
cB/Wisconsin/01/2010 (B/Yamagata/16/88-lineage) and B/Brisbane/60/2008 (B/Victoria/2/87-like lineage).
dEmbolden when all amino acids are identical or when the observed amino acid variation in B viruses does not decrease the SYFPEITHI binding score
(http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm).
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viruses in rabbits [51]. Functionality of these antibodies
against influenza viruses has not been reported. Studies
showed that natural infection induced anti-NA antibodies
in humans [53] and that vaccination with trivalent
inactivated influenza vaccine (TIV) or live attenuated
vaccine induced anti-NA antibodies [50]. It is not known
if antibodies specific to this NA peptide are induced in
humans by natural infection or vaccination.

Conservation of T cell epitopes in PB1 among influenza A
and B viruses
Among influenza A and B viral proteins only polymerase
basic 1 has relatively high overall sequence homology
compared to other viral proteins (Table 1) [6,18]. PB1
was not considered to be an immunodominant protein
in T cell responses against influenza viruses; however, a
recent study reported that PB1 had more CD4+ and
CD8+ T cell epitopes than any other influenza A virus
proteins in humans [54]. Of 25 CD8+ T cell epitopes
restricted by HLA-A1, -A2, -A3, -A24, -B7 and -B44
supertypes which are highly conserved among H1N1
(seasonal and 2009 pandemic), H2N2, H3N2, H5N1,
H7N7 and H9N2 subtypes, six epitopes are on PB1.
Only nucleoprotein has more epitopes (eight) [55].
In mice, a DNA vaccine expressing the PB1 protein

from A/Puerto Rico/8/34(H1N1) strain protected against
homologous challenge (although the challenge was rela-
tively modest with 1 LD50) [56]. Anti-PB1 antibodies
were produced in the vaccinated mice. Since there is an
example of a neutralizing antibody which can act within
cells in Listeria monocytogenes infection [57], it is pos-
sible that these anti-PB1 antibodies mediate protection
by affecting influenza virus-infected cells, and not by
neutralizing cell-free virions. But, it is also reasonable to
consider that T cell responses against PB1 (both CD4+

and CD8+) may have been induced in vaccinated mice
and contributed to the observed protection.
We looked at amino acid sequence conservation in T
cell epitopes in the PB1 reported in the literature (all
reported T cell epitopes in the influenza virus PB1 were
identified using influenza A viruses or their amino acid
sequences). The result is summarized in Table 2. As
expected from the 58% amino acid identity, 14 of the 32
well-characterized T cell epitopes (shown in the top half
of the table) were identical or only had conservative
amino acid variations. Twelve were CD8+ T cell epitopes
and two were CD4+ T cell epitopes. Most of the CD8+ T
cell epitopes are restricted by HLA-A1, -A2, -A3 or -
A24 supertypes [58] and the two CD4+ T cell epitopes
are restricted by HLA-DR supertype [59] suggesting that
these CD8+ and CD4+ T cell epitopes are expected to be
recognized by a majority of human population. Eleven of
the 14 conserved T cell epitopes were clustered in two
regions, amino acid 404–422 and 471–517. The same re-
gions also contain several less-characterized T cell epi-
topes (the bottom half of the table). The presence of
these epitopes suggests that there are cross-reactive T
cell responses between the PB1 proteins of influenza A
and B viruses.
Commercial TIVs do not contain detectable levels of

PB1 by two-dimensional high-performance liquid chro-
matography [66,67], and in mice TIV did not induce
PB1-specific CD4+ T cell responses [68]. It is not known
if live attenuated vaccines induce PB1-specific CD4+ and
CD8+ T cell responses.
Since CD4+ and CD8+ T cell responses tend to be

more subtype-cross-reactive than antibody responses
[24,25,69], there are a variety of vaccine formulations
designed to induce CD4+ and CD8+ T cell responses
against influenza viral proteins (reviewed in [25]). There
are two DNA vaccine studies which used the PB1 gene
or gene segments encoding peptide epitopes as a vaccine
antigen. One is a plasmid DNA vaccine with full-length
PB1 cDNA described above [56], and the other is a

http://www.syfpeithi.de/bin/MHCServer.dll/EpitopePrediction.htm
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plasmid DNA vaccine made of 20 epitopes restricted by
many different HLA-DR alleles designed to induce CD4+

