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Abstract 

Infertility affects approximately one-sixth of couples globally, with the incidence of male infertility steadily increasing. 
However, our understanding of the impact of viral infections on fertility remains limited. This review consolidates find-
ings from previous studies, outlining 40 viruses identified in human semen and summarizing their key characteristics, 
modes of transmission, and their effects on both the reproductive and endocrine systems. Furthermore, it elucidates 
potential pathogenic mechanisms and treatment prospects of viruses strongly associated with male infertility. This 
synthesis will enhance our comprehension of how viral infections influence male reproductive health, offering valu-
able insights for future research as well as the diagnosis and treatment of infectious infertility.
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Graphical Abstract
Abbreviated summary: Semen viral infections can damage the male reproductive system, further affecting semen 
quality and causing infertility, as well as sexually transmitted infections to partners and vertical transmission resulting 
in poor pregnancy outcomes.

Introduction
The WHO explicitly defines infertility as the inability 
to conceive after at least 12  months of regular, unpro-
tected sexual intercourse [1], which may stem from fac-
tors related to female, male, or both [2]. It’s reported that 
about 17% of couples globally grapple with infertility [3], 
with male infertility constituting half of all cases [4]. In 
recent years, male infertility has garnered increasing 
attention. A global burden of disease study encompassing 
204 countries and territories revealed that in 2019, the 
prevalence of male infertility was approximately 56 mil-
lion, marking a 76.9% increase since 1990 [5].

The reasons for decreased male fertility vary but may 
be linked to congenital, acquired, or idiopathic factors 
affecting sperm production [6], among which reproduc-
tive tract infections are considered to be one of the most 
influential [7, 8]. A survey involving over 4000 infertile 
men showed a prevalence rate of genitourinary tract 
infections in males as high as 35% [9]. Furthermore, 20% 

of primary infertile men exhibited asymptomatic semen 
infections, resulting in varying degrees of abnormal 
sperm concentration [10].

Previous research has compiled a list of 38 viruses 
detected in the male reproductive tract and semen, many 
of which exhibit a strong affinity for the male reproduc-
tive organs, particularly the testes [11]. Moreover, amidst 
the global coronavirus disease 2019 (COVID-19) pan-
demic, accumulating studies have indicated that severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
can directly or indirectly impair the male reproductive 
system, thereby heightening the risk of male infertil-
ity [12–14]. This resurgence of concern highlights the 
potential impact of viral infections on male fertility. 
Within semen, viruses may infect sperm or precursor 
cells, attaching to molecules on the sperm surface as free 
viral particles or residing within immune cells, leading 
to pathology in the reproductive system, abnormalities 
in semen parameters, and declined sperm quality. This 
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poses a significant threat to individual fertility and overall 
health. Furthermore, this may also result in virus-induced 
mutations transmitted to future generations [15].

Despite recent advancements in the study of semen 
viruses, a definitive correlation between viral infec-
tions and fertility remains unclear. This review seeks to 
summarize the primary discoveries regarding viruses in 
human semen, delineate the diversity of viruses present, 
identify the key viral species linked to male infertility, and 
discuss potential avenues of virus research with clinical 
relevance and implications for fertility guidance.

Methods
To investigate the presence of viruses in semen, we con-
ducted an unrestricted search on PubMed, Embase and 
Web of Science using the terms “semen, sperm, virus,” 
and we obtained 4815 results. Through screening titles, 
abstracts, and full-text articles, we gathered data describ-
ing viral infections in semen. Subsequently, we con-
ducted another search using the term “(virus name) and 
sexual transmission” to find relevant evidence of sexual 
transmission.

Results
Our findings revealed the presence of 40 viruses in 
human semen, with some lacking data on sexual trans-
mission. Among these 40 viruses, many cause chronic 
or latent infections such as herpes viruses and human 
immunodeficiency virus (HIV), while others cause acute 
infections such as zika virus (ZIKV), ebola virus (EBOV), 
and chikungunya virus (CHIKV). Among the viruses 
causing acute infections, only ZIKV and EBOV have 
been systematically studied beyond case reports. Table 1 
summarizes the main characteristics, clinical manifes-
tations, and key information related to male fertility for 
the 40 viruses. In the following sections, we will provide 
detailed explanations regarding viruses highly relevant to 
male reproductive health.

