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Abstract 

Background  Simian T-cell leukemia virus type 1 (STLV-1) is a retrovirus closely related to human T-cell leukemia 
virus type 1 (HTLV-1), the causative agent of adult T-cell leukemia (ATL). It has been shown that Japanese macaques 
(Macaca fuscata, JMs) are one of the main hosts of STLV-1 and that a high percentage of JMs (up to 60%) are infected 
with STLV-1; however, the molecular epidemiology of STLV-1 in JMs has not been examined.

Methods  In this study, we analyzed full-length STLV-1 genome sequences obtained from 5 independent troops 
including a total of 68 JMs.

Results  The overall nucleotide heterogeneity was 4.7%, and the heterogeneity among the troops was 2.1%, irre-
spective of the formation of distinct subclusters in each troop. Moreover, the heterogeneity within each troop 
was extremely low (>99% genome homology) compared with cases of STLV-1 in African non-human primates as well 
as humans. It was previously reported that frequent G-to-A single-nucleotide variants (SNVs) occur in HTLV-1 proviral 
genomes in both ATL patients and HTLV-1 carriers, and that a G-to-A hypermutation is associated with the cellular 
antiviral restriction factor, Apobec3G. Surprisingly, these SNVs were scarcely observed in the STLV-1 genomes in JMs.

Conclusions  Taken together, these results indicate that STLV-1 genomes in JMs are highly homologous, at least 
in part due to the lack of Apobec3G-dependent G-to-A hypermutation.
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Repositories
The STLV-1 nucleotide sequences have been submitted 
to the DNA Data Bank of Japan (DDBJ) with NCBI acces-
sion numbers LC490306–LC490350.

Background
Primate T-cell leukemia virus type 1 (PTLV-1) (fam-
ily Retroviridae; genus Deltaretrovirus) is an enveloped, 
positive-sense, single-stranded RNA virus. The deltaret-
rovirus contains two viral lineages: PTLV and bovine 
leukemia virus [1]. The PTLV lineage includes simian 
and human T-cell leukemia viruses (STLV and HTLV, 
respectively) [2, 3]. Human T-cell leukemia virus type 1 
(HTLV-1) is a pathogenic virus that has spread globally 
to many regions, including Japan, the Caribbean, South 
America, and sub-Saharan Africa [4–7]. HTLV-1 causes 
adult T-cell leukemia/lymphoma (ATL), HTLV-1-as-
sociated myelopathy/tropical spastic paraparesis, and 
other inflammatory diseases in less than 5% of infected 
individuals [4, 7]. Evolutionary phylogenetics has shown 
that HTLV-1 emerged from the spread of simian T-cell 
leukemia virus type 1 (STLV-1) from non-human pri-
mates (NHP) to humans [8, 9]. Zoonotic transmission to 
humans has been confirmed in some African countries, 
with cases emerging after receiving severe bites from 
monkeys infected with STLV-1 [10].

Old World monkeys and apes are the natural hosts of 
STLV-1. HTLV-1 and STLV-1 share approximately 90%–
95% amino acid homology, and both are approximately 
60% homologous to human T-cell leukemia virus type 2 
(HTLV-2) [11, 12]. Furthermore, STLV-1 infection can 
lead to the development of lymphoproliferative diseases 
[13, 14]. On the basis of these findings, it has been pro-
posed that STLV-1-infected NHP may be suitable animal 
models for HTLV-1 research [15].