T cell responses in diverse ethnic groups [70]. In the lat-
ter study focusing on CD4+, not CD8+, T cell responses,
DNA vaccination alone failed to induce detectable levels
of epitope-specific CD4+ T cell responses in HLA-DR4
transgenic mice, however, the vaccinated mice showed
protection against a challenge by A/Puerto Rico/8/34
(H1N1) (4 LD50), although the relative contribution of
CD4+ T cell responses to the PB1 epitopes in protection
was not known [70].

Conclusions
The data we reviewed here show that B and T cell cross-
reactivity exists between influenza A and B viruses,
which may have modulatory effects on the disease
process and recovery. Although the antibody titers and
the specific T cell frequencies induced by natural infec-
tion or standard vaccination may not be high enough to
provide cross protection, it might be possible to develop
immunization strategies to induce these cross-reactive
responses more efficiently. Specifically, immunization
strategies to induce the stalk-specific antibodies might also
be efficacious for induction of the fusion peptide-specific
antibodies (in addition to inducing stalk-specific antibodies,
some of which may be cross-reactive to both influenza A
and B viruses). DNA vaccine or recombinant viral vectors
expressing PB1 cDNA alone may not be protective against
high dose challenge, but may enhance protection against
influenza conferred by immune responses to HA or NA.

Endnote
aThe conserved sequence reported in the paper [35]

contained errors. Authors’ Correction will be published
in the Journal of Virology, volume 87, issue 16 in 2013.

Abbreviations
PB1: Polymerase basic 1; NP: Nucleoprotein; M1: Matrix 1 protein;
HA: Hemagglutinin; NA: Neuraminidase; NS1: Nonstructural protein 1;
NEP: Nuclear export protein; M2: Matrix 2 protein; PB2: Polymerase basic 2;
PA: Polymerase acid; LD50: 50% lethal dose; KLH: Keyhole limpet hemocyanin.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MT wrote the initial draft. All authors discussed, read and approved the final
manuscript.

Acknowledgements
We thank Ivan Košík for discussion.
The authors were supported by the National Institutes of Health /National
Institute of Allergy and Infectious Diseases grant U19 AI-057319.
We also thank reviewers of this manuscript for useful comments.

Author details
1Division of Infectious Diseases and Immunology, Department of Medicine,
University of Massachusetts Medical School, 55 Lake Avenue North,
Worcester, MA 01655, USA. 2Division of Diabetes, Department of Medicine,
University of Massachusetts Medical School, Worcester, MA, USA.
Received: 5 June 2013 Accepted: 24 July 2013
Published: 26 July 2013
References
1. Cox NJ, Fuller F, Kaverin N, Klenk H-D, Lamb RA, Mahy BWJ, McCauley J,

Nakamura K, Palese P, Webster R, Regenmortel MHV, Fauquet CM, Bishop DHL,
Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR,
Wickner RB: FAMILY ORTHOMYXOVIRIDAE. In Virus Taxonomy Classification and
Nomenclature of Viruses. San Diego: Academic Press; 2000:585–597.

2. Atmar RL: Influenza Viruses. In Manual of Clinical Microbiology. Volume 2.
9th edition. Edited by Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA.
Washington, DC: ASM Press; 2007:1340–1351.

3. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S,
Ellison JA, Davis CT, York IA, et al: A distinct lineage of influenza A virus
from bats. Proc Natl Acad Sci U S A 2012, 109:4269–4274.

4. Zhu X, Yu W, McBride R, Li Y, Chen LM, Donis RO, Tong S, Paulson JC,
Wilson IA: Hemagglutinin homologue from H17N10 bat influenza virus
exhibits divergent receptor-binding and pH-dependent fusion activities.
Proc Natl Acad Sci U S A 2013, 110:1458–1463.

5. Hayden FG, Palese P: Influenza Virus. In Clinical Virology. 2nd edition. Edited
by Richman DD, Whitley RJ, Hayden FG. Washington, DC: ASM Press;
2002:891–920.

