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Abstract
Objectives This study aimed to comprehensively compare host responses of patients with bacterial sepsis and those 
with viral (COVID-19) sepsis by analyzing messenger RNA (mRNA) and microRNA (miRNA) profiles to shed light on 
their distinct pathophysiological mechanisms.

Design Prospective observational study.

Setting Whole blood RNA sequencing was used to analyze mRNA and miRNA profiles of patients diagnosed as 
having bacterial sepsis or viral (COVID-19) sepsis at the Department of Trauma and Emergency Medicine, Osaka 
University Graduate School of Medicine.

Patients Twenty-two bacterial sepsis patients, 35 viral (COVID-19) sepsis patients, and 15 healthy subjects admitted 
to the department were included. We diagnosed bacterial sepsis patients according to the sepsis-3 criterion that 
the Sequential Organ Failure Assessment score must increase to 2 points or more among patients with suspected 
infections. Viral (COVID-19) sepsis patients were diagnosed using SARS-CoV-2 RT-PCR testing, and presence of 
pneumonia was assessed through chest computed tomography scans.

Interventions None.

Measurements and main results For RNA sequencing, 14,500 mRNAs, 1121 miRNAs, and 2556 miRNA-targeted 
mRNAs were available for analysis in the bacterial sepsis patients. Numbers of genes showing upregulated: 
downregulated gene expression (false discovery rate < 0.05, |log2 fold change| > 1.5) were 256:2887 for mRNA, 
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Introduction
Bacterial sepsis and viral (COVID-19) sepsis are severe 
and life-threatening infectious diseases that necessitate 
intensive care [1–3]. Despite their clinical significance, 
the underlying pathophysiological mechanisms in these 
conditions remain inadequately understood, and a com-
prehensive comparison of their host responses is lacking. 
Understanding the molecular alterations and immune 
responses occurring in the body is crucial for improving 
diagnostic and therapeutic approaches.

Noncoding RNA (ncRNA), which is not translated 
into protein, accounts for about 98% of all RNA. Among 
ncRNAs, microRNAs (miRNAs) regulate translational 
repression and messenger RNA (mRNA) degradation by 
binding to the 3′ untranslated region of target mRNAs. 
Through these mechanisms, miRNAs contribute to the 
fine-tuning of gene expression networks that underlie 
diverse biological functions [4, 5].

Therefore, the purpose of this study was to integrate 
mRNA and miRNA data in whole blood of patients with 
acute bacterial sepsis and patients with viral (COVID-
19) sepsis to compare the differences in host responses 
between bacterial sepsis and viral (COVID-19) sepsis and 
to better understand the pathophysiology of each.

Materials and methods
Study design and setting
This was a single-center, prospective, observational study. 
This study was performed at the Department of Trauma-
tology and Acute Critical Medicine, Graduate School of 
Medicine, Osaka University. The study period was the 8 
months from July 1, 2020, to February 28, 2021.

Participants
We included the bacterial sepsis patients and viral 
(COVID-19) sepsis patients who were admitted to the 
department during the study period. We diagnosed them 

as having bacterial sepsis or viral (COVID-19) sepsis 
according to the sepsis-3 criterion that the Sequential 
Organ Failure Assessment (SOFA) score be increased to 
2 points or more among patients with suspected infec-
tions [6]. Viral (COVID-19) sepsis patients were also 
diagnosed using SARS-CoV-2 RT-PCR testing, and the 
presence of pneumonia was assessed through chest com-
puted tomography scans. Blood samples were obtained 
from the patients on hospital admission and once from 
healthy volunteers who were enrolled via public poster 
advertisements.

Clinical data
Clinical data collected from the patients’ electronic medi-
cal records by the investigators included age, sex, body 
mass index, comorbidities, mechanical ventilation, length 
of hospital stay, mortality, and severity. We evaluated the 
severity of bacterial sepsis and viral (COVID-19) sepsis 
in the patients with the Acute Physiology and Chronic 
Health Evaluation II (APACHE II) and SOFA scores. We 
collected information regarding the underlying infection 
causing bacterial sepsis and the presence of hypotension 
from the bacterial and viral (COVID-19) sepsis patients. 
We also used the Acuity Score to define the severity of 
COVID-19 [7]. We defined the patients whose systolic 
blood pressure was less than 90 mmHg on hospital 
admission as having hypotension. The oxygenation index 
was calculated as the P/F (PaO2/FiO2 [fraction of inspired 
oxygen]) ratio. Liver and kidney organ indices were col-
lected from APACHE II and SOFA score items, and bili-
rubin for liver function and creatinine for renal function 
were selected. The following five items were selected for 
supportive care: ventilator (with or without intubation), 
CRRT (continuous renal replacement therapy), steroids 
(hydrocortisone sodium succinate for septic shock), 
ECMO (extracorporeal membrane oxygenation), and 
catecholamine.