Human papillomavirus
Human papillomavirus (HPV) is a virus species with 
double-stranded circular DNA, and it belongs to the 
Papillomaviridae family. It is classified into high-risk 
and low-risk types based on its carcinogenicity [139]. 
HPV is one of the most common sexually transmit-
ted pathogens worldwide, with approximately 12% of 
the population infected and over 6.2 million new cases 
reported annually [140, 141]. Sexual contact is the pri-
mary route of HPV transmission. Males not only serve 
as carriers but also play a crucial role as transmitters 
in the epidemiological chain of HPV [142]. High-risk 
HPV is associated with anal cancer, penile cancer, and 
some head and neck cancers in males [143]. However, 

HPV may also exist in asymptomatic males [144]. The 
prevalence of HPV DNA in semen has been reported 
to range from 0.0% to 46.2%, with an average of 17.1% 
(95% CI = 14.1 to 20.1%). The prevalence in fertility clin-
ics (20.4%, 95% CI = 16.2 to 24.6%) is significantly higher 
than that in the general population (11.4%, 95% CI = 7.8 
to 15.0%) (P < 0.001), and the prevalence of high-risk 
HPV (15.5%, 95% CI = 11.4 to 19.7%) is significantly 
higher than that of low-risk HPV (10.3%, 95% CI = 6.8 
to 13.9%) (P < 0.001) [145]. Notably, the detection rate 
of HPV in donor sperm from sperm banks ranges from 
3.1% to 16.7%, significantly impacting the clinical preg-
nancy rate in assisted reproduction. Therefore, it is rec-
ommended that donor sperm should be tested for HPV 
before being used for insemination [146].

The mechanisms by which sperm function may be 
impaired after HPV infection are still poorly understood. 
HR-HPV proteins cause inflammation and increase reac-
tive oxygen species (ROS) levels in host cells, leading to 
oxidative stress (OS) [147]. Additionally, HPV infec-
tion directly inhibits the function of aquaporins (AQPs), 
making sperm cells more sensitive to OS. This inhibition 
reduces the AQP-mediated detoxification mechanism, 
resulting in sperm distress and impaired sperm function 
[148]. Research indicates that the presence of glycosa-
minoglycans or other soluble substances on the surface 
of sperm facilitates HPV attachment to the equatorial 
region of the sperm head [149]. When the equatorial 
region fuses with the oocyte plasma membrane [150], 
HPV may adversely affect fertilization. Certain HPV 
genotypes are associated with sperm DNA fragmenta-
tion [151], decreased motility and fertilization potential 
[152], abnormal sperm quality [19], and the formation of 
antisperm antibodies (ASAs) [153]. HPV transinfection 
may reduce the ability of trophoblasts and embryonic 
membranes to invade, leading to placental dysfunction 
and adverse pregnancy outcomes [154]. Viral genes may 
be transmitted to oocytes and embryo cells, causing 
DNA fragmentation and apoptosis, ultimately resulting 
in pregnancy loss [155, 156].

The guidelines issued by the European Society of 
Human Reproduction and Embryology (ESHRE) state 
that HPV in semen is a viral factor highly associated 
with assisted reproduction outcomes. They recommend 
targeted counseling for couples undergoing assisted 
reproductive therapies (ART) who are infected [157]. 
For couples with fertility problems, if they have unex-
plained infertility, a history of HPV infection, show 
related clinical manifestations, or if there is the pres-
ence of ASA and asthenospermia, HPV DNA testing 
and genotyping are recommended for the male partner. 
When HPV is detected, fluorescence in  situ hybridiza-
tion (FISH) analysis is recommended to check for the 
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presence of HPV DNA on the sperm surface, and col-
poscopy is suggested to rule out subclinical genital 
lesions [158]. Since some infertile couples cannot afford 
to delay conception and standard washing procedures 
in ART are insufficient to reduce semen viral load, two 
potential strategies are proposed for infertile couples 
with HPV-infected semen: special sperm washing and 
HPV adjunctive vaccination. Research indicates that 
applying a sperm washing procedure based on hyalu-
ronidase (IALu) helps remove HPV viral particles from 
the sperm surface [159]. Additionally, vaccination of 
infected patients has been shown to shorten the viral 
clearance time in semen [160], reduce the risk of recur-
rence [160], and improve sperm quality [144].

Herpesviruses
Members of the Herpesviridae family are enveloped 
spherical viruses with linear double-stranded DNA 
genomes, and their size ranges from 125 to 241 kbp, con-
taining 70 to 170 genes [161]. Nine types of herpesvi-
ruses infect humans, categorized into three subfamilies: 
α-herpesviruses, β-herpesviruses, and γ-herpesviruses, all 
capable of persisting in host cells and causing recurrent 
infections [162]. Members of the herpesvirus family have 
been detected in numerous semen studies and can be 
transmitted through sexual intercourse or from mother 
to baby during pregnancy and childbirth [15, 163]. PCR 
assay is the preferred method for distinguishing type-
specific HSV. Antiviral medications can effectively reduce 
the severity, duration, and recurrence of the disease, as 
well as prevent transmission to uninfected partners [164].

Herpes simplex virus‑1/2
Herpes simplex virus-1/2 (HSV-1/2) belongs to the 
α-herpesvirus subfamily. HSV-1 primarily causes oral 
and labial herpes, while HSV-2 mainly causes genital 
herpes. Both HSV-1 and HSV-2 can be transmitted sexu-
ally [163], with a mother-to-child transmission rate of 
approximately 1:1,400–30,000, sometimes leading to life-
threatening widespread infections in newborns [165].