6. Yamashita M, Krystal M, Palese P: Comparison of the three large
polymerase proteins of influenza A, B, and C viruses. Virology 1989,
171:458–466.

7. Gammelin M, Altmuller A, Reinhardt U, Mandler J, Harley VR, Hudson PJ,
Fitch WM, Scholtissek C: Phylogenetic analysis of nucleoproteins suggests
that human influenza A viruses emerged from a 19th-century avian
ancestor. Mol Biol Evol 1990, 7:194–200.

8. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y: Evolution
and ecology of influenza A viruses. Microbiol Rev 1992, 56:152–179.

9. Krossoy B, Hordvik I, Nilsen F, Nylund A, Endresen C: The putative
polymerase sequence of infectious salmon anemia virus suggests a new
genus within the Orthomyxoviridae. J Virol 1999, 73:2136–2142.

10. Suzuki Y, Nei M: Origin and evolution of influenza virus hemagglutinin
genes. Mol Biol Evol 2002, 19:501–509.

11. O'Brien JD, She ZS, Suchard MA: Dating the time of viral subtype divergence.
BMC Evol Biol 2008, 8:172.

12. Palese P, Shaw ML: Orthomyxoviridae: The Viruses and Their Replication.
In Fields Virology. Edited by Knipe DM, Howley PM. Philadelphia: Lippincott
Williams & Wilkins; 2007:1648–1689.

13. Jackson D, Elderfield RA, Barclay WS: Molecular studies of influenza B virus
in the reverse genetics era. J Gen Virol 2011, 92:1–17.

14. Ruigrok RWH: Structure of Influenza A, B and C Viruses. In Textbook of
INFLUENZA. Edited by Nicholson KG, Webster RG, Hay AJ. Malden: Blackwell
Science; 1998:29–42.

15. Schulman JL, Kilbourne ED: Induction of Partial Specific Heterotypic
Immunity in Mice by a Single Infection with Influenza a Virus. J Bacteriol
1965, 89:170–174.

16. Epstein SL, Lo CY, Misplon JA, Lawson CM, Hendrickson BA, Max EE,
Subbarao K: Mechanisms of heterosubtypic immunity to lethal influenza
A virus infection in fully immunocompetent, T cell-depleted, beta2-
microglobulin-deficient, and J chain-deficient mice. J Immunol 1997,
158:1222–1230.

17. O'Donnell CD, Wright A, Vogel LN, Wei CJ, Nabel GJ, Subbarao K:
Effect of priming with H1N1 influenza viruses of variable antigenic
distances on challenge with 2009 pandemic H1N1 virus. J Virol 2012,
86:8625–8633.

18. Kemdirim S, Palefsky J, Briedis DJ: Influenza B virus PB1 protein; nucleotide
sequence of the genome RNA segment predicts a high degree of
structural homology with the corresponding influenza A virus
polymerase protein. Virology 1986, 152:126–135.

19. Mould JA, Paterson RG, Takeda M, Ohigashi Y, Venkataraman P, Lamb RA,
Pinto LH: Influenza B virus BM2 protein has ion channel activity that
conducts protons across membranes. Dev Cell 2003, 5:175–184.

20. Stanekova Z, Vareckova E: Conserved epitopes of influenza A virus
inducing protective immunity and their prospects for universal vaccine
development. Virol J 2010, 7:351.

21. Laursen NS, Wilson IA: Broadly neutralizing antibodies against influenza
viruses. Antiviral Res 2013, 98:476–483.



Terajima et al. Virology Journal 2013, 10:244 Page 9 of 10
http://www.virologyj.com/content/10/1/244
22. Heiny AT, Miotto O, Srinivasan KN, Khan AM, Zhang GL, Brusic V, Tan TW,
August JT: Evolutionarily conserved protein sequences of influenza a
viruses, avian and human, as vaccine targets. PLoS ONE 2007, 2:e1190.

23. Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A: Ab and T cell epitopes
of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci U S
A 2007, 104:246–251.

24. Grebe KM, Yewdell JW, Bennink JR: Heterosubtypic immunity to influenza
A virus: where do we stand? Microbes Infect 2008, 10:1024–1029.