53:5 for miRNA, and 49:2507 for miRNA-targeted mRNA. Similarly, in viral (COVID-19) sepsis patients, 14,500 mRNAs, 
1121 miRNAs, and 327 miRNA-targeted mRNAs were analyzed, with numbers of genes exhibiting upregulated: 
downregulated gene expression of 672:1147 for mRNA, 3:4 for miRNA, and 165:162 for miRNA-targeted mRNA. 
This analysis revealed significant differences in the numbers of upregulated and downregulated genes expressed 
and pathways between the bacterial sepsis and viral (COVID-19) sepsis patients. Bacterial sepsis patients showed 
activation of the PD-1 and PD-L1 cancer immunotherapy signaling pathway and concurrent suppression of Th1 
signaling.

Conclusion Our study illuminated distinct molecular variances between bacterial sepsis and viral (COVID-19) sepsis. 
Bacterial sepsis patients had a greater number of upregulated and downregulated genes and pathways compared to 
viral (COVID-19) sepsis patients. Especially, bacterial sepsis caused more dramatic pathogenetic changes in the Th1 
pathway than did viral (COVID-19) sepsis.

Keywords COVID-19, PD-1 and PD-L1 cancer immunotherapy signaling pathways, Bacterial sepsis, Th1 signaling, 
Whole blood transcriptome
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Identification of mRNA and miRNA expressions
Total RNA isolation of leukocytes was performed using 
blood obtained from the bacterial sepsis patients and 
viral (COVID-19) sepsis patients on hospital admission 
and from the healthy controls using the PAXgene™ Blood 
RNA System (BD Bioscience, San Jose, CA). Blood sam-
ples for the analyses were obtained using collection tubes 
and preserved at -30 °C until subsequent analysis. To pre-
pare the libraries, the TruSeq Stranded mRNA Sample 
Prep Kit (Illumina, San Diego, CA) was used by following 
the manufacturer’s instructions.

Library preparation and RNA sequencings
Full-length cDNA was prepared using a SMART-Seq HT 
Kit (Takara Bio, Mountain View, CA) according to the 
manufacturer’s instructions. An Illumina library was pre-
pared using a Nextera DNA Library Preparation Kit (Illu-
mina) according to the SMARTer kit instructions. DNA 
libraries were converted to libraries for DNBSEQ using 
an MGIEasy Universal Library Conversion Kit (App-A). 
Sequencing was performed on a DNBSEQ-G400RS plat-
form in 2 × 100 bp paired-end mode.

RNA-seq analysis
The analysis was performed with some modifications as 
shown in a previous article [7]. The sequenced reads were 
aligned to the human reference genome sequences (hg19) 
using TopHat (version 2.1.1) in conjunction with Bowtie2 
(version 2.2.8) and SAMtools (version 0.1.18). Raw read 
counts of gene-level expression were determined with 
featureCounts using the subread-2.0.0 package.

miRNA sequencing and miRNA-seq analysis
This analysis was performed with some modifications as 
shown in a previous article [7]. Small RNA libraries were 
prepared using the NEBNext Small RNA Library Prep 
Set for Illumina (New England Biolabs, Ipswich, MA) 
according to the manufacturer’s instructions. miRNAs 
were sequenced on a NovaSeq 6000 platform (Illumina) 
in 101-bp single-end reads. Prior to conducting analysis 
on the small RNA-Seq data, a preprocessing step was car-
ried out involving the removal of the 3′ adapter sequence 
( A G A T C G G A A G A G C A C A C G T C T) from the reads. 
Subsequently, the processed reads were aligned against 
both the miRBase human miRNA dataset and the FAN-
TOM5 dataset utilizing miRDeep2 software. Quantifica-
tion of expression was also executed using the miRDeep2 
software package.

Statistical analysis of mRNA and miRNA
Gene activity signatures provide the optimal bar code to 
characterize the kind and status of a living system (cell, 
tissue, organ, or organism). These signatures can be used 
as they are, just as a marker for a certain phenomenon of 

interest, e.g., as a biomarker of a specific disease [8]. For 
a more refined inspection of the biological semantics of 
the observed expression pattern, differentially expressed 
genes (DEGs) are identified by comparing gene activity 
spectra of the cellular system of interest and a control cell 
[8]. Because the regulation of gene expression, mainly at 
the transcriptional but also at post-transcriptional level, 
is involved in nearly any biological process, most stan-
dard analyses of transcriptome data usually comprise 
mapping of DEG sets to Gene Ontology (GO) categories, 
for instance by GSEA (gene set enrichment analysis) [8]. 
Regulatory or metabolic pathways that are enhanced by 
the DEGs can be identified by mapping them onto the 
pathway databases. The pathway analysis used in this 
study is categorized as a conventional approach called 
“downstream analysis” and provides relevant insights into 
the effects of the induced genes [8]. However, it provides 
only very limited clues as to the cause of the observed 
effects. Therefore we added an “upstream analysis” that 
allows causal interpretation of observed expression 
changes. This comprises a state-of-the-art analysis of the 
promoter structures of the identified DEGs, infers the 
involved transcription factors, and identifies the signaling 
pathways that activate these transcription factors. In a 
final step, convergence points of these pathways are iden-
tified as potential master regulators or key nodes [8].