There is significant variation in the reported infection 
rates of HSV-1 and HSV-2 in semen. One study revealed 
detection rates of 22.9% for HSV-1 and 14.3% for HSV-2 
in semen samples from infertile men, with all HSV-pos-
itive samples exhibiting abnormal semen parameters 
[43]. Another study indicated a detection rate of HSV in 
10.7%, with 7.5% positive for HSV-1 and 3.2% positive for 
HSV-2. HSV-1 infection was associated with decreased 
sperm count, while HSV-2 infection was associated with 
hematospermia [44]. Two other studies reported detec-
tion rates of HSV at 2.5% and 3.2%, respectively, with no 
observed impact on semen parameters [41, 57]. Evidence 
from experiments has shown that components in semen 

such as prostatic acid phosphatase (PAP), seminalplas-
min (SEM), and seminal plasma (SP) can promote the 
formation of HSV particles and accelerate virus repli-
cation, indicating that semen is an important target for 
HSV [166]. In addition, HSV-2 can internalize into the 
head of sperm, potentially influencing pregnancy out-
comes [167].

Varicella‑zoster virus
Varicella-zoster virus (VZV) belongs to the α-herpesvirus 
subfamily and is responsible for causing chickenpox and 
shingles. Research on VZV in semen is relatively scarce. 
One study detected VZV in patients with teratozoo-
spermia but did not explicitly state its correlation with 
the condition [45]. Other studies reported detection rates 
of VZV in semen ranging from 1.2% to 4%, but no asso-
ciation with semen quality was found [41, 48]. Addition-
ally, some studies did not detect VZV in semen samples 
[57, 168, 169].

Epstein‑barr virus
Epstein-barr virus (EBV) belongs to the γ-herpesvirus 
subfamily and is a lymphotropic herpesvirus. Infection 
can occur in individuals at different times, primarily 
through saliva transmission, but can also be transmitted 
through genital secretions or blood. Approximately 3% 
of EBV-positive mothers may transmit the virus to their 
babies [170]. Studies have shown that the prevalence of 
EBV in semen ranges from 0.4% to 45% [45, 50, 51] and 
may be associated with leukocytospermia [41]. Semen 
samples from infertile individuals have a significant 
capacity to induce early antigen (EA) of EBV, which may 
be related to reproductive damage mediated by immune 
responses and tumor development [171, 172].

Cytomegalovirus
Cytomegalovirus (CMV) belongs to the β-herpesvirus 
subfamily and is the largest and most genetically variable 
virus among human herpesviruses, with a global infec-
tion rate of approximately 66% to 90%. CMV can estab-
lish latency in long-lived cells and reactivate periodically, 
posing a risk of severe disease in immunocompromised 
individuals and being one of the most common causes of 
congenital disabilities [173]. Transmission mainly occurs 
through direct contact with body fluids such as saliva, 
urine, or semen [174].

Since CMV presence in semen was first reported in 
the United States in 1974 [54], relevant studies have con-
tinuously emerged. The prevalence of CMV in semen 
ranges approximately between 6% and 56.9% [51], and 
it has been associated with decreased sperm count and 
motility, as well as an increased failure rate in assisted 
reproduction [49, 52, 53]. However, some studies suggest 
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that the presence of CMV in semen is not related to 
male infertility [41, 55]. It has been reported that CMV 
in semen can be transmitted to partners through sexual 
intercourse [175] and can infect the endometrium, lead-
ing to early miscarriage and fetal birth defects [176].

Human herpesvirus 6A/B
Human herpesvirus 6 (HHV-6) belongs to the 
β-herpesvirus subfamily and includes HHV-6A and 
HHV-6B. HHV-6B infects almost 100% of humans, typi-
cally before the age of 4, and is the pathogen of exan-
thema subitum (infant roseola). Little is known about 
the transmission routes and prevalence of HHV-6A, but 
recent research suggests a link between high levels of 
HHV-6A antibodies and multiple sclerosis [177]. HHV-6 
typically integrates its genome into the telomeres of host 
cells to establish latency. Additionally, HHV-6A/B can 
integrate into the chromosomes of germ cells, leading to 
offspring carrying copies of the viral genome, a condition 
known as inherited chromosomally integrated HHV-6 
(iciHHV-6) [178].

One study indicated a detection rate of HHV-6 in 
semen of 5.6% and a higher prevalence among infertile 
males with inflammatory diseases of the reproductive 
tract (19%) [49]. Two other studies reported detection 
rates of HHV-6 in semen at 4% and 70%, respectively, but 
found no correlation with semen quality [41, 57].

Human herpesvirus‑7
Human herpesvirus-7 (HHV-7) belongs to the 
β-herpesvirus subfamily, with a global infection rate 
exceeding 90%. Primary infection often occurs in early 
childhood, manifesting with different clinical presenta-
tions such as rashes, fever, and febrile seizures [179]. 
There is limited research on HHV-7 in semen. One study 
found no evidence of HHV-7 infection in 172 semen 
samples [41], while another study detected only 1 case 
(0.4%) out of 252 semen samples [57]. Some research 
has detected HHV-7 in placental samples [180], but its 
mechanisms of sexual and mother-to-child transmission 
require further confirmation.