25. Epstein SL, Price GE: Cross-protective immunity to influenza A viruses.
Expert Rev Vaccines 2010, 9:1325–1341.

26. Krystal M, Elliott RM, Benz EW Jr, Young JF, Palese P: Evolution of influenza
A and B viruses: conservation of structural features in the hemagglutinin
genes. Proc Natl Acad Sci U S A 1982, 79:4800–4804.

27. Chun S, Li C, Van Domselaar G, Wang J, Farnsworth A, Cui X, Rode H, Cyr TD,
He R, Li X: Universal antibodies and their applications to the quantitative
determination of virtually all subtypes of the influenza A viral
hemagglutinins. Vaccine 2008, 26:6068–6076.

28. Cross KJ, Langley WA, Russell RJ, Skehel JJ, Steinhauer DA: Composition
and functions of the influenza fusion peptide. Protein Pept Lett 2009,
16:766–778.

29. Atassi MZ, Webster RG: Localization, synthesis, and activity of an
antigenic site on influenza virus hemagglutinin. Proc Natl Acad Sci U S A
1983, 80:840–844.

30. Prabhu N, Prabakaran M, Ho HT, Velumani S, Qiang J, Goutama M, Kwang J:
Monoclonal antibodies against the fusion peptide of hemagglutinin
protect mice from lethal influenza A virus H5N1 infection. J Virol 2009,
83:2553–2562.

31. Hashem AM, Van Domselaar G, Li C, Wang J, She YM, Cyr TD, Sui J, He R,
Marasco WA, Li X: Universal antibodies against the highly conserved
influenza fusion peptide cross-neutralize several subtypes of influenza A
virus. Biochem Biophys Res Commun 2010, 403:247–251.

32. Stanekova Z, Kiraly J, Stropkovska A, Mikuskova T, Mucha V, Kostolansky F,
Vareckova E: Heterosubtypic protective immunity against influenza A
virus induced by fusion peptide of the hemagglutinin in comparison to
ectodomain of M2 protein. Acta Virol 2011, 55:61–67.

33. Janulikova J, Stanekova Z, Mucha V, Kostolansky F, Vareckova E: Two
distinct regions of HA2 glycopolypeptide of influenza virus
hemagglutinin elicit cross-protective immunity against influenza.
Acta Virol 2012, 56:169–176.

34. Liu X, Liu Y, Zhang Y, Chen Z, Tang Z, Xu Q, Wang Y, Zhao P, Qi Z: Pre-
existing immunity with high neutralizing activity to 2009 pandemic
H1N1 influenza virus in Shanghai population. PLoS One 2013, 8:e58810.

35. Babon JA, Cruz J, Ennis FA, Yin L, Terajima M: A human CD4+ T cell
epitope in the influenza hemagglutinin is cross-reactive to influenza A
virus subtypes and to influenza B virus. J Virol 2012, 86:9233–9243.

36. McKinstry KK, Strutt TM, Kuang Y, Brown DM, Sell S, Dutton RW, Swain SL:
Memory CD4+ T cells protect against influenza through multiple
synergizing mechanisms. J Clin Invest 2012, 122:2847–2856.

37. Boonnak K, Subbarao K: Memory CD4+ T cells: beyond "helper" functions.
J Clin Invest 2012, 122:2768–2770.

38. Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M, Liebner JC,
Lambkin-Williams R, Gilbert A, Oxford J, Nicholas B, et al: Preexisting
influenza-specific CD4+ T cells correlate with disease protection
against influenza challenge in humans. Nat Med 2012, 18:274–280.

39. Gianfrani C, Oseroff C, Sidney J, Chesnut RW, Sette A: Human memory
CTL response specific for influenza A virus is broad and multispecific.
Hum Immunol 2000, 61:438–452.

40. Kosor Krnic E, Gagro A, Drazenovic V, Kuzman I, Jeren T, Cecuk-Jelicic E,
Kerhin-Brkljacic V, Gjenero-Margan I, Kaic B, Rakusic S, et al: Enumeration of
haemagglutinin-specific CD8+ T cells after influenza vaccination using
MHC class I peptide tetramers. Scand J Immunol 2008, 67:86–94.

41. Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH,
Metlagel Z, Bujny MV, Jongeneelen M, et al: Highly conserved protective
epitopes on influenza B viruses. Science 2012, 337:1343–1348.

42. Eckert DM, Kay MS: Stalking influenza. Proc Natl Acad Sci U S A 2010,
107:13563–13564.

43. Nabel GJ, Fauci AS: Induction of unnatural immunity: prospects for a
broadly protective universal influenza vaccine. Nat Med 2010,
16:1389–1391.

44. Krammer F, Margine I, Tan GS, Pica N, Krause JC, Palese P: A carboxy-
terminal trimerization domain stabilizes conformational epitopes on the
stalk domain of soluble recombinant hemagglutinin substrates. PLoS One
2012, 7:e43603.

45. Miller MS, Tsibane T, Krammer F, Hai R, Rahmat S, Basler CF, Palese P: 1976
and 2009 H1N1 influenza virus vaccines boost anti-hemagglutinin stalk
antibodies in humans. J Infect Dis 2013, 207:98–105.

46. Wei CJ, Boyington JC, McTamney PM, Kong WP, Pearce MB, Xu L, Andersen H,
Rao S, Tumpey TM, Yang ZY, Nabel GJ: Induction of broadly neutralizing H1N1
influenza antibodies by vaccination. Science 2010, 329:1060–1064.

47. Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, Haye K, Garcia-Sastre A,
Palese P: Influenza virus vaccine based on the conserved hemagglutinin
stalk domain. MBio 2010, 1:e00018–00010.

48. Bommakanti G, Citron MP, Hepler RW, Callahan C, Heidecker GJ, Najar TA,
Lu X, Joyce JG, Shiver JW, Casimiro DR, et al: Design of an HA2-based
Escherichia coli expressed influenza immunogen that protects mice from
pathogenic challenge. Proc Natl Acad Sci U S A 2010, 107:13701–13706.

49. Sui J, Sheehan J, Hwang WC, Bankston LA, Burchett SK, Huang CY,
Liddington RC, Beigel JH, Marasco WA: Wide prevalence of heterosubtypic
broadly neutralizing human anti-influenza A antibodies. Clin Infect Dis
2011, 52:1003–1009.

50. Marcelin G, Sandbulte MR, Webby RJ: Contribution of antibody production
against neuraminidase to the protection afforded by influenza vaccines.
Rev Med Virol 2012, 22:267–279.

51. Gravel C, Li C, Wang J, Hashem AM, Jaentschke B, Xu KW, Lorbetskie B,
Gingras G, Aubin Y, Van Domselaar G, et al: Qualitative and quantitative
analyses of virtually all subtypes of influenza A and B viral neuraminidases
using antibodies targeting the universally conserved sequences.
Vaccine 2010, 28:5774–5784.

52. Colman PM, Hoyne PA, Lawrence MC: Sequence and structure alignment
of paramyxovirus hemagglutinin-neuraminidase with influenza virus
neuraminidase. J Virol 1993, 67:2972–2980.

53. Kilbourne ED, Christenson WN, Sande M: Antibody response in man
to influenza virus neuraminidase following influenza. J Virol 1968,
2:761–762.

54. Assarsson E, Bui HH, Sidney J, Zhang Q, Glenn J, Oseroff C, Mbawuike IN,
Alexander J, Newman MJ, Grey H, Sette A: Immunomic analysis of the
repertoire of T-cell specificities for influenza A virus in humans. J Virol
2008, 82:12241–12251.

55. Alexander J, Bilsel P, del Guercio MF, Marinkovic-Petrovic A, Southwood S,
Stewart S, Ishioka G, Kotturi MF, Botten J, Sidney J, et al: Identification of
broad binding class I HLA supertype epitopes to provide universal
coverage of influenza A virus. Hum Immunol 2010, 71:468–474.

56. Kosik I, Krejnusova I, Praznovska M, Polakova K, Russ G: A DNA vaccine
expressing PB1 protein of influenza A virus protects mice against virus
infection. Arch Virol 2012.