Extraction of mRNA and miRNAs with significant gene 
expression changes
The analysis was performed with some modifications as 
shown in a previous article [7]. We normalized mRNA 
raw count data using integrated Differential Expression 
and Pathway analysis ver. 0.96. Normalization settings 
were min.CPM = 0.5, n libraries = 5. It has been reported 
that variation in sequencing depth between libraries had 
a noticeable impact on some RNA-Seq analysis methods. 
Therefore, we chose limma-voom analysis [9] to search 
for differentially expressed genes of bacterial sepsis and 
viral (COVID-19) sepsis patients based on the healthy 
controls. Principal component analysis (PCA) in R was 
performed to compare gene expression among patients 
with bacterial sepsis and those with viral (COVID-19) 
sepsis and in the healthy controls. Then, volcano plot 
analysis was performed to visualize and identify signifi-
cant changes in the gene expression list. In this study, cut-
off values were set at a false discovery rate (FDR) < 0.05 
and |log2 fold change| > 1.5. The raw count data for miR-
NAs were processed in the same manner.

Canonical pathway analysis and upstream regulator analysis
The analysis was performed with some modifications as 
shown in a previous article [7]. DEGs were identified in 
the bacterial sepsis patients vs. healthy controls and in 
the viral (COVID-19) sepsis patients vs. healthy controls, 
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and canonical pathway analysis and upstream regulator 
analysis were performed. The goal of canonical pathway 
analysis is to identify biological functions (pathways) 
that are expected to increase or decrease based on the 
changes in gene expression observed in our data set. The 
goal of the upstream regulator analysis is to identify a 
cascade of upstream transcriptional regulators that can 
explain the gene expression changes observed in our 
data set. The analysis was performed using Ingenuity 
Pathway Analysis (IPA) software (QIAGEN Inc., https://
digitalinsights.qiagen.com/products-overview/discov-
ery-insights-portfolio/analysis-and-visualization/qiagen-
ipa/) with the Ingenuity Knowledge Base, which is based 
on a large number of previous reports. The Benjamini-
Hochberg method was used to correct for significance 
level.

In the case of canonical pathways, the z-score is 
interpreted by calculating the predicted value of 
whether the pathway is active or not based on the 
expression levels of each RNA involved in a specific 
biological function (pathway). If the pathway is pre-
dicted to be active, z > 0, and if it is predicted to be 
repressed, z < 0. The concept is similar for z-score in 
the case of upstream regulator analysis. The expres-
sion levels of some genes are controlled by transcrip-
tional regulators. The upstream RNAs controlling the 
identified DEGs are identified, and z > 0 if there are 
more predictions that the regulating RNAs are active 
based on the gene expression levels of the DEGs. If 
the absolute value of the z-score is greater than 2, it is 
considered significant. The adjusted p value in canoni-
cal pathway analysis indicates how much the DEGs are 
included in the components of a particular pathway, 
and the more highly related that pathway is, the lower 
the value. Significance is indicated by an adjusted p 
value < 0.05. The overlap of p values in upstream regu-
lator analysis indicates whether there is a statistically 
significant overlap between the DEGs identified in 
this study and the genes regulated by the transcrip-
tional regulators. This is calculated using Fisher’s exact 
test, and significance is indicated by a p value < 0.01. 
Predicted miRNA-targeted mRNA expression was 
obtained from IPA using miRecords, TarBase, and 
TargetScan as miRNA-targeted mRNA expression 
databases.

Continuous values are shown as median and inter-
quartile range (IQR), and categorical variables are shown 
using frequencies and proportions. Comparisons were 
performed using the nonparametric Mann-Whitney test 
as appropriate. No imputation was made for missing 
data. A value of p < 0.05 was considered to indicate statis-
tical significance. The data were analyzed using JMP Pro 
version 16.0.0 (SAS Institute, Cary, NC). The workflow of 
this research is shown in Fig. 1.