Japanese macaques (Macaca fuscata, JMs) inhabit a 
wide area of Japan and are known to have a high preva-
lence of STLV-1 infection [15–17]. It has been reported 
that the high prevalence may be related to frequent hori-
zontal and mother-to-child transmission in JM [18]. Full-
length genomic sequences of STLV-1 have been reported 
for Old World monkeys and baboons, but very limited 
information on sequences from JMs is available [19–22]. 
HTLV-1 genotypes, which are relatively well understood 
primate T-cell leukemia viruses, are composed of four 
major subtypes: Cosmopolitan subtype A, Central Afri-
can subtype B, Central African/Pygmies subtype D, and 
Australo-Melanesian subtype C [4]. Japan is known to 
have a high prevalence of HTLV-1 cosmopolitan subtype 
A [4]. However, the genomic sequences of STLV-1 in JMs 
are quite different from those of HTLV-1 and STLV-1 in 
other NHPs [23], indicating that STLV-1 in JMs origi-
nated as a branch from a cluster that was phylogenetically 

distant from the Japanese subtype of HTLV-1 [23, 24]. 
Regional phylogenetic analyses of complete HTLV-1 sub-
type A genomes showed the relatively high diversity of 
their single-nucleotide variants (SNVs) [25, 26]. Epide-
miological studies of a population within a limited area 
in Japan have been reported, but there have been no 
published phylogenetic analyses of complete genomes 
of STLV-1 from JMs in Japan [16]. Interestingly, STLV-
1, which naturally infects African NHP, has pathogenic 
properties, such as inducing ATL, similar to HTLV-1 [14, 
27]. There have been no reports of ATL-like leukemia in 
JMs infected with STLV-1. However, it is unclear what 
accounts for the differences in STLV-1 pathogenicity 
among JMs and other NHPs.

In this study, we performed a comprehensive analysis 
of the full-length genomic sequences of STLV-1 obtained 
from 5 independent troops, including a total of 68 JMs 
naturally infected with STLV-1. The STLV-1 genomes 
were analyzed for heterogeneity among individual JMs, 
as well as among independent troops, to compare the 
genomes of HTLV-1 and other STLV-1 variants.

Methods
Animals
Animal experiments in this study were approved by the 
Animal Welfare and Animal Care Committee of the 
Center for the Evolutionary Origins of Human Behavior 
(EHUB), Kyoto University (approval number: 2014–092, 
2015-040, and 2016-135) and were performed in line with 
the Guidelines for Care and Use of Nonhuman Primates 
(Version 3) of the Animal Welfare and Animal Care 
Committee of EHUB. We followed the guidelines pro-
vided by the Guidelines for Proper Conduct of Animal 
Experiment and Related Activities in Academic Research 
Institutions [Notice No. 71 of the Ministry of Education, 
Culture, Sports, Science and Technology, dated June 1, 
2006], which is in accordance with the recommenda-
tions of the Weatherall report titled “The use of non-
human primates in research”: https://​www.​acmed​sci.​ac.​
uk/​more/​news/​the-​use-​of-​non-​human-​prima​tes-​in-​resea​
rch/. Blood samples were collected from JMs reared and 
bred in our open enclosures at routine health checkups 
under ketamine anesthesia with medetomidine, followed 
by the administration of the medetomidine antagonist, 
atipamezole, at the end of the procedure.

Cells and genomic DNA samples
Peripheral blood mononuclear cells (PBMCs) were 
obtained from the blood of STLV-1 seropositive JMs bred 
in EHUB. To identify STLV-1 infection, particle-aggluti-
nation tests were performed on plasma samples, as previ-
ously reported [15]. The macaques were grouped into five 
independent troops according to the geographic regions 

https://www.acmedsci.ac.uk/more/news/the-use-of-non-human-primates-in-research/
https://www.acmedsci.ac.uk/more/news/the-use-of-non-human-primates-in-research/
https://www.acmedsci.ac.uk/more/news/the-use-of-non-human-primates-in-research/


Page 3 of 9Hiraga et al. Virology Journal          (2024) 21:166 	

where they lived. Genomic DNA was extracted from the 
PBMCs and purified using a QIAamp Blood DNA mini 
kit (Qiagen, Cat. No. 51104).

