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Brain microglia were activated in sporadic CJD
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Abstract

cases in the study.

G114V gCJD.

Background: Microglial activations have been described in different subtypes of human prion diseases such as
sporadic Creutzfeldt-Jakob disease (CJD), variant CJD, Kuru and Gerstmann-Straussler-Scheinker disease (GSS).
However, the situation of microglia in other genetic prion diseases such as fatal familial insomnia (FFI) and familial
CJD remains less understood. The brain microglia was evaluated comparatively between the FFl, G114V and sCJD

Methods: Specific Western blots, immunohistochemical and immunofluorescent assays were used to detect the
changes of microglia and ELISA tests were used for levels of inflammatory cytokines.

Results: Western blots, immunohistochemical and immunofluorescent assays illustrated almost unchanged
microglia in the temporal lobes of FFI and G114V gCJD, but obviously increased in those of sCJD. The Ibal-levels
maintained comparable in six different brain regions of FFl and G114V cases, including thalamus, cingulate gyrus,
frontal cortex, parietal cortex, occipital cortex and temporal cortex. ELISA tests for inflammatory cytokines revealed
significantly up-regulated IL-13, IL-6 and TNF-a in the brain homogenates from sCJD, but not in those from FFI and

Conclusion: Data here demonstrates silent brain microglia in FFl and G114V gCJD but obviously increased in sCJD,
which reflects various pathogenesis of different human prion diseases subtypes.
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Introduction

Human prion diseases or human transmissible encephalop-
athies (TSEs) are fatal neurodegenerative disorders includ-
ing Kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Str
aussler-Scheinker disease (GSS) and fatal familial insomnia
(FFI). They can be sporadic, e.g. sporadic CJD (sCJD),
inherited, e.g. genetic CJD (gCJD), GSS and FFI, or ac-
quired by infection, e.g. Kuru, iatrogenic CJD (iCJD)
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and variant CJD (vCJD). Although human TSEs are all
related with a special agent, named prion, the clinical
manifestations, neuropathological abnormalities and
molecular traits of prions may vary largely among vari-
ous human prion diseases [1].

Microglial cells are resident mononuclear phagocytes
in central nervous system (CNS) and comprise approxi-
mately 10% of the adult CNS total cell population. Nor-
mally microglia functions as immunocompetent and
phagocytic cells, which distribute throughout CNS as a
network of resting but readily responsive cells. In disease
situations, microglial cells possess an extremely plastic
chameleon-like phenotype, which respond sensitively to
pathological challenges [2]. Upon activation, they trans-
form into phagocytes and release a range of substances,
such as cytokines/chemokines, nitric oxide, free radicals
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and neurotrophic molecules. Earlier studies have illus-
trated activation of microglia in the brains of human
prion diseases, including sCJD, Kuru and GSS, where
more frequently observed in GSS, followed by Kuru and
less predominant in sCJD [3,4]. Analysis of mRNA ex-
pression in three rodent models of CJD confirmed
remarkable differences in the pattern of glial activation
in these models [5]. A comprehensive study of 26 sCJD
cases even proposes that strong glial activation is associ-
ated with type 1 PrP*¢ and diffuse PrP immunoreactivity,
while mild glial reaction with type 2 PrP>° and focal PrP
deposits [6]. However, the situation of microglia in other
human genetic prion diseases, such as FFI and fCJD,
remains less understood.

In this report, we comparatively analyzed the brain
microglia in temporal lobes of three FFI cases, a G114V
gCJD case and two sCJD cases. Obvious activation of
microglia was observed in two sCJD brains, either with
type 1 and type 2 PrP°¢, but almost not in FFI and
G114V cases. Meanwhile, the activation of microglia is
assumed not to be specifically related spongiform degen-
eration, deposits of PrP*°, neuron loss and astrogliosis.
Our data here indicate that the microglia reaction vary
largely depending on the different human prion agents.