Results
Patient characteristics
We included 22 bacterial sepsis patients, 35 viral 
(COVID-19) sepsis patients, and 15 healthy controls. 
Table 1 shows the baseline patient characteristics of this 
study. The median ages of the bacterial sepsis patients, 
viral (COVID-19) sepsis patients, and healthy controls 
were 77.5 (IQR 65.3–82.0), 72.0 (IQR 59.0–76.0), and 
55 (IQR 40.5–59.0) years, and 72.7%, 70.6%, and 68.6% 
were male, respectively. There was a statistically signifi-
cant difference in age between the three groups but no 
statistically significant differences in gender and body 
mass index. All bacterial sepsis patients had bacterial 
infection, were negative for COVID-19 on admission, 
and had no prior infection. We diagnosed COVID-19 
patients with the acuity score [7]: 1 = death: 4 (11.4%) 
patients, 2 = intubated/ventilated, survived: 26 (74.3%) 
patients, 3 = hospitalized, O2 required, survived: 3 (14.3%) 
patients, 4 = hospitalized, no O2 required, survived: 0 
(0%) patients, and 5 = discharged/not hospitalized, sur-
vived: 0 (0%) patients.

The median lengths of hospital stay for the bacterial 
sepsis patients and viral (COVID-19) sepsis patients were 
16.5 (IQR 4.8–35.8) and 12.0 (IQR 6.5–25.5) days, and 
the mortality rates during hospitalization for the bacte-
rial sepsis and viral (COVID-19) sepsis patients were 
13.6% and 11.4%, respectively.

The median SOFA scores on admission for the bacte-
rial sepsis and viral (COVID-19) sepsis patients were 7 
(IQR 4.0-11.3) and 5 (IQR 3–7), and median APACHE 
II scores were 16.5 (IQR 14.0–23.8) and 14.0 (IQR 10.0–
19.0), respectively.

The most common source of bacterial sepsis was 
the respiratory system (68.2%), followed by abdomen 
(4.5%), urinary tract (9.1%), soft tissue (9.1%), and oth-
ers (9.1%). Seven bacterial sepsis patients (7.0%) and 2 
viral (COVID-19) sepsis patients (5.7%) had hypotension. 
Patient characteristics are shown in Table 1.

Whole blood RNA sequence
For RNA sequencing, 4500 mRNAs, 1121 miRNAs, and 
2556 miRNA-targeted mRNAs were available for analy-
sis in the patients diagnosed as having bacterial sepsis. 
Within this dataset, the numbers of genes with varying 
levels of upregulated: downregulated gene expression 
(FDR < 0.05, |log2 fold change| > 1.5) were 256:2887 for 
mRNA, 53:5 for microRNA, and 49:2507 for miRNA-
targeted mRNA (Fig. 2A, B). Similarly, in the context of 
viral (COVID-19) sepsis patients, 14,500 mRNAs, 1121 
miRNAs, and 327 miRNA-targeted mRNAs were sub-
jected to analysis, with the numbers of genes exhibiting 
variation in upregulated: downregulated gene expres-
sion being 672:1147 for mRNA, 3:4 for microRNA, and 
165:162 for miRNA-targeted mRNA (Fig.  2C, D). PCA 

https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
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indicated that mRNA and miRNA profiles could be used 
to differentiate individuals with bacterial sepsis from 
those with viral (COVID-19) sepsis and healthy controls 
to a certain degree (Fig. S1A, B).

Canonical pathway analysis of patients with bacterial 
sepsis and healthy controls
The mRNA-based analysis revealed 11 pathways that 
were dynamically differentiated in bacterial sepsis 
patients compared to healthy controls, with both the 
adjusted p value and z-score significant (Fig.  3A). The 
adjusted p value for the PD-1 and PD-L1 cancer immu-
notherapy pathway was 4.4E-06 and z-score = 2.89. In the 
downregulated pathways, the adjusted p value for the 
Th1 pathway was the lowest (adjusted p value = 4.0E-14, 
z-score = -5.69). Figure 3B shows the percentage of genes 
up- and down-regulated in the 11 pathways shown in 
Fig. 3A.These charts display the number of molecules in 
our dataset that belong to a significant pathway and show 
the proportions of up-regulated (orange), and down-
regulated (green) molecules. Figure 3C shows a heatmap 
of genes in the PD-1 and PD-L1 cancer immunotherapy 
pathways as representatives of the upregulated pathways 
and how each gene is upregulated and downregulated. 
Thirty-three mRNAs were involved in the PD-1 and 

PD-L1 cancer immunotherapy pathway. Figure 3D shows 
a heatmap of genes in the Th1 pathway as a representative 
of down-regulated pathways and how each gene is up- 
and down-regulated. Forty-nine mRNAs were involved 
in the Th1 pathway. In addition, two types of GSEA, GO 
analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis, were used to prove these IPA 
analyses. Figure S2A-D shows that similar results are 
confirmed for pathway analysis results other than by IPA.