Sequencing of STLV‑1 genomic sequences
The full-length genomic sequences of STLV-1 were 
amplified as four regions by nested long PCR or PCR 
using a KOD-FX Neo polymerase kit (Toyobo, Code No. 
KFX-201), according to the manufacturer’s protocol. The 
thermal cycle for the first nested PCR was 94°C for 2 min, 
followed by 5 cycles at 98°C for 10 s, 68°C for 5 min, and 
23 cycles at 98°C for 15 s, then 60°C for 15 s and 68°C 
for 5 min. The thermal cycle for the second nested PCR 
was 94°C for 2 min, followed by 45 cycles at 98°C for 15 
s, 60°C for 15 s, and 68°C for 4 min. For fragment 4, the 
thermal cycle for the second nested PCR was 94°C for 2 
min, followed by 50 cycles at 98°C for 15 s, 60°C for 15 
s, and 68°C for 2 min. PCR products were purified using 
a QIAquick 96 PCR purification kit (Qiagen, Cat. No. 
28181). The sequencing PCRs were performed using a 
BigDye v3.1 cycle sequencing kit (Applied Biosystems) 
with sequencing primers according to the manufacturer’s 
protocol. All the primer sequences used in the nested 
long PCRs and the sequencing PCRs and their posi-
tions on the STLV-1 genome are visualized in Figure S1 
and listed in Tables S1 and S2. Genomic sequence analy-
sis was performed on an Applied Biosystems 3730 DNA 
analyzer by Eurofin Co., Ltd., or Genewiz Co., Ltd. Con-
tigs were assembled using the sequence-assembling soft-
ware ATGC (Genetyx). Complete long terminal repeat 
(LTR) sequences were determined by combining consen-
sus regions of the 5′-LTR and 3′-LTR reads, as described 
previously [28]. The STLV-1 nucleotide sequences have 
been submitted to the DNA Data Bank of Japan (DDBJ) 
with NCBI accession numbers LC490306–LC490350.

Phylogenetic analysis
SNVs were extracted from the STLV-1 nucleotide 
sequences, and RAxML [29] with the maximum-like-
lihood method, and 1000 times bootstrap was used to 
infer the phylogenies. The topology of the phylogenetic 
tree was evaluated using GTRGAMMA [29].

Results
Genome sizes of STLV‑1 in JMs
Genomic DNA extracted from PBMCs of 88 STLV-1-in-
fected JMs from five different troops in Japan (A, H, M, 
T, and W) was used in this study (Fig. S2). The full-length 
genomic sequence of STLV-1 was determined by Sanger 
sequencing using DNA fragments amplified by PCRs or 
nested long PCRs. Resultantly, we obtained complete 
STLV-1 genome sequences from 68 JMs; 23 (34%, 23/68) 
of them shared 100% identity with the sequences of 

other strains. After removing the redundant sequences, 
we obtained full-length genome sequences of 45 unique 
strains of STLV-1 from JMs. These 45 sequences differed 
from the genome sequences of STLV-1 strains reported 
previously. Interestingly, the lengths of the STLV-1 
genomic sequences varied by habitat area: 9,031 bps (A, 
M), 9,025 bps (H), 9,033 bps (T), and 9,028 bps (W) (Fig. 
S2B). The median overall STLV-1 genome length was 
9,031 bps (Fig. S2A).

Phylogenetic analyses of STLV‑1 strains
Phylogenetic analysis of the STLV-1 genomes was con-
ducted by maximum-likelihood analysis using RAxML. 
In the phylogenetic tree, the STLV-1 strains clustered 
together and were included in the PTLV-1 clade with 
HTLV-1 and STLV-1 isolated from other primates and 
were phylogenetically distant from PTLV-2 and PTLV-3 
(Fig.  1A). Like those in other Asian macaques, such as 
the Toukean macaque (Macaca tonkeana, Mto) and the 
stump-tailed macaque (Macaca arctoides, Mar), the 
JM-derived STLV-1 cluster was distant from HTLV-1A, 
suggesting that STLV-1 and HTLV-1A diverged from a 
common ancestor long ago. In contrast, baboon STLV-1 
clustered in close proximity to HTLV-1. Baboons, like 
JMs, are known to be highly susceptible to STLV-1. We 
generated another phylogenetic tree using the same 
method to examine the phylogenetic relationship among 
the STLV-1 strains (Fig.  1B). Interestingly, subclusters 
were formed by STLV-1 strains from each troop, indi-
cating distinct regional characteristics in their genomic 
sequences (Fig.  1B). Surprisingly, the SNVs within the 
subclusters were extremely limited, with a maximum of 7 
bps in H0175 (LC490314) and H0188 (LC490315).