Human herpesvirus‑8
Human herpesvirus-8 (HHV-8), also known as Kaposi’s 
Sarcoma-Associated Herpesvirus (KSHV), belongs to 
the γ-herpesvirus subfamily and is an oncogenic patho-
gen that causes Kaposi’s sarcoma (KS) [181]. HHV-8 
primarily spreads through saliva and enters latency after 
cell infection, with reactivation leading to disease occur-
rence [182]. In the general population, the prevalence of 
HHV-8 is low, with most studies unable to detect HHV-8 
in semen from healthy donors or infertile males [38, 57]. 
However, the detection rate of HHV-8 in semen from KS 

patients is 12% [59], and HHV-8 has also been detected 
in semen from HIV-1-infected individuals [62]. The prev-
alence of HHV-8 in semen from healthy males has not 
yet been determined.

Hepatitis viruses
Hepatitis B virus
Hepatitis B virus (HBV) belongs to the Hepadnaviri-
dae family and affects nearly 400 million people world-
wide with chronic hepatitis B, posing a significant global 
healthcare challenge [183]. It can be transmitted through 
body fluids such as blood, semen, and vaginal secretions. 
Most individuals with normal immune function can 
spontaneously clear the infection, but some may develop 
acute or chronic hepatitis or even progress to liver cir-
rhosis and hepatocellular carcinoma [184].

Studies have found HBV in semen [50, 68], suggest-
ing the reproductive tract may serve as an independent 
reservoir for the virus, transmitting it through sexual 
intercourse [65]. The HBV genome can also integrate 
into sperm chromosomes, leading to chromosomal 
aberrations and even hereditary effects through vertical 
transmission [185]. HBV infection in semen can induce 
abnormal cytokine expression [186], trigger cell apop-
tosis, sperm DNA fragmentation, and reduce fertiliza-
tion capacity [187]. HBV infection in males has been 
observed to decrease the success rates of assisted repro-
duction [188], although some studies suggest HBV posi-
tivity in semen has no impact on assisted reproduction 
and pregnancy outcomes [189]. In male HBV patients, 
sperm washing procedures can effectively reduce the risk 
of vertical transmission and prevent HBV from enter-
ing the oocyte during intracytoplasmic sperm injection 
(ICSI). Additionally, in vitro studies have shown that the 
risk of infected sperm cells acting as carriers in IVF is no 
different from that in ICSI for male HBV patients. There-
fore, when the male partner is a chronic HBV carrier, 
there is no reason to exclude a couple from undergoing 
ICSI [190].

Hepatitis C virus
Hepatitis C virus (HCV) belongs to the Flaviviridae 
family [191] and is a major cause of liver cirrhosis and 
hepatocellular carcinoma. It is estimated that approxi-
mately 56.8 million people worldwide are infected with 
HCV, with a prevalence rate of 0.7% [192]. HCV is pri-
marily transmitted through blood but can also be trans-
mitted through other body fluids such as saliva, urine, 
and semen, indicating the possibility of sexual transmis-
sion [193]. Several studies have also demonstrated the 
presence of HCV in semen [72–74], correlating with 
decreased semen quality, abnormal hormone levels, and 
erectile dysfunction [75, 76]. Medications used to treat 
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HCV fall into two main categories: immunomodulators 
and antiviral agents. However, interferon therapy can 
reduce male fertility due to its gonadotoxic effects [194].

Hepatitis E virus
Hepatitis E virus (HEV) belongs to the Hepeviridae 
family and is a common pathogen causing acute hepa-
titis and jaundice. Globally, around 200,000 people are 
infected with HEV annually, with at least five genotypes 
capable of human infection. HEV-1 and HEV-2 are pri-
marily transmitted through the fecal–oral route, while 
HEV-3, HEV-4, and HEV-7 are often associated with 
zoonotic transmission and may spread through food 
and blood transfusions [195]. Research on HEV in the 
male reproductive system is limited and controversial. 
One study found a prevalence of HEV-4 in semen sam-
ples from infertile men, with 28.11% (52/185) of samples 
testing positive for HEV RNA. It was confirmed that 
HEV-4 infection could disrupt the blood-testis barrier 
(BTB), infect testicular cells, and reduce sperm quality 
[78]. However, other studies have failed to detect HEV in 
semen samples [196–198].

Polyomaviruses
Polyomaviruses (PV) belong to the Polyomaviridae fam-
ily, a group of small, non-enveloped, double-stranded 
DNA viruses named for their association with vari-
ous tumors. The Polyomaviridae family is divided into 
six genera, comprising 117 different viruses, with 14 
known to infect humans [199]. The most relevant ones 
to human disease are the BK virus (BKPyV) and JC virus 
(JCPyV) [200]. These two viruses are widespread among 
the global population, with primary infection typically 
occurring in childhood or adolescence, establishing per-
sistent or latent infections that may reactivate when the 
immune system is compromised. Blood, oral-fecal, urine, 
and sexual contact may be routes of transmission for PV 
[201, 202]. Studies have found the presence of JCPyV, 
Merkel cell polyomavirus (MCPyV), MW polyomavirus 
(MWPyV), STL polyomavirus (STLPyV), and Simian 
virus 40 (SV40) in semen [81, 85, 203]. Comar et al. first 
reported an infection rate of 24.5% for JCPyV in semen 
samples from infertile men, significantly associated with 
decreased sperm motility and morphological changes 
[82]. In addition, Rotondo et  al. also identified JCPyV 
DNA in semen samples [83].