Canonical pathway analysis of viral (COVID-19) sepsis 
patients and healthy controls
Based on mRNA, 21 pathways were differentiated in viral 
(COVID-19) sepsis patients compared to the healthy 
controls (Fig.  4A). The adjusted p value for the PD-1 
and PD-L1 cancer immunotherapy pathway was 3.69E-
02 and z-score = 3.5. In the downregulated pathways, 
the adjusted p value for the Th1 pathway was the lowest 
(adjusted p value = 2.33 E-06, z-score = -2.57).

As with bacterial sepsis, Fig.  4B shows the percent-
age of genes up- and down-regulated in the 21 pathways 
shown in Fig.  4A. Figure  4C shows a heatmap of genes 
in the PD-1 and PD-L1 cancer immunotherapy pathways 
as representatives of the upregulated pathways, and how 
each gene is upregulated and downregulated. Eighteen 

Fig. 1 Workflow of our research. DEGs, differentially expressed genes; iDEP, integrated Differential Expression and Pathway analysis; IPA, Ingenuity Path-
way Analysis
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Table 1 Baseline characteristics of bacterial sepsis patients, viral (COVID-19) sepsis patients, and healthy controls 

IQR, interquartile range; BMI, body mass index; SOFA, Sequential Organ Failure Assessment; APACHE, Acute Physiology and Chronic Health 
Evaluation; P/F ratio, PaO2/fraction of inspired oxygen (FiO2) ratio; CRRT, continuous renal replacement therapy; ECMO, extracorporeal mem-
brane oxygenationThere are missing data in patients with bacterial sepsis (BMI, bilirubin) and patients with viral sepsis (BMI, P/F ratio). We used 
the median imputation method, imputation of missing values using the population median for continuous predictors, or the population mean 
proportion for categorical predictors derived from the data in which the risk score was originally developedThe p values for age, gender, and 
BMI were each calculated from a one-way analysis of varianceThe Acuity Score was used to assess severity in patients with viral (COVID-19) 
sepsis
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mRNAs were involved in the PD-1 and PD-L1 cancer 
immunotherapy pathway. Figure 4D shows a heatmap of 
genes in the Th1 pathway as a representative of down-
regulated pathways and how each gene is up- and down-
regulated. Thirty-one mRNAs were involved in the Th1 
pathway.

Analysis based on miRNA-targeted mRNAs in bacte-
rial sepsis patients showed 11 pathways that were dif-
ferentiated (Fig.  5A). The adjusted p value for the PD-1 
and PD-L1 cancer immunotherapy pathway was 4.41E-
06 and z-score = 2.89. In the downregulated pathways, 
the adjusted p value for the Th1 pathway was the lowest 
(adjusted p value = 4.33 E-14, z-score = -5.69). As with 
bacterial sepsis, Fig.  5B shows the percentage of genes 
up- and down-regulated in the 11 pathways shown in 
Fig. 5A.

Analysis based on miRNA-targeted mRNAs in viral 
(COVID-19) sepsis patients showed only one active 
pathway, p38 MAPK Signaling (adjusted p value = 1.1E-
02, z-score = 2.33) (Fig.  5C). There were no significant 
pathways that were suppressed. As with bacterial sepsis, 
Fig.  5D shows the percentage of genes up- and down-
regulated in the 11 pathways shown in Fig. 5C. Here also, 
GO analysis and KEGG pathway analysis were used to 

prove these IPA analyses. Figure S2E-H shows that simi-
lar results are confirmed for pathway analysis results 
other than by IPA.

Upstream regulator analysis of patients with bacterial 
sepsis and healthy controls
Based on the mRNAs that were significantly differentially 
expressed in the septic patients compared to healthy 
controls, there were 1559 active factors regulating tran-
scription of these mRNAs (top 20 regulators are shown 
in Fig. 6A). The number of inhibited transcriptional regu-
lators was 125 (top 20 regulators are shown in Fig. 6B). 
Based on miRNA-targeted mRNAs, 1844 transcriptional 
regulators were significantly activated (top 20 regula-
tors are shown in Fig. 6C), and 149 regulators were sup-
pressed (top 20 regulators are shown in Fig. 6D).

Upstream regulator analysis of viral (COVID-19) sepsis 
patients and healthy controls
Based on the mRNAs that were significantly differen-
tially expressed in the viral (COVID-19) sepsis patients 
compared to the healthy controls, there were 65 factors 
regulating transcription of those mRNAs that were active 
(top 20 regulators are shown in Fig. 7A). There were 32 

Fig. 2 Gene expression variation analysis of total mRNA and miRNA. Gene expression variation analysis representing mRNA expression (A) and miRNA 
expression (B) specifically expressed in bacterial sepsis patients compared to healthy controls. (C) Gene expression variation analysis representing mRNA 
expression (C) and miRNA expression (D) specifically expressed in viral (COVID-19) sepsis patients compared to healthy controls. The vertical dotted lines 
represent |log2 fold change| > 1.5, and the horizontal dotted line represents the threshold for FDR < 0.05. Red dots indicate RNAs with increased expres-
sion and blue dots indicate RNAs with decreased expression
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inhibited transcriptional regulators (top 20 regulators 
are shown in Fig.  7B). Analysis using miRNA-targeted 
mRNAs revealed 18 active transcriptional regulators 
(Fig. 7C) and seven significantly inhibited transcriptional 
regulators (Fig. 7D).