Nucleotide and amino acid homology between STLV‑1 
and other STLV‑1s and HTLV‑1
For comparison, we selected strains W2: W1971 
(LC490335), W1: W2045 (LC490336), M1: M0689 
(LC490324), M2: M0315 (LC490321), A: A2312 
(LC490308), H: H0734 (LC490317), and T: T2635 
(LC490334) as representative strains of each STLV-1 sub-
cluster (Fig.  1B). The nucleotide identity of the STLV-1 
isolates between geographic region T and other areas was 
95.3%–95.5%, and among the other habitat areas, it was 
98.5%–99.1% (Table 1). The mean homology among the 
subclusters was 97.9% (i.e., heterogeneity of nucleotides 
was 2.1%). The nucleotide homology between STLV-1 
and other representative STLV-1 strains and HTLV-1 
(AB513134, a representative strain of HTLV-1) was 
74.7%–89.5% (Table 2).

The amino acid homologies between the representa-
tive STLV-1 strains and previously reported PTLV 
strains (Table 3) were generally high (Gag 94%–95%; Pro 
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88%–91%; Pol 93%–95%; Env 93%–95%; Rex 83%–87%; 
Tax 91%–93%, SBZ 72%–79%), despite regional differ-
ences among the amino acid sequences of HTLV-1A, 
1B, and 1C (Table  3). Similarly, the strains had high 
homology with a NHP STLV-1, namely baboon STLV-
1, but relatively low homology with Mar STLV-1, which 
is consistent with the phylogenetic analysis of complete 
genomic sequences (Fig. 1A; Table 3).

Patterns of single‑nucleotide variants in the STLV‑1 
sequences
The types of SNVs in the STLV-1 subclusters were ana-
lyzed using the A2312 sequence (LC490308) as the 
standard STLV-1 sequence. The numbers of SNVs in the 

sequences of the six representative strains of each sub-
cluster were 420 (T2635), 133 (H0734), 105 (W1971), 
91 (W2046), 92 (M0689), and 34 (M0315). The percent-
ages of the four most abundant SNVs were 21.9%–32.4% 
for G>A, 13.3%–22.6% for A>G, 20.6%–28.6% for T>C, 
and 21.1%–26.4% for C>T, which accounted for approxi-
mately 90% of the total SNVs in all subclusters (Fig. 2A). 
The average SNV rate was 26.8% for G>A, accounting 
for the largest proportion of SNVs in 3 of the 6 (50%) 
subclusters. In HTLV-1, the G-to-A hypermutation is 
known to be induced at the reverse transcription of the 
viral genome by the host enzyme Apobec3G, which 
contributes to host defenses against viral infection [30]. 
We investigated whether the host enzymes represented 