Results
The temporal lobes of seven human prion diseases were
enrolled into the assays for PrP¢, among them, one was
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biopsy specimen (sCJD Case 2) and the rest were post-
mortem ones. PK-digested Western blots showed clear
three PrP-specific bands in the tissue homogenates of
G114V gCJD and two sCJDs, while only very weak sig-
nals in that of three FFI cases (Figure 1A). As expected,
the monoglycosyl PrP*® band in G114V gCJD and
diglycosal PrP* bands in FFI were predominant, respect-
ively. The profiles of PrP5¢ signals of two sCJD cases
seemed to be different, with predominate monoglycosyl
PrP5¢ band and relatively lager aglycosal band (>20 KD)
in sCJD Case 1, whereas with predominate diglycosyl
PrP5¢ band and relatively small aglycosal band (<20 KD)
in sCJD Case 2 (Figure 1A). To see the deposits of PrP*
in brain tissues, the sections of temporal lobes of those
patients were stained with PrP-specific mAb 3F4 after
treatment of GdnHCl. As shown in Figure 1B, lager
amounts of PrP*® accompanying with different sizes of
vacuolation were detected in the sections from two sCJD
cases and G114V gCJD, while only a few PrP* signals
were observed in those of FFI Case 2 and 3, and almost
no PrP* in FFI Case 1.

Increased Iba1 levels in the brain tissues of sCJD cases,
but not in that of the cases of FFl and G114V gCJD

To see the potential change in microglia, the levels of
Ibal that was commonly used as the marker of total
microglia including resting and activated state in tem-
poral lobes were comparatively evaluated by Western
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Figure 1 PrP deposits in the tissues of temporal lobes of different human prion diseases. A. Western blots. Same amounts (10 i) of 10%
brain homogenates from three FFl, two sCJD and one G114V gCJD were loaded into 15% SDS-PAGE, after treated with 20 pg/ml PK (+) or
without PK (-). Molecular markers are indicated on the right. B. Immunohistochemical assays. Tissue sections from three FFl, one sCID (Case 1),
one G114V gCJD and one normal control were strained with PrP mAb 3F4 after treated with 6M GdnHCI. Different prion diseases and normal
control are indicated above. Scale bar, 20 pm.
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blots. Compared with that of normal control, the Ibal
signal in sCJD (Case 1) was remarkably stronger
(P<0.01), while that in the FFI and G114V gCJD
maintained almost unchanged (Figure 2A). To test the
Ibal levels in other brain regions, six different regions
including thalamus, callosal gyrus, frontal lobe, parietal
lobe, occipital lobe and temporal lobe from three FFI
cases and a G114V gCJD case were subjected into Ibal-
specific Western blots, together with temporal lobe
from sCJD Case 2 and normal control. It showed that
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the Ibal signals in the tested six regions from FFI and
G114V gCJD cases were fairly comparable, revealing
similar signal intensities as that of normal control,
whereas the intensities of Ibal signals in sCJD Case 2
were significantly stronger (Figure 2B). Moreover, the
Ibal signals in three brain regions of sCJD (Case 1) were
significantly stronger than that of normal control
(Figure 2B). It indicates that the level of brain Ibal
increased in sCJD cases, but not in FFI and G114V
gCJD cases.
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Figure 2 Evaluation of the brain Iba1 levels of different human prion diseases by Western blots. A. Temporal lobes. Same amounts of
10% homogenates from three FFl, one sCJD (Case 1), one G114V gCJD and normal control were separated onto 15% SDS-PAGE and blotted with
Ibal or B-actin specific mAbs. The quantitative analyses of the relative gray values are showed on the right. The results are calculated from three
blots and presented as mean + SD. Statistical differences are illustrated as **P<0.01. B. Different brain regions. Same amounts of 10%
homogenates of six regions, including thalamus, cingulate gyrus, frontal lobe, parietal lobe, occipital lobe and temporal lobe, from three FFl and
the G114V gCJD cases were comparatively assayed. Same amounts of 10% homogenates of temporal lobe from one sCJD (Case 2) and normal
one were loaded as control. Same amounts of 10% homogenates of frontal lobe, parietal lobe and occipital lobe from sCJD (Case 1) were also
comparatively assayed with that of normal control (low panel). Molecular markers are indicated on the right.
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Larger microglial cells in the brains of sCJD cases, but not
in that of the cases of FFl and G114V gCJD

To reveal the morphological difference in microglia
among various subtypes of human prion diseases, the
sections of temporal lobes from three FFI cases, two
sCJD cases, one G114V gCJD and a normal control were
employed into Ibal specific IHC assays. Abundances of
microglia with much larger round- or amoeboid-shape
cell bodies were observed in the brain sections of two
sCJDs, but only a few Ibal positive-stained cells with
small cell body were detected in the tested two kinds of
inherited prion diseases showing similar patterns as nor-
mal one (Figure 3), even in the brains of G114V gCJD
which contained lager amounts PrP*° deposits. This kind
of enlarged morphology of microglia is usually thought to
be associated with an activated and phagocytic state [2],
which may suggest an enhanced microglia population in
the CNS tissues of sCJD.