Canonical signaling pathway analysis of patients with 
bacterial sepsis and healthy controls
The mRNA-miRNA integration analyses by IPA are 
shown in Figs. S3 and S4. Fig. S3 shows the predicted 
relationship between RNAs in the activated PD-1 and 
PD-L1 cancer immunotherapy signaling pathway. PD-1, 
PD-L1 cancer immunotherapy signaling involved 46 
miRNAs. Fig. S4 shows the predicted relationship 
between RNAs in the inhibited Th1 pathway. Th1 signal-
ing was predicted to involve 50 miRNAs.

Discussion
A previous study examining bacterial sepsis and viral 
(COVID-19) sepsis [10] included 64 patients with bacte-
rial sepsis and 43 with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) sepsis. The results of rou-
tine blood tests (neutrophil, lymphocyte, and monocyte 

counts), infection biomarkers (C-reactive protein, ferri-
tin, and procalcitonin levels), lymphocyte subset counts 
(total T lymphocyte, CD4 + and CD8 + T-cell, B-cell, and 
NK-cell counts), and lymphocyte subset functions (pro-
portions of PMA/ionomycin-stimulated IFN-γ-positive 
cells in CD4 + and CD8 + T cells and NK cells) were simi-
lar in both patient groups. Cytokine storm was milder 
and immunoglobulin and complement protein levels 
were higher in the SARS-CoV-2 sepsis patients.

We focused on this comparison and compared the 
results of transcriptome analysis to elucidate the differ-
ences between bacterial and viral sepsis. The number 
of genes with variable expression is shown in Fig.  2A-
D. mRNAs showed 3143 DEGs in bacterial sepsis and 
1819 DEGs in viral (COVID-19) sepsis patients. miR-
NAs showed 58 DEGs in bacterial sepsis and only 7 in 
viral sepsis. These results indicate that gene expression is 
much higher in bacterial sepsis.

PCA allowed us to distinguish septic patients from 
viral (COVID-19) sepsis patients and healthy controls to 
some extent. Bacterial sepsis patients had a greater num-
ber of upregulated and downregulated genes and path-
ways compared to the viral (COVID-19) sepsis patients, 

Fig. 3 Canonical pathway and heatmaps of mRNA in patients with bacterial sepsis. (A) Canonical pathway analysis of patients with bacterial sepsis and 
healthy volunteers. The bars represent z-scores, and the line graphs represent the adjusted p values associated with each pathway in the logarithm. (B) 
The percentage of genes up- and down-regulated in the pathways shown in panel A. These charts display the number of molecules in our dataset that 
belong to a significant pathway and show the proportions of upregulated (orange) and downregulated (green) molecules. (C) A heatmap of genes in 
the PD-1 and PD-L1 cancer immunotherapy pathways as representatives of the upregulated pathways, and how each gene is upregulated and down-
regulated. (D) A heatmap of genes in the Th1 pathway as a representative of downregulated pathways, and how each gene is up- and down-regulated
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indicating a dynamic change in gene expression and path-
way activation in bacterial sepsis (Fig. 2A-D). Our group 
previously reported that 28 pathways, including the IFN 
pathway, were activated and one pathway was inhibited in 
miRNA-targeted mRNA [7]. When we compared bacte-
rial sepsis patients and viral (COVID-19) sepsis patients 
using an optimal threshold for bacterial sepsis patients 
(FDR: 0.05, |log2FC| > 1.5), we could not find changes 
in the various pathways in the viral (COVID-19) sepsis 
patients that were previously reported by our group [7]. 
As the optimal threshold for COVID-19 patients in this 
report [7] is FDR: 0.1 and |log2FC| > 0.6, the threshold 
in bacterial sepsis in this study (FDR: 0.05 and |log2FC| > 
1.5) is more stringent than the optimal threshold for viral 
(COVID-19) sepsis patients, which may have influenced 

this result. Thus, the optimal threshold for bacterial sep-
sis is substantially lower than that for viral (COVID-19) 
sepsis, indicating that bacterial sepsis causes a more 
dynamic change in the pathway (Figs. 3 and 4).