Fig. 1  Phylogenetic trees of STLV-1 isolates from JMs. Single-nucleotide variants (SNVs) of STLV-1 were analyzed by RAxML, an algorithm 
that uses the maximum-likelihood method. The trees were drawn using the GTRGAMMA model. Bootstrap values are shown above and to the left 
of the major nodes. Scale bars indicate the number of SNVs per site. A Phylogenetic tree of STLV-1 and other PTLV sequences. All STLV-1 strains 
are shown in red. B Phylogenetic tree showing the relationship among STLV-1 strains from different geographical regions. Representative strains 
of each STLV-1 subcluster are underlined. The accession numbers of the STLV-1 sequences used to construct the trees are A1671 (LC490306), 
A2213 (LC490307), A2312 (LC490308), A2365 (LC490309), A2437 (LC490310), A2594 (LC490311), A2601 (LC490312), H0168 (LC490313), H0175 
(LC490314), H0188 (LC490315), H0548 (LC490316), H0734 (LC490317), M0275 (LC490318), M0279 (LC490319), M0304 (LC490320), M0315 (LC490321), 
M0317 (LC490322), M0656 (LC490323), M0689 (LC490324), M0725 (LC490325), M0726 (LC490326), M0776 (LC490327), T2297 (LC490328), T2497 
(LC490329), T2571 (LC490330), T2589 (LC490331), T2625 (LC490332), T2626 (LC490333), T2635 (LC490334), W1971 (LC490335), W2045 (LC490336), 
W2171 (LC490337), W2291 (LC490338), W2321 (LC490339), W2478 (LC490340), W2514 (LC490341), W2559 (LC490342), W2566 (LC490343), W2567 
(LC490344), W2621 (LC490345), A1916 (LC490346), M0589 (LC490347), M0280 (LC490348), M0309 (LC490349), W1779 (LC490350), HTLV-1A 
(AB513134), HTLV-1B (JX507077), HTLV-1C (KF242505), baboon STLV-1 (MF621979), Macaca tonkeana STLV-1 (Mto STLV-1: Z46900), Macaca arctoides 
STLV-1 (Mar STLV-1: AY590142), STLV-2 (NC_001815), STLV-3 (NC_003323), and bovine leukemia virus (BLV) (AF033818)
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Table 1  Comparison of sequence identity between geographic regions of the STLV-1 isolates

Table 2  Nucleotide homology of STLV-1 strains from JMs by habitat region to HTLV-1 strains

W1 W2 M1 M2 A H T Mean

HTLV-1 (AB513134) 89.5% 89.5% 89.5% 89.5% 89.4% 89.6% 89.3% 89.5%

Baboon STLV-1 (MF621979) 88.7% 88.8% 88.9% 88.8% 88.8% 88.8% 88.9% 88.8%

Mto STLV-1 (Z46900) 88.0% 88.0% 87.9% 88.0% 87.9% 88.1% 87.9% 88.0%

Mar STLV-1 (AY590142) 74.1% 75.0% 75.0% 75.0% 75.0% 73.9% 75.3% 74.7%

Table 3  Amino Acid sequence comparison of STLV-1 from JMs, other PTLVs and BLV

Protein homology between STLV-1 from JMs and other PTLVs (%)

Gag Pro Pol Env Rex Tax SBZ

HTLV-1A (AB513134) 94-95 89-91 93-94 94 83-86 92-93 72-75

HTLV-1B (JX507077) 95-96 88-89 93-94 93-94 84-87 91-93 75-78

HTLV-1C (KF242505) 95 88-90 94-95 94-95 83-87 91-92 75-79

Baboon STLV-1 (MF621979) 93 88-89 93-94 93 83-87 91-92 71-74

Mar STLV-1 (AY590142) 86-87 69-70 82 86 70-71 88 56-57

STLV-2 (NC_001815) 73-74 51 63 70 55-57 79-80 -

STLV-3 (NC_003323) 73 54-55 60 68 53-55 76-78 -

BLV (AF033818) 40 35 46 29 32 24-25 -
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by the Apobec family are involved in the G>A SNV by 
focusing on the nucleotides downstream of the G>A site. 
Apobec3G shows a marked preference for editing the 
second C in CC sequences, producing a GG>AG substi-
tution in the sense strand, whereas Apobec3F preferen-
tially targets TC sequences [31, 32]. Although 63.6% of 
the G>A SNVs (7/11) were GG>AG in the M subcluster, 
a high preference for this SNV was not found in the other 
subclusters (Fig. 2B). This result showed no involvement 
of Apobec3G in STLV-1 genetic variation.

Discussion
We obtained full-length sequences of STLV-1 from 68 
JMs in five different regions of Japan. In the phylogenetic 
tree, the STLV-1 sequences formed a single cluster in the 
PTLV-1 clade and were closely related to HTLV-1 and 
other STLV-1 sequences. The single cluster of STLV-1 
strains indicates that they evolved independently from 
the other PTLVs (Fig. 1A).