57. Edelson BT, Unanue ER: Intracellular antibody neutralizes Listeria growth.
Immunity 2001, 14:503–512.

58. Sette A, Sidney J: Nine major HLA class I supertypes account for the vast
preponderance of HLA-A and -B polymorphism. Immunogenetics 1999,
50:201–212.

59. Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S,
Kubo RT, Chesnut RW, Grey HM, Sette A: Several common HLA-DR types
share largely overlapping peptide binding repertoires. J Immunol 1998,
160:3363–3373.

60. Wang M, Lamberth K, Harndahl M, Roder G, Stryhn A, Larsen MV, Nielsen M,
Lundegaard C, Tang ST, Dziegiel MH, et al: CTL epitopes for influenza A
including the H5N1 bird flu; genome-, pathogen-, and HLA-wide
screening. Vaccine 2007, 25:2823–2831.

61. Terajima M, Cruz J, Leporati AM, Orphin L, Babon JA, Co MD, Pazoles P,
Jameson J, Ennis FA: Influenza A virus matrix protein 1-specific human
CD8+ T-cell response induced in trivalent inactivated vaccine recipients.
J Virol 2008, 82:9283–9287.

62. DiBrino M, Tsuchida T, Turner RV, Parker KC, Coligan JE, Biddison WE: HLA-
A1 and HLA-A3 T cell epitopes derived from influenza virus proteins
predicted from peptide binding motifs. J Immunol 1993, 151:5930–5935.

63. Lee LY, LA H d, Simmons C, de Jong MD, Chau NV, Schumacher R, Peng YC,
McMichael AJ, Farrar JJ, Smith GL, et al: Memory T cells established by
seasonal human influenza A infection cross-react with avian influenza A
(H5N1) in healthy individuals. J Clin Invest 2008, 118:3478–3490.

64. Stoloff GA, Caparros-Wanderley W: Synthetic multi-epitope peptides
identified in silico induce protective immunity against multiple influenza
serotypes. Eur J Immunol 2007, 37:2441–2449.



Terajima et al. Virology Journal 2013, 10:244 Page 10 of 10
http://www.virologyj.com/content/10/1/244
65. Babon JA, Cruz J, Orphin L, Pazoles P, Co MD, Ennis FA, Terajima M:
Genome-wide screening of human T-cell epitopes in influenza A virus
reveals a broad spectrum of CD4(+) T-cell responses to internal proteins,
hemagglutinins, and neuraminidases. Hum Immunol 2009, 70:711–721.

66. Garcia-Canas V, Lorbetskie B, Girard M: Rapid and selective
characterization of influenza virus constituents in monovalent and
multivalent preparations using non-porous reversed-phase high
performance liquid chromatography columns. J Chromatogr A 2006,
1123:225–232.

67. Garcia-Canas V, Lorbetskie B, Bertrand D, Cyr TD, Girard M: Selective and
quantitative detection of influenza virus proteins in commercial vaccines
using two-dimensional high-performance liquid chromatography and
fluorescence detection. Anal Chem 2007, 79:3164–3172.

68. Richards KA, Chaves FA, Alam S, Sant AJ: Trivalent inactivated influenza
vaccines induce broad immunological reactivity to both internal virion
components and influenza surface proteins. Vaccine 2012, 31:219–225.

69. Doherty PC, Kelso A: Toward a broadly protective influenza vaccine. J Clin
Invest 2008, 118:3273–3275.

70. Alexander J, Bilsel P, del Guercio MF, Stewart S, Marinkovic-Petrovic A,
Southwood S, Crimi C, Vang L, Walker L, Ishioka G, et al: Universal influenza
DNA vaccine encoding conserved CD4+ T cell epitopes protects against
lethal viral challenge in HLA-DR transgenic mice. Vaccine 2010, 28:664–672.

doi:10.1186/1743-422X-10-244
Cite this article as: Terajima et al.: Cross-reactive human B cell and T cell
epitopes between influenza A and B viruses. Virology Journal
2013 10:244.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Introduction
	Review
	B and T cell epitopes in the fusion peptide of the HA
	B cell epitope in the stalk region of the HA
	B cell epitope in the NA
	Conservation of T cell epitopes in PB1 among influenza A and B viruses

	Conclusions
	Endnote
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