From previous research on differentially expressed 
miRNAs and long ncRNAs, they found that the TNF, 
MAPK, and NF-κB signaling pathways are the most 
significantly changed pathways during recovery from 
COVID-19. These networks are closely linked with 
inflammatory factor genes TNF and IL-1β, and tran-
scription factor AP-1 subunit gene JUN. The AP-1 con-
nected nodes were at the core of the enriched KEGG 
maps, including the Toll-like receptor (TLR) signaling 
pathway, IL-17 signaling pathway, and PD-L1 expression 
and PD-1 checkpoint pathway. The activation of AP-1 

Fig. 4 Canonical pathway and heatmaps of mRNA in patients with viral (COVID-19) sepsis. (A) Canonical pathway analysis of patients with viral (COVID-
19) sepsis and healthy volunteers. The bars represent z-scores, and the line graphs represent the adjusted p values associated with each pathway in the 
logarithm. (B) The percentage of genes up- and down-regulated in the pathways shown in panel A. These charts display the number of molecules in our 
dataset that belong to a significant pathway and show the proportions of upregulated (orange), and downregulated (green) molecules. (C) A heatmap 
of genes in the PD-1 and PD-L1 cancer immunotherapy pathways as representatives of the upregulated pathways, and how each gene is upregu-
lated and downregulated. (D) A heatmap of genes in the Th1 pathway as a representative of downregulated pathways, and how each gene is up- and 
down-regulated
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and NF-κB signals caused increased expression of inflam-
matory factors such as TNF-α, IL-1β, IL-8, MIP1α, and 
MIP-1β according to the KEGG enrichment analysis, 
which might be detrimental to COVID-19 rehabilitation 
[11]. Our study revealed the activation of the PD-1 and 
PD-L1 cancer immunotherapy signaling pathway and the 
concurrent suppression of Th1 signaling in the bacte-
rial sepsis patients. In particular, Th1 signaling was more 
suppressed in bacterial sepsis than in viral (COVID-19) 
sepsis.

PD-1 and its ligands, PD-L1, act as receptors that mod-
ulate co-stimulatory and coinhibitory immune responses 
and play a critical role in regulating inflammatory 
responses during infections, autoimmunity, and allergies 
[12]. Notably, these pathways appear to be particularly 
significant in bacterial sepsis-induced immunosuppres-
sion, functioning as part of a negative feedback mecha-
nism [13]. PD-L1 assumes a major role within the PD-1 
and PD-L1 cancer immunotherapy signaling pathway 

by exerting inhibitory effects, whereas PD-1 functions 
as an auxiliary component [14]. The observed activa-
tion of these pathways in our study suggests a dysregu-
lation of the immune response, potentially contributing 
to the excessive inflammation and immune dysfunction 
observed in bacterial sepsis. Furthermore, the inhibition 
of Th1 signaling, which is crucial for cellular immune 
responses and inflammation control, supports the notion 
of immune response dysregulation in bacterial sepsis [6]. 
TBX21 (Fig. 6B, D), which is regulated in bacterial sep-
sis upstream regulator analysis, was also suppressed at a 
central position in the Th-1 pathway (Fig. S4). In contrast, 
TBX21 was not found in the upstream regulator analy-
sis of the viral (COVID-19) sepsis patients (Fig.  7B, D). 
TBX21 works to cause Th progenitor cells to differentiate 
into Th1 effector cells [15–17]. Our study also confirmed 
that TBX21 is suppressed in the Th-1 pathway. Its sup-
pression may represent the underlying immune dysfunc-
tion observed in bacterial sepsis. Figure S2A-H shows 

Fig. 5 Canonical pathway and heatmaps of miRNA-targeted mRNAs. (A) Canonical pathway analysis of patients with bacterial sepsis and healthy volun-
teers. The bars represent z-scores, and the line graphs represent the adjusted p values associated with each pathway in the logarithm. (B) The percentage 
of genes up- and down-regulated in the pathways shown in panel A. (C) Canonical pathway analysis of patients with viral (COVID-19) sepsis and healthy 
volunteers. The bars represent z-scores, and the line graphs represent the adjusted p values associated with each pathway in the logarithm. (D) The per-
centage of genes up- and down-regulated in the pathways shown in panel C
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that similar results are confirmed for pathway analysis 
results other than IPA. Therefore, this result may be rep-
resentative and indicative of the patient’s immune status 
as previous studies and analyses in different sources have 
suggested similar pathway associations.

In a previous study, patients with bacterial sepsis 
showed more severe organ dysfunction and poorer out-
comes compared to viral (COVID-19) sepsis patients 
[18]. This difference may be due to the fact that bac-
terial sepsis often causes systemic inflammation and 
multiorgan failure [19], whereas COVID-19 manifests 
primarily as respiratory dysfunction [20]. COVID-19 is 
characterized by respiratory symptoms. Approximately 
15% of patients develop pneumonia, and 5% are criti-
cally ill due to respiratory failure from acute respiratory 
distress syndrome, shock, and/or multiorgan dysfunc-
tion. In later stages of the infection, when viral replica-
tion accelerates, epithelial-endothelial barrier integrity 

is compromised. In addition to epithelial cells, SARS-
CoV-2 infects pulmonary capillary endothelial cells, 
which accentuate the inflammatory response and trigger 
an influx of monocytes and neutrophils [21].