Furthermore, Ibal- and PrP-specific double-stained
immunofluorescent assays were conducted with the
brain sections of various human prion diseases after
treatment with GdnHCI. Confocal microscopy illustrated
more PrP5 specific signals (green) in the brain tissues of
sCJD cases, less amounts in G114V gCJD, whereas almost
undetectable in FFI cases (Figure 4) Meanwhile, obviously
large amounts of Ibal specific signals (red) were observed
in the brain sections of sCJD cases, but clearly less in that
of FFI cases and G114V gCJD (Figure 4), which highlights
an active proliferation of microglia specially in the brain
tissues of sCJD.

Activation of brain microglia seemed not to be related
with the special neuropathological changes of prion
diseases

To see the linkage of the activation of microglia with prion
associated neuropathological changes among various sub-
types of human prion diseases, the sections of temporal
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lobes from three FFI cases, the G114V gCJD and a sCJD
case (Case 1) were comparatively analyzed. HE stainings
revealed large amounts of spongiform degenerations in
the brains of sCJD and G114V gCJD (Figure 5, upper
panel). Nissl stainings showed obvious pyknotic nuclei in
the brains of all tested prion diseases, accompanying with
severe spongiform degenerations in sCJD and G114V
gCJD (middle panel). GFAP-specific IHC assays identified
remarkable astrogliosis in the brains of sCJD, G114V
gCJD, FFI Case 1 and 2, but less in FFI Case 3 (lower
panel). Taking together with the presences of PrP*
(Figure 1), it seems that the activation of brain microglia
does not correlate with the severity of any prion associated
neuropathology, such as spongiform degeneration, neuron
loss, astrogliosis and PrP*° deposit, but specially correlates
with the subtypes of human prion diseases, i.e., sCJD.

More inflammatory cytokines released in the brains of
sCJD cases

To address the functional situation of brain microglia in
various human prion diseases, the levels of several cyto-
kines including IL-1p, IL-6, and TNF-« in the homoge-
nates prepared from temporal lobes were quantitatively
measured by ELISA kits. In the same amount of brain
extracts, the levels of IL-1p, IL-6 and TNF-a in the brain
tissues of sCJD were significantly upregulated (P<0.05),
while the levels of the tested cytokines in the brains of
FFI and G114V gCJD maintained at the baseline as the
normal control (Figure 6). It reflects a functionally
activated situation of microglia during the pathogenesis
of sCJD.

Discussion

Using Western blots, IFA and IHC, we have confirmed
an almost silent proliferation of microglia in the brain
tissues of human genetic prion diseases, including FFI
and G114V gCJD, but an active proliferation of microglia
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Figure 3 Immunohistochemical assays of microglia in the temporal lobes of three FFl, two sCJD, the G114V gCJD and normal control
with Iba-1 specific antibody. Different prion diseases and normal control are indicated above. Scale bar, 20 um.
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Figure 4 Immunofluorescent assays of microglia (with Iba-1 specific antibody) and PrP>° (with PrP specific antibody) in the temporal
lobes of different human prion diseases. The images of Prp°° (green), Iba-1 (red), DAPI (blue) and merge are monitored under a confocal
microscopy and indicated above. Various prion diseases and normal control are indicated on the left.
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in the brains of sCJD. Morphologically, the brain micro-
glia cells change their cell sizes from small cell bodies
with a few fibrils in normal control and genetic prion
diseases to larger amoeboid soma with numerous fibers
in sCJD cases. Moreover, the levels of several cytokines,
including IL-1pB, IL-6 and TNF-q, in the brains of sCJD
show significantly increased, possibly reflecting an acti-
vated situation of microglia, while those in the brains of
FFI cases and G114V gCJD case maintain comparable as

normal control. Our data here may highlight distinct
responses of CNS tissues when exposing to various
subtypes of prions.