Mumps virus
The mumps virus (MuV) is a negative-sense RNA virus 
belonging to the Paramyxoviridae family. MuV is the 
pathogen of mumps, primarily transmitted through 
direct contact or respiratory droplets [204]. MuV also 
demonstrates a high affinity for the testes, leading to 

orchitis, which is a common cause of viral orchitis and 
male infertility [205]. In adult mumps patients, approxi-
mately 20–30% may develop orchitis, and among affected 
testes, 30–50% may experience testicular atrophy [206]. 
During the early stages of MuV infection, the virus can 
induce parenchymal inflammation, lymphocytic infiltra-
tion, and damage to the seminiferous tubules, thereby 
affecting testicular function and hormone levels [207]. A 
study found that MuV can be detected in patients’ semen, 
resulting in decreased sperm count, abnormal morphol-
ogy, and the production of anti-sperm antibodies, which 
may potentially have long-term adverse effects on fertil-
ity [86]. The diagnosis of MuV primarily relies on clini-
cal complications and laboratory tests. The characteristic 
manifestation of orchitis is testicular swelling and pain. 
Laboratory diagnosis depends on MuV culture, viral 
RNA detection, or more commonly, serological confir-
mation by measuring immunoglobulin antibody levels 
[206]. MuV infections are mostly self-limiting, and there 
is currently no specific antiviral therapy. Treatment for 
mumps orchitis typically includes bed rest, scrotal sup-
port, and the use of analgesic and anti-inflammatory 
medications [208].

Human immunodeficiency virus
Human immunodeficiency virus (HIV) is a virus species 
with single-stranded positive RNA, and it belongs to the 
Retroviridae family. Acquired immunodeficiency syn-
drome (AIDS) is a major global public health concern, 
with an estimated 39 million people infected with HIV 
as of 2022. HIV is primarily transmitted through unpro-
tected sexual intercourse, with semen serving as the pri-
mary carrier of transmission [209].

HIV infection can contaminate semen at any stage 
[89], existing in the form of both free viral particles and 
infected cells [90]. There may be genetic variations in 
viral RNA and DNA sequences in semen during acute 
and chronic infection, indicating independent viral rep-
lication in semen [91]. The impact of HIV infection on 
semen parameters mainly includes decreased sperm 
motility, reduced quantity, increased abnormal morphol-
ogy, decreased ejaculate volume, elevated semen pH, and 
increased round cell count [92, 93]. Chronic orchitis may 
occur in AIDS patients, affecting testicular function and 
hormone production [210]. Antiretroviral therapy can 
reduce viral load in semen, thereby lowering the risk of 
transmission [211]. However, antiviral drugs also pose a 
risk of reducing sperm quality. This negative impact can 
be mitigated by using ICSI [212]. The effectiveness of 
sperm washing in eliminating viral particles from semen 
remains controversial, and improvements to washing 
procedures may be needed in the future [212–214].
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Severe acute respiratory syndrome coronavirus 2
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a single-stranded positive-sense RNA virus 
belonging to the Coronaviridae family, primarily trans-
mitted through respiratory droplets. The COVID-19 pan-
demic has led to a massive outbreak worldwide, infecting 
billions of people and causing millions of deaths [215].

Coronaviruses bind to host cells via the spike (S) pro-
tein and the cell receptor angiotensin-converting enzyme 
2 (ACE2), and entry into host cells is facilitated by the S 
protein activated by type II transmembrane serine pro-
tease (TMPRSS2) [216]. The high expression of ACE2 
and TMPRSS2 in the testes suggests they are target 
organs for SARS-CoV-2 [217]. Autopsies of individuals 
infected with SARS-CoV-2 revealed testicular findings 
such as interstitial edema, congestion, and erythrocyte 
extravasation. There was an increased proportion of 
CD3 + and CD68 + leukocytes in the testicular inter-
stitium. Additionally, there were increases in OS, as well 
as elevated levels of interleukin-6 (IL-6), tumor necrosis 
factor-alpha (TNF-α), and monocyte chemoattractant 
protein-1 (MCP-1) [218, 219]. Studies have confirmed 
severe damage to the testes following SARS-CoV-2 infec-
tion, including testicular atrophy, inflammatory cell infil-
tration, germ cell apoptosis, and microthrombosis in 
testicular blood vessels [220]. Regarding the presence of 
SARS-CoV-2 in semen, research results vary. Some stud-
ies suggest the virus is present in the semen of infected 
individuals [95, 97–99], while others have failed to 
detect it [221, 222]. Most studies have shown a decline 
in sperm quality [100] and impaired endocrine function 
in the testes following SARS-CoV-2 infection [101]. Due 
to the limited understanding of these emerging viruses, 
many drugs are currently being developed and evalu-
ated to combat and mitigate the impact of SARS-CoV-2. 
Vaccination is considered a crucial pathway to help end 
this devastating pandemic. Most studies suggest that 
vaccination does not affect semen parameters [223] and 
can reduce the incidence of orchitis and/or epididymitis 
[224]. Overall, the current data seem to indicate that vac-
cination does not negatively impact fertility in either sex 
[224–226].

