Ng et al. Virology Journal (2024) 21:153

Virology Journal
https://doi.org/10.1186/512985-024-02423-w

RESEARCH  OpenAcess
®

Check for
updates

Genetic diversity of astroviruses detected
in wild aquatic birds in Hong Kong

Daisy Y. M. Ng'", Wanying Sun', Thomas H. C. Sit?, Christopher J. Brackman?, Anne C. N.Tse?, Christine H.T. Bui?,
Amy W.Y.Tang', Andrew N. C.Wong', Andrew T. L. Tsang', Joe C. T. Koo', Samuel M. S. Cheng', Malik Peiris'?,
Alex W. H. Chin' and Leo L. M. Poon'##"

Abstract

Wild waterfowl serve as a reservoir of some astroviruses. Fecal samples from wild waterfowl collected at Hong Kong's
Marshes were tested using pan-astrovirus reverse transcription-PCR. Positive samples underwent subsequent host
identification using DNA barcoding. Based on deduced partial sequences, noteworthy samples from three astrovirus
groups (mammalian, avian and unclassified astroviruses) were further analyzed by next-generation sequencing. One
sample of Avastrovirus 4 clade, MP22-196, had a nearly complete genome identified. The results of ORF2 phylogenetic
analysis and genetic distance analysis indicate that Avastrovirus 4 is classified as a distinct subclade within Avastrovirus.
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MP22-196 has typical astrovirus genome characteristics. The unique characteristics and potential differences of this
genome, compared to other avian astrovirus sequences, involve the identification of a modified sgRNA sequence
situated near the ORF2 start codon, which precedes the ORF1b stop codon. Additionally, the 3"UTR of MP22-196

is shorter than other avian astroviruses. This study expands our understanding of the Avastrovirus 4 clade.

Introduction

Astroviruses, belonging to the Astroviridae family,
are non-enveloped viruses with positive-sense single-
stranded RNA genomes [1]. It is known to infect a vari-
ety of hosts, including avian and mammalian species,
and causes asymptomatic to severe disease. Many lit-
eratures have documented that astroviruses are closely
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related to poultry diseases, affecting poultry produc-
tion and causing considerable economic losses. Disease
records associated with avian enteritis include runting-
stunting syndrome (RSS), poult enteritis complex or
syndrome (PEC/PES), and poult enteritis mortality syn-
drome (PEMS) [2-7]. Avian nephritis virus (ANV) is
associated with nephritis and growth inhibition in chicks
[8—10]. Astroviruses have also been found in ducks suf-
fering from viral hepatitis leading to acute death [11].
Chicken astrovirus, goose astrovirus, and duck astrovi-
rus can cause gout disease in poultry [12, 13]. However,
many astroviruses cause mild diseases or asymptomatic
infections, leading to widespread astrovirus circulation
in poultry. In mammals, mild symptoms are common.
Human astroviruses are common enteric viruses that
cause enteritis and diarrhea in neonates, immunocom-
promised individuals, and the elderly [1].

Astroviruses can stably circulate in the environment
or different hosts for a long time. The virus has been
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detected in more than 80 host species [14]. According to
the 2019 proposal of International Committee on Tax-
onomy of Viruses (ICTV), astroviruses can be divided
into two genera: Mamastrovirus and Avastrovirus. The
former comprises 19 recognized species, while the latter
consists of three recognized species, namely Avastrovirus
1-3 [15-17]. The genus Mamastrovirus is primarily asso-
ciated with mammals. Avian astroviruses belong to the
genus Avastrovirus and are the focus of this study. How-
ever, a novel mamastrovirus was identified in the Euro-
pean roller, a wild carnivorous bird in Hungary, in recent
years. This indicates the possibility of cross-species infec-
tion and cross-class astroviruses [18]. There are also
studies describing suspected avian astrovirus infection
in mammals [19, 20]. Cross-species transmission events
indicate that interactions between host species allow
astroviruses to evolve and potentially infect new hosts,
increasing zoonotic risk [16]. Regular monitoring of the
evolution and transmission rates of these viruses can help
expand the epidemiological information on astroviruses.
Moreover, based on analyses of partial and incomplete
virus sequences, the current understanding of astrovirus
diversity is likely underestimated.