Among the 68 full-length STLV-1 genome sequences 
that we obtained, 23 (34%) were 100% identical to the 
sequences of other strains, which contrasts with other 
NHP STLV-1s. Propagation of a high frequency of com-
pletely matched STLV-1 sequences among JMs suggests 
that frequent horizontal transmission of a quite limited 

STLV-1 strain occurred within each troop. Further-
more, among the unique strains in each troop, the het-
erogeneity of nucleotides was extremely low (minimum 
99.5% homology), indicating that the STLV-1 genomes 
in each troop were highly homogeneous. Conversely, 
the STLV-1 strains formed distinct subclusters accord-
ing to their troops, and differences in genomic size were 
also observed among troops. These results indicate that 
the STLV-1 strains evolved independently within dif-
ferent habitat regions, maintaining highly homologous 
genomic sequences within an area but acquiring distinct 
characteristic sequences between areas (Fig. S1B). A 
regional phylogenetic analysis of HTLV-1 subtype A in 
Japan showed that the phylogenetic tree was composed 
of highly divergent strains, and there were no identical 
complete HTLV-1 sequences [26]. Previous reports of the 
phylogenetic characteristics of STLV-1 in NHP indicated 
that there are high degrees of diversity among individu-
als and within subgroups [33–35]. This suggests that the 
genomic diversity of the STLV-1 is extremely low com-
pared with that of HTLV-1 and NHP STLV-1. In the pre-
sent study, the sequence homology of STLV-1 from JM 
was higher than that of the previously reported STLV-1 
from NHPs. STLV-1 genetic diversity may vary with pri-
mate species and their social behavior. For example, in 

Fig. 2  Characteristics of single-nucleotide variants in STLV-1 from JMs from five different geographical regions. A Types of single-nucleotide variants 
(SNVs) in A2312 (LC490308; a representative strain of the STLV-1) are shown as a percentage of the total number of SNVs. T2635, H0734, W1971, 
and M0689 were selected as representative strains from the four phylogenetic troops in Figure 2B. W2045 and M0315 were analyzed as subgroups 
of troops M and A, respectively. “Total” indicates the total number of SNVs in each cluster. The four major SNVs were G>A, C>T, T>C, and A>G. B 
Dinucleotide sequence context of the G>A SNVs in each troop
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wild chimpanzees, who have frequent contact with dif-
ferent primate species and often engage in aggressive 
group encounters, STLV-1 strains are highly diverse [33]. 
By contrast, in JMs, who rarely make direct contact with 
other primates, the distribution of STLV-1 sequences is 
highly conserved.

We examined the G>A ratio between the STLV-1 sub-
clusters and, unexpectedly, did not find any distinguish-
ing characteristics (Fig. 2). G>A SNVs have been reported 
to be the most common SNVs in the proviral genomes of 
patients with adult T-cell leukemia/lymphoma and carri-
ers of HTLV-1, and the G>A SNV is associated with the 
cellular antiviral restriction factor human Apobec3G [30]. 
Therefore, in contrast to the correlation between HTLV-1 
and Apobec3G in humans, SNVs in the STLV-1 genome 
may not correlate with the introduction of substitutions 
by simian Apobec3G in the formation of physiological 
subclusters. Because the proviral load in STLV-1-infected 
JMs is similar to that in HTLV-1-infected humans, it is 
possible that JMs inhibit viral replication not only through 
Apobec3G but also through other host factors [15]. It 
remains to be elucidated whether the lower diversity of the 
viral genome can account for the apathogenicity of STLV-1 
in JMs. However, one possible explanation for the low 
pathogenicity of STLV-1 in JMs is that the STLV-1 genome 
has resistance to host Apobec3G, which helps to avoid the 
introduction of ATL-related nonsense mutations, such as a 
premature stop codon in the Tax gene [36].