Adeno‑associated virus
Adeno-associated virus (AAV) belongs to the Parvoviri-
dae family and is a type of defective virus with simple 
structured single-stranded DNA. AAV requires helper 
viruses (such as adenovirus, herpesvirus, and HPV) to 
participate in replication, either establishing latent infec-
tions in the absence of helpers [227] or integrating into 
the chromosome DNA of the host [228].

In 1999, Rohde et  al. first detected AAV DNA in 
semen samples of infertile men, which was associated 

with decreased sperm vitality [104]. Erles et  al. found a 
higher detection rate of AAV DNA (38%) in semen sam-
ples of patients with semen abnormalities compared to 
those with normal semen (4.6%), and AAV DNA was also 
detected in testicular tissue, suggesting that AAV may 
contribute to male infertility by interfering with sperm 
development [102]. Several other studies have confirmed 
the presence of AAV DNA in semen samples but have 
not found a significant correlation with fertility [48, 103].

Zika virus
Zika virus (ZIKV) is a virus species with positive-sense 
single-stranded RNA and belongs to the Flaviviridae 
family, first discovered in 1954 [229]. Infection can lead 
to symptoms such as rash, fever, arthritis, Guillain-Barré 
syndrome (GBS), myelitis, meningitis, and congenital 
microcephaly [230]. ZIKV can be transmitted through 
mosquito bites, blood transfusions, breastfeeding, verti-
cal transmission, and sexual contact [231, 232].

ZIKV was the first arthropod-borne virus detected in 
human semen [109]. Subsequent studies have confirmed 
the presence of ZIKV in semen [110, 232]. ZIKV RNA 
can persist in semen for more than six months in some 
infected males [111]. ZIKV infection can also cause local 
inflammation and tissue damage in the reproductive 
organs, resulting in symptoms such as hematospermia, 
ejaculatory pain, reduced sperm count, and abnormal 
secretion of reproductive hormones [112, 113]. ZIKV 
exhibits tropism for various cell types in the reproductive 
tract [233], and experimental studies have confirmed that 
ZIKV exhibits a preference for infecting cells within the 
testes, resulting in cell death and disruption of the semi-
niferous tubules, ultimately leading to severe testicular 
damage and infertility [234]. ZIKV infects testicular mac-
rophages, triggering the upregulation of various inflam-
matory factors. Within seminiferous tubules, sertoli cells 
express high levels of the Axl receptor, facilitating ZIKV 
entry and replication. This infection induces the overex-
pression of antigen presentation genes, pro-inflamma-
tory cytokines, and transcription factors, along with the 
release of inflammatory cytokines and chemokines. Inhi-
bin-B, crucial for follicle-stimulating hormone (FSH) reg-
ulation, is downregulated by ZIKV, while ZIKV increases 
vascular cell adhesion molecule-1 (VCAM-1) expression, 
aiding immune cell adhesion. ZIKV can infect various cell 
types within the tubules but has a lower impact on inter-
stitial cells. Testosterone production, primarily by inter-
stitial cells, is also disrupted by ZIKV, affecting endocrine 
function [235, 236]. Sexual transmission of Zika virus and 
persistence of the virus in male reproductive tract (MRT) 
are the biggest challenges to outbreak control, vaccine 
and antiviral drug development. DNA-based vaccination 
and/or ZIKV attenuated live vaccines have shown high 
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efficacy against ZIKV-induced MRT injury in animal tri-
als and may be an important tool for future prevention 
of ZIKV-induced male infertility [234]. Besides, the best 
way to prevent transmission is to abstain from sex or use 
protective measures against suspected infections [237].

Ebola virus
Ebola virus (EBOV) is a linear, non-segmented, single-
stranded negative-sense RNA virus belonging to the 
Filoviridae family. Over 17,000 people survived the 
2013–2016 Ebola virus disease outbreak in West Africa, 
which was the largest outbreak since the virus was first 
identified in 1976 [238]. This substantial number of sur-
vivors has enabled the implementation of several cross-
sectional and longitudinal studies, leading to a better 
understanding of the long-term clinical sequelae in sur-
vivors and the persistence of the Ebola virus in biologi-
cal fluids, particularly in semen [120, 121, 239].Studies 
have shown that the detection rate of EBOV RNA in the 
semen of Ebola survivors ranges from 8.1% to 9.8%, with 
viral shedding persisting for an extended period [240]. 
One cohort study found that viral RNA could remain in 
semen for up to 40 months [239]. Dyal et al. suggest that 
age, disease severity, and immune response may be risk 
factors for the prolonged presence of EBOV in semen 
[121]. Significant progress has been made in the treat-
ment and prevention of Ebola virus disease. Currently, 
many vaccines and specific drugs targeting EBOV have 
been approved and are in use. However, there are still 
many issues to be addressed in reducing mortality, pre-
venting viral escape, and improving safety [240].