The differences observed in the number of genes 
expressed and altered in our study may reflect differences 
in the underlying disease mechanisms and pathophysi-
ological processes of bacterial sepsis and COVID-19. 
In our study, we used whole blood RNA sequencing to 
reveal striking differences in gene expression and path-
way activation between the bacterial sepsis patients and 
viral (COVID-19) sepsis patients.

There were no significant differences in the severity 
assessments as indicated by the APACHE II and SOFA 
scores between the patients with bacterial versus viral 
(COVID-19) sepsis. The following differences between 
bacterial and viral infections may account for the marked 
differences in gene expression in this study.

Fig. 6 Upstream regulator analysis of patients with bacterial sepsis and healthy volunteers. The bar graphs show the common logarithm of the overlap 
of p values of transcriptional regulators that differed in bacterial sepsis patients compared to healthy controls, and the line graphs show the z values. (A) 
Regulators that are active in patients with bacterial sepsis as inferred from significant alterations in mRNA expression profiles between septic patients 
and healthy controls. (B) Suppressed regulators identified through analysis of mRNA data. (C) Active regulators in the context of bacterial sepsis identified 
by analyzing mRNAs that are under the regulatory influence of miRNAs that exhibit differential gene expression patterns between septic and healthy 
individuals. (D) Downregulated regulators identified by the differential regulatory patterns of mRNAs by miRNAs in the context of bacterial sepsis
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From a clinicopathologic viewpoint, bacterial sepsis 
causes severe systemic inflammation and multiorgan 
damage, and even septic shock in the early stages. In con-
trast, COVID-19 infections cause no apparent immuno-
inflammatory response in the early stages of invasion and 
may have an incubation period of 10 days or more. Even 
when respiratory compromise occurs, the general condi-
tion of most patients remains relatively stable, although 
some patients may suddenly become quite ill and even 
die.

From an immunological perspective, the difference 
between bacterial sepsis and viral sepsis, including 
COVID-19 infection, lies in the activation of pattern rec-
ognition receptors and TLRs [22]. In bacterial infections, 
TLR2 and TLR4 are primarily activated and recognize 
bacterial-derived lipopolysaccharide and peptidogly-
cans, which leads to a strong inflammatory response. In 

viral infections, however, TLR3, TLR7, TLR8, and TLR9 
recognize virus-derived RNA and DNA and induce 
interferon-mediated antiviral responses. Thus, it is sug-
gested that bacterial and viral sepsis may have differ-
ent host responses due to differences in pathogenic 
microorganisms.

Limitations
There are several limitations in this study. First, there is a 
significant difference in age between the bacterial sepsis 
patients, viral (COVID-19) sepsis patients, and healthy 
control subjects. Second, this is single-center study with a 
small number of participants, which can lead to reduced 
general validity of the results. Third, it is impossible to 
determine how they specifically affect the pathway. Con-
sequently, a multicenter cohort study will be required for 
further validation of the results.

Fig. 7 Upstream regulator analysis of viral (COVID-19) sepsis patients and healthy volunteers. The bar graphs delineate the common logarithm of the 
adjusted p values corresponding to transcriptional regulators that manifested differential activity in viral (COVID-19) sepsis patients as compared to 
healthy controls. The line graphs simultaneously present the distribution of the corresponding z-scores. (A) Transcriptional regulators that are active in 
viral (COVID-19) sepsis patients as inferred from significant alterations in the gene expression profiles of mRNA between viral (COVID-19) sepsis patients 
and healthy controls. (B) Suppressed transcriptional regulators identified through the analysis of mRNA data. (C) Transcriptional regulators that are active 
in the context of viral (COVID-19) sepsis patients as determined by analyzing mRNAs that are under the regulatory influence of miRNAs with differential 
gene expression patterns between viral (COVID-19) sepsis patients and healthy individuals. (D) Downregulated transcriptional regulators identified by the 
differential regulatory patterns of mRNAs by miRNAs in the context of viral (COVID-19) sepsis patients
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Conclusion
Our study revealed distinct molecular profiles between 
bacterial sepsis and viral (COVID-19) sepsis. Bacterial 
sepsis patients had a greater number of upregulated and 
downregulated genes and pathways compared to viral 
(COVID-19) sepsis patients. Especially, bacterial sepsis 
caused more dramatic pathogenetic changes in the Th1 
pathway than did viral (COVID-19) sepsis.
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