Mutations occurred with both mother-to-child and 
sexual transmission, and many strains carried by females 
in each region can be inherited by their progeny within a 
certain time period [18]. However, sexual transmission of 
quite a limited number of strains was predominant from 
a long-term perspective, which contributed to the evo-
lution of unique and extremely conserved sequences in 
each area. It is possible that the social structure of JMs, 
namely a dominant male mates with many females in the 
troop, provides an environment that facilitates the spread 
of a limited number of STLV-1 strains in an area. This 
hypothesis is consistent with previous results [18], which 
indicated that horizontal transmission was the main route 
of STLV-1 transmission in JMs. It was suggested that dif-
ferences in the diversities of the STLV-1 and HTLV-1 
genomes can be attributed to differences in the lifestyles 
of JMs and humans. While the observational data from 
our JM population may not provide sufficient information 
on its own to explain the mechanism of reduced STLV-
1-pathogenisity in infected JMs, previous studies have also 
shown no evidence of pathogenicity in STLV-1-infected 
JMs compared with naturally infected African NHPs 
[14, 27]. Shichijo et  al. reported that human Apobec3G 
stimulates activation of the transforming growth factor 
(TGF)-β/Smad pathway by HBZ, and this activation is 

associated with ATL cell proliferation, whereas the com-
bination of SBZ and simian Apobec3g does not enhance 
TGF-β/Smad activity, suggesting that STLV-1 is better 
adapted to its simian host than is HTLV-1 [36]. It is spec-
ulated that repeated predominant horizontal transmission 
contributes to the acceleration of generational changes in 
STLV-1 strains, which might also be associated with the 
adaptation of STLV-1 to JMs and partially contribute to 
the low pathogenicity of STLV-1 in JMs.

Our results in this study showed the presence of the 
outlier STLV-1 in a specific troop. In fact, several JMs in 
troop M harbored STLV-1 with the genetic characteristics 
of troop A (Fig. 1B). It is well known that some JMs leave 
their own troops (so-called Hanarezaru) and occasionally 
immigrate to other troops [37]. It is reasonable to assume 
that Hanarezaru may introduce STLV-1 when migrating 
to other troops, thereby contributing to the generation of 
genetic outliers in a troop. Troops M and A had a relatively 
close geographical proximity, supporting this notion. The 
occurrence of these possibility will be further elucidated by 
an analysis of the mitochondria DNA of the troop.

STLV-1 has been used as a model virus in basic 
HTLV-1 research, as well as for clinical studies and the 
development of therapeutics and vaccines, because of 
their similar genetic and virological characteristics [38]. 
In this study, we showed that the STLV-1 provirus shares 
extremely high amino acid sequence homology with 
HTLV-1, even compared with other STLV-1s in NHP. 
The lowest homology (72%–79%) was in the SBZ region, 
but the SBZ region is known to be functionally similar to 
the HTLV-1 HBZ region [15].

Miura et  al. [15] reported that administration of the 
anti-CCR4 antibody mogamulizumab to STLV-1-infected 
monkeys dramatically reduced proviral loads. Together, 
these findings indicated that STLV-1-infected JMs are a 
suitable model for studying asymptomatic HTLV-1 car-
riers and confirming the efficacy of therapeutic agents. 
Hasegawa et  al. [39] demonstrated experimentally that 
the short-term cultivation of autologous PBMCs gener-
ates the Tax protein, which can serve as a therapeutic 
vaccine that activates cytotoxic T lymphocytes in STLV-
1-infected JMs with impaired cytotoxic T lymphocytes, 
as seen in patients with adult T-cell leukemia/lymphoma.

Conclusion
We have shown that STLV-1 genomes within the stud-
ied habitat areas were highly conserved and genetically 
highly similar to the HTLV-1 genome. Using STLV-1 as a 
model of HTLV-1 will strongly enhance our understand-
ing of the basic science of STLV-1 and HTLV-1, including 
the pathogenetic mechanisms of HTLV-1-associated dis-
eases, and support the development of new preventive or 
therapeutic strategies.
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