Human genetic prion diseases consist of three subtypes,
gCJD, FFI and GSS. Although all of them are dominant
genetic diseases, they may vary largely in the clinical mani-
festations, neuropathological features and PrP%¢ character-
istics, due to the different mutations in PRNP and the
polymorphism of the amino acid at codon 129. Previous
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Figure 5 Neuropathological assays of temporal lobes of three FFl cases, a sCJD (Case 1) patient, a G114V gCJD patient and normal
control (indicated above). Upper: HE stain. Middle: Niss! stain. Bottom: GAFP-specific IHC. Scale bar, 20 um.

literatures have repeatedly identified upregulation in
microglial response in GSS, where microglial activation
often accompanies prion protein deposition and neuronal
loss [3,7,8]. Unlike GSS characterized pathologically by
large amounts of amyloid deposits that mostly localize in
the cerebral and cerebellar cortices and the basal ganglia,
FFI usually lacks of observable PrP*® deposit, instead of
extensive gliosis in thalamus, which might associate with
the inactivation of microglial cells in FFI brains. Interest-
ingly, although obviously PrP*¢ deposits are detected in
the brains of G114V gCJD in our study, the brain micro-
glial cells seems to be silent. The exact reason remains
unknown. It cannot be excluded that the presence of dif-
ferent subtypes of prion strains among the various genetic
prion diseases might affect the activation of microglia,
irrespective of the presence of amyloid deposits Actually,
in a set of animal models of CJD, different microglial acti-
vations have been already observed [9].

As resident immune cells in CNS, microglia may serve
as an agent of immune surveillance and host defense

that sensitively responses to the microenvironmental
changes induced by neuronal injuries and infections
[10]. Microglia activations in CNS tissues have been re-
peatedly identified in naturally-occurred scrapie in sheep
and many scrapie-infected rodent models [11-15], as
well as in bovine spongiform encephalopathy [16,17].
Similarly, activated microglial cells are also observed in
the brain tissues, especially in the plaques of human
infectious prion diseases, such vCJD and Kuru [18,19].
Meanwhile, microglia/macrophage induced inflamma-
tory cytokines are increasingly released in the CNS
tissues of various infectious human and animal TSEs
[15,20]. Those data adequately illustrate that the host
local immune defense system is activated during prion
infections, by prion itself or/and amyloid plaques. Acti-
vations of microglia in CNS are also frequently observed
in sCJD patients [6,19,21-23], though one study has
proposed that less microglial cells are detected in the
plaques of sCJD than those in vCJD and GSS, even less
than Kuru [19]. The exact etiology of sCJD remains still
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Figure 6 Analyses of the levels of cytokines in temporal lobes of three FFI cases, a sCJD (Case 1) patient, a G114V gCJD patient and
normal control. Cytokines IL-1(3, IL-6 and TNF-a in the brain homogenates were individually measured by the respective ELISA kits. The results
are calculated from three independent tests and presented as mean + SD. *: P<0.05.
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unsettled, although it is usually considered due to the
spontaneously conversion from PrP¢ to PrP5¢ with
unknown reason. However, the contact of exogenous
infectious agent during long life-span of human being
for sCJD cannot be absolutely excluded so far. Contrast
to the acquired and sporadic forms of human prion
diseases, the inherited human prion diseases, such as
FFI and G114V gCJD in this study, are caused by the
special mutated PrPs that usually show little infectivity
in bioassays. One may speculate that besides of the
formation amyloid plaque (for GSS and Alzheimer’s
disease, AD), the subtypes of infectious human prions
may also contribute to activation of microglia in CNS.
In line with the description previously [6], our data
here also show more activated microglia in sCJD with
type 1 PrP*c,