Discussion
This study conducted a comprehensive and system-
atic analysis of the correlation between viral infections 
in male semen and infertility. It summarized 40 viruses 
found in human semen, with most viruses closely associ-
ated with male fertility. The main findings indicate that 
many viruses can be detected in semen, including those 
causing acute infections like ZIKV and EBOV, as well as 
those causing chronic infections like HPV and HIV. Some 
viruses, especially those showing strong tissue tropism 
for the male reproductive tract (such as SARS-CoV-2 and 
MuV), may spread through sexual transmission, which 
could be an important route of transmission. Viruses can 
potentially impact semen quality and fertility through 
various pathways, including direct infection of sperm 
or germ cells, disruption of testicular functions, induc-
tion of reproductive tract inflammation, and triggering 
immune responses.

Previous studies have investigated the impact of certain 
viral infections on male infertility. A meta-analysis indi-
cated that individuals infected with HPV had decreased 

sperm motility, increased abnormal sperm morphology 
and DNA fragmentation index (DFI) compared to the 
uninfected group [241]. In contrast, our study included 
all types of viruses associated with male infertility, con-
ducting a comprehensive analysis of the 40 viruses 
detected in semen, covering various virus families and 
potential transmission routes. This provided a compre-
hensive perspective on the relationship between male 
reproductive health and viral infections. We found the 
presence of some viruses, such as ZIKV and ZBOV, in 
the reproductive system of males and emphasized their 
potential impact on reproductive health, providing new 
directions for future research. In viral infections, changes 
in sperm and semen parameters can arise from (Fig. 1): 
(1) Genital tract inflammation: leukocyte infiltration and 
cytokine release. (2) Viral replication: viral replication 
in MGT cells alters their function and integrity, impact-
ing sperm quality through various means like disrupted 
endocrine function and sperm DNA damage. (3) Sys-
temic effects: acute infections raise testis temperature, 
hindering spermatogenesis. Chronic infections increase 
OS, harming sperm function. Altered hormone release 
from the pituitary reduces sperm counts by affecting 
testosterone and inhibin B secretion, crucial for sper-
matogenesis [11]. Among them, we found that OS is an 
important way to affect male fertility after virus infec-
tion. According to the literature, OS is responsible for 
80% of male infertility cases [242]. While small amounts 
of reactive oxygen species (ROS) play crucial roles in 
sperm capacitation, acrosome reaction, and hyperacti-
vation, excessive ROS production and OS can severely 
impair sperm structure and function. The sperm plasma 
membrane, which is rich in polyunsaturated fatty acids, 
is particularly susceptible to lipid peroxidation. Addi-
tionally, the sperm nuclear and mitochondrial epig-
enomes are vulnerable to elevated ROS levels, resulting 
in DNA damage through fragmentation, microdeletions, 
and mutations [243]. Consequently, OS induced by viral 
infections can degrade sperm quality, leading to reduced 
fertilization rates, poor embryo development, recurrent 
miscarriages, genetic mutations, and overall unfavorable 
outcomes in ART [242]. This highlights the importance 
of medical attention to these viruses and emphasizes the 
need for effective prevention and treatment strategies. 
Furthermore, protective measures can be developed, 
such as the use of antioxidants, to reduce the damage 
caused by oxidative stress in testicular tissues.

However, we must recognize that many viral infec-
tions in semen (such as HHV-6, JCPyV, and BKPyV, 
etc.) may remain asymptomatic or latent within the host 
and may not necessarily lead to impaired reproductive 
function. Conversely, some viruses (such as influenza 
viruses) may never be detected in the male reproductive 
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system [240] yet still cause apoptosis and decreased fer-
tility due to fever or direct DNA damage [244]. Influenza 
virus infection can alter sperm morphology, reducing 
sperm count, motility, and ability to penetrate the egg 
[245, 246]. In addition, many infectious diseases are not 
caused by a single factor but rather by mixed infections 
involving multiple viruses, virus-bacteria co-infections, 
virus-fungus co-infections, or even virus-fungus-bacteria 
co-infections [81, 247–250]. Studies have indicated that 
lower viral diversity in semen samples is significantly 
positively correlated with successful pregnancy rates 
[81]. The microbiota is also highly associated with viral 
infections (such as HIV and HPV) [251, 252] and disease 
states. Therefore, considering viruses as the sole basis 
for disease is not entirely accurate; attention should be 
paid to the complex interactions in the microenviron-
ment (including different pathogens, resident micro-
biota, and immune responses) and how they collectively 
affect reproductive function [253, 254]. Furthermore, the 
presence of viruses in semen may negatively impact the 
efficacy of ART [188, 241]. Viral infections in semen can 
also lead to congenital malformations and/or chronicity 

of viruses in fetuses [255–257]. Thus, even during natural 
conception, vertical transmission of viruses is a matter of 
concern [11].