Besides of deposits of PrP*¢, neuron loss, astrogliosis
and spongiform degeneration are also hallmarks for
TSEs. However, those markers seem not to be associ-
ated with the level and status of microglial cells in the
brains of FFI and G114V gCJD cases. More PrP*° de-
posits and more extensive spongiform have been
observed in the cortex regions of the G114V gCJD case
[24], while more severe gliosis have been observed in
the regions of thalamus in those three FFI cases [25].
However, the levels of Ibal positive signals among the
ten tested brain regions from either FFI or G114V gCJD
are quite comparable. No detectable plaque and ex-
tremely low amounts of PrP*¢ (PK-resistant PrP in
Western blots) in FFI cases may relate to silent brain
microglia. The brain tissues of G114V gCJD contain
large amounts of PrP*¢ that is almost comparable with
that of sCJD, but appear very limitedly increased micro-
glia. It indicates again that the activation of microglia
during prion pathogenesis may vary depending on the
prion strains. Moreover, in addition to its effect of agent
clearance, activation microglia also possibly contributes
to enhance the neuronal destruction [9]. Apoptotic neu-
rons in CJD are probably related to the presence of in-
flammatory cells and cytokines which are present
during the whole CJD disease process [26]. Lack of or
very limited activated microglia in the CNS tissues of
FFI and G114 gCJD suggest that recruitment of inflam-
matory cells is not the major reason for neuronal
destruction for these two inherited prion diseases,
which highlight again the diversity of the pathogenesis
of human prion diseases [1,27].

Conclusion

The paper concludes that the brain microglia is relatively
silent in FFI and G114V gCJD, but obviously activated in
sCJD, which reflects various pathogenesis of different
human prion diseases subtypes.
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Methods

Brain samples from human prion diseases and normal
control

The stored frozen brain tissues and paraffin-embed
brain tissues from three FFI cases, two sCJD cases and
one G114V gCJD case were enrolled in this study. All
cases were definitely diagnosed human CJD cases
based on the diagnostic criteria for Creutzfeldt-Jakob
disease issued by WHO. The clinical features and the
neuropathological abnormalities of three FFI cases and
the G114V gCJD case were separately described previ-
ously [24,25]. The presences of PrP%¢ in the brain
tissues of two sCJD patients were confirmed by the
proteinase K (PK) treated Western blots with PrP spe-
cific antibody. The death ages of those patients were
48 (FFI Case 1), 26 (FFI Case 2), 55 (FFI Case 3), 47
(G114V gCJD), 63 (sCJD Case 1) and 81 (sCJD Case 2)
years old, respectively. Normal human brain tissues
were obtained from a health donor died from car acci-
dent at the age of 56.

Preparation of brain homogenates and western blots
Brain tissues from normal and prion diseases were
washed with iced TBS (10 mM Tris HCI, 133 mM
NaCl, pH 7.4). 10% (w/v) brain homogenates were pre-
pared based on the protocol described previously [28].
Briefly, brain tissues were homogenized in lysis buffer
(100 mM NaCl, 10 mM EDTA, 0.5% Nonidet P-40,
0.5% sodium deoxycholate, 10 mM Tris, pH 7.5)
containing a mixture of protease inhibitors. Tissue
debris was removed with low speed centrifugation at
2000 g for 10 min and the supernatants were collected
for further study. Aliquots of brain homogenates were
separated on 12% SDS-PAGE and electroblotted onto a
nitrocellulose membrane using a semi-dry blotting
system (Bio-Rad). Membranes were blocked with 5%
(w/v) non-fat milk powder (NFMP) in 1 x Tris-
buffered saline containing 0.1% Tween 20 (TBST) at
room temperature (RT) for 1 h and probed with indi-
vidual primary antibodies at 4°C overnight, including
rabbit anti-Ibal pAb (Wako, 019-19741), anti-PrP
mAb (3F4, Chemicon, MAB1562) and anti-p-actin
mADb (Subrray Biotechnology, Sr-25113), respectively.
After washing with TBST, blots were incubated with
horseradish peroxidase (HRP)-conjugated goat anti-
mouse or rabbit IgG (Jackson ImmunoResearch Labs,
115-035-003, 111-035-003), at RT for 2 h. Blots were
developed using Enhanced ChemoLuminescence system
(ECL, PerkinElmer, NEL103EOO1EA) and visualized
on autoradiography films. Images were captured by
ChemiDoc™ XRS" Imager (Bio-Rad).

To detect the presences of PK resistant PrP*¢ in brain
tissues, the brain homogenates were firstly digested with
a final concentration of 20 pg/ml PK at 37°C for 60 min
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prior to Western blots. The PK digestion was terminated
by heating the samples at 100°C for 10 minutes.