Our study also has some limitations: it primarily relies 
on published literature and known data, which may over-
look some viral infections or case reports. Although we 
summarized the presence of viruses in semen and their 
potential effects, the lack of support from large-scale 
clinical studies necessitates more experiments and clini-
cal data to validate our findings.

Conclusion
Viral infections in males can potentially have detrimen-
tal effects on semen parameters and the efficacy of ART, 
serving as potential risk factors for male infertility. It is 
advisable for infertility patients, particularly those with 
abnormal semen parameters, to consider the potential 
impact of viral infections. Timely detection and treat-
ment of viral infections are expected to enhance semen 
parameters and improve the success rate of ART. These 
insights offer valuable guidance for refining treatment 
strategies for male infertility patients in the future.

Fig. 1 The mechanism of seminal parameter change caused by viral infections. A Genital tract inflammation: Leukocyte infiltration leads to fibrosis 
in testicular tissues; Cytokines released during inflammation trigger germ cell apoptosis and disrupt cell functions. B Viral replication: Leydig 
cells: viral replication affects leydig cells, altering hormone production; Sertoli cells: viral infections disrupt sertoli cells, affecting the nourishment 
and development of germ cells; Germ cells: direct viral damage to germ cells impacts sperm quality and DNA integrity; Macrophages: viral 
interactions with these immune cells induce local inflammatory responses; Others: other testicular cell types may also be affected by viral infections. 
C Systemic effect: Oxidative stress: chronic infections increase oxidative stress, harming sperm function; Perturbation of the hypothalamo-pituitary–
gonadal axis: viral infections disrupt this axis, altering hormone release and affecting testosterone and inhibin B secretion, crucial 
for spermatogenesis; Fever: acute infections induce fever, raising testis temperature and impairing spermatogenesis. These mechanisms collectively 
explain the multifaceted impact of viral infections on male fertility, demonstrating how local and systemic effects lead to significant changes 
in sperm and semen parameters



Page 13 of 19Guo et al. Virology Journal          (2024) 21:167  

Abbreviations
COVID-19  Coronavirus disease 2019
SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
HIV  Human immunodeficiency virus
ZIKV  Zika virus
EBOV  Ebola virus
CHIKV  Chikungunya virus
HPV  Human papillomavirus
HSV-1/2  Herpes simplex virus-1/2
VZV  Varicella zoster virus
EBV  Epstein-barr virus
CMV  Cytomegalovirus
HHV-6/7  Human herpesvirus-6/7
KSHV  Kaposi sarcoma-associated herpesvirus
HBV  Hepatitis B virus
HCV  Hepatitis C virus
HDV  Hepatitis D virus
HEV  Hepatitis E virus
HGV  Hepatitis G virus
JCPyV  JC polyomavirus
MCPyV  Merkel cell polyomavirus
MWPyV  MW polyomavirus
BKPyV  BK polyomavirus
SV40  Simian virus 40
MuV  Mumps virus
AAV  Adeno-associated virus
MPXV  Monkeypox virus
HTLV  Human T-lymphotropic virus
WNV  West-Nile virus
DENV  Dengue virus
CV  Coxsackie virus
MARV  Marburg virus
RVFV  Rift valley fever virus
Ad  Adenovirus
CHAPV  Chapare virus
TOSV  Toscana virus
LASV  Lassa virus
SFTSV  Severe fever with thrombocytopenia syndrome virus
NiV  Nipah virus
YFV  Yellow fever virus
PMS  Progressive motile sperm
MNS  Morphologically normal sperm
pML  Progressive multifocal leukoencephalopathy
LF  Lassa fever
SFTS  Severe fever with thrombocytopenia syndrome
ASAs  Antisperm antibodies
PAP  Prostatic acid phosphatase
SEM  Seminalplasmin
SP  Seminal plasma
iciHHV-6  Inherited chromosomally integrated HHV-6
KS  Kaposi’s sarcoma
BTB  Blood-testis barrier
PV  Polyomaviruses
AIDS  Acquired immunodeficiency syndrome
ACE2  Angiotensin-converting enzyme 2
TMPRSS2  Type II transmembrane serine protease
GBS  Guillain-barré syndrome
DFI  DNA fragmentation index
ART   Assisted reproductive therapies
FISH  Fluorescence in situ hybridization
ICSI  Intracytoplasmic sperm injection
IALu  Hyaluronidase
ESHRE  European Society of Human Reproduction and Embryology
OS  Oxidative stress
ROS  Reactive oxygen species
AQPs  Aquaporins
IL-6  Interleukin-6
TNF-α  Tumor necrosis factor-alpha
MCP-1  Monocyte chemoattractant protein-1

FSH  Follicle-stimulating hormone
VCAM-1  Vascular cell adhesion molecule-1
MRT  Male reproductive tract
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