Immunohistochemical (IHC) assays

Brain tissue was fixed in 10% buffered formalin solu-
tion. Before histological processes, all the fixed tissues
were immersed in 98% formic acid for at least 1 h for
inactivation of infection. Paraffin sections (5 um in
thickness) of brain tissues were prepared and IHC
assays were performed according to published protocol
[28]. Prior to the staining of PrP mAb, brain sections
were treated by 6M GdnHCI for 10 min. Sections were
quenched for endogenous peroxidases in 3% H,O, in
methanol for 10 min, pretreated with enzyme digestion
antigen retrieval for 1 min. After blocking in 1% nor-
mal goat serum, the sections were incubated overnight
at 4°C with rabbit anti-Ibal pAb, anti-PrP mAb (3F4)
or 1 anti-GFAP mAb, respectively. The sections were
then incubated with HRP-conjugated goat anti-mouse
or rabbit secondary antibody (Boster, SV0001-12 or
SV0002-12) for 60 min, and visualized by incubation
with 3,3-diaminobenzidine tetrahydrochloride (DAB). The
slices were counterstained with hematoxylin, dehydrated
and mounted in permount.

Nissl staining and HE staining

Brain paraffin sections (5 pm in thickness) of temporal
lobes from various human prion diseases were analyzed
by routine HE staining and Nissl staining. For Nissl
staining, slices were stained with Nissl (1% toluidine blue)
for 30 min based on the protocol described elsewhere.
The slices were mounted with permount and observed
under a light microscopy.

Immunofluorescence and confocal microscopy assays
Prior to the staining of PrP mAb, brain slides were treated
with 6M GdnHCI for 10 minutes. The sections were
blocked in 1% normal goat serum and then incubated
with a mixture of rabbit anti-Ibal pAb and anti-PrP
mAb 3F4 at 4°C overnight. Subsequently, the sections
were incubated with Alexa Fluor 586-labeled goat anti-
rabbit and Alexa Fluor 488-labeled goat anti-mouse
secondary antibody (Invitrogen, A-11037 or A11029)
for 60 min. Finally, the sections were incubated with
DAPI (Invitrogen, D1306) for 10 min. The slices were
mounted in permount and analyzed by confocal micros-
copy (Leica ST2, Germany).

Preparation of brain lysates and ELISAs

The brain samples stored at —80°C were homogenized in
lysis buffer (150mM NaCl, 1% TritonX-100, 10mM Tris,
PH 7.4) containing proteinase inhibitor. The homoge-
nates were centrifuged at 10,000 g for 10 min at 4°C. Su-
pernatants were collected and aliquoted after measuring
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their protein concentration using a bicinchoninic acid
(BCA) protein assay kit (Novagen, 71285-3), and adjust-
ment to 500 pg/pl. The lysates were stored at —80°C for
further analysis.

ELISA kits were used to detect the following cytokines:
IL-1B, IL-6 and TNF-a (Boster, EK0390; Boster, EK0393;
Boster, EK0412; TBD science, KIT0003). Assays for
cytokines in brain lysates were performed according to
the manufacturer’s protocol. Briefly, individual lysates
were 10-fold diluted with the blocking buffer. 100 pl of
diluted preparations, as well as standard samples, were
added to each well and incubated at RT for 2 h. After
washing with 300 pl of provided wash buffer for 4 times,
100 pl biotin-conjugated antibodies were added and in-
cubated at RT for 1 h, and subsequently incubated with
HRP-conjugated streptavidin at RT for 30 min. Finally,
substrate solution (0.05% 3,3;5,5'-tetramethybenzidine
and 0.012% H,O, in 0.05 M citrate buffer, pH 5.0) was
added and incubated at 37°C for 20 min and stopped
with 1M H,SO,. The optical density at A=450 nm was
measured in a microplate reader (Thermo), and the
cytokine concentrations of brain lysates were calculated
with the help of the calibration curve generated by using
known amounts of standards.

Statistical analysis

Statistical analysis were performed using SPSS 17.0 statis-
tical package. Quantitative analysis of immunoblot images
were carried out using software Image J. The gray values
of each target blot were evaluated. All data were presented
as the mean + SD. Statistical analyses were performed
using Student’s ¢ test. P value less than 0.05 was consid-
ered to be statistically significant.
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