Hong Kong is situated on the East Asian-Australasian
Flyway, one of the nine migratory bird routes worldwide.
During the non-breeding season (November to April),
numerous migratory birds, including endangered spe-
cies, gather in Hong Kong’s Mai Po wetland (22°29'56” N
114°02'45”E). This area serves as one of the important
feeding stations and resting points for these wild water-
fowl to spend the winter. Over a decade ago, our team
discovered astroviruses in wild bird fecal samples, reveal-
ing novel virus diversity [21]. This study aims to build
upon our previous research by using pan-astrovirus
reverse transcription-PCR to monitor and understand
the diversity and spread of astroviruses in migratory
birds. By employing current phylogenetic analysis and
metagenomic methods, we successfully elucidate Avas-
trovirus clade 4 (Avastrovirus 4) which was previously
unexplored. This study presents the first near-complete
genome of Avastrovirus 4, detected in migratory bird
fecal samples from the Mai Po Wetland, along with its
genomic characterization. These findings contribute to
a better understanding of the features and evolution of
these viruses.

Materials and methods

Sample collection and processing

Fecal swab samples were collected randomly from Mai
Po marshes in Hong Kong during the winters of 2018-
2019 (N=94) and 2020-2021 (N=94). Additional site
visits were organized from November 2022 to April
2023 and 1524 fecal samples were collected randomly.
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These samples were stored in individual vials with 2 ml
viral transport medium (VTM). The components of
the in-house prepared VIM included 25 g penicillin,
0.1 g ofloxacin, 0.2 g nystatin, 3.1 g polymycin B sulfate,
100 ml gentamycin, 2 g sulfamethoxazole, 0.4 g NaOH,
and 19 g Medium 199 mixed with 2000 ml deionized
water, which was then adjusted to pH 7.2. Viral enrich-
ment was performed before sample extraction. In brief,
100 pl of supernatant was topped up to 1000 pl with PBS
and filtered through a 0.22 um pore-size Milex-GP filter
to remove cells and debris. Two hundred pl filtrate was
treated with 2 ul RNase A for 15 min at room tempera-
ture prior to treating with a mixture of nucleases (4 pl
Turbo DNase, 30 pl 1 X Dnase buffer and 2 pl Benzonase)
for 45 min at 37 °C to digest unprotected nucleic acids.
Samples were immediately extracted using the NucliS-
ENS® easyMag® system according to the manufacturer’s
instructions.

Screening of astroviruses

RNA was screened for astroviruses using a pan-astrovi-
rus heminested reverse transcription-PCR assay target-
ing the RdRp gene [22]. cDNA was generated from RNA
using a PrimeScript" RT reagent Kit in a 10 pl reaction.
First-round PCR was performed using Ex Taq® DNA Pol-
ymerase Hot-Start Version. Nested PCR was performed
using TaKaRa Taq" DNA Polymerase Hot Start Ver-
sion. A 25 pl reaction mixture was prepared according
to the manufacturer’s instructions. The thermocycling
conditions for both PCR rounds were the same. Posi-
tive samples with a 422 bp amplicon were confirmed and
identified through Sanger sequencing.

Host identification

Positive samples were then subjected to previously
described DNA barcoding for virus host identification
[23]. This involved nested PCR using specific primers
for avian mitochondrial DNA. Ex Tag® DNA Polymer-
ase Hot-Start Version was used for the two-round PCR,
according to the manufacturer’s protocol. Confirmation
of a 670 bp amplicon was done by Sanger sequencing and
matching against the NCBI database for identification
using BLAST.

Phylogenetic and genomic analysis

The obtained sequences were aligned with astrovirus
sequences downloaded from the NCBI database using
MAFFT. The phylogenetic tree was built using IQ-TREE
v1.6.12 with the GTR+I+G model and bootstrap 1000
times [24—26]. Eighteen samples were subjected to meta-
transcriptome sequencing with the NovaSeq 6000 plat-
form (Illumina, paired-end 150 bp) by Novogene (HK)
Company Limited (Hong Kong, China). The workflow for
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constructing the meta-transcriptome sequencing library
began with removing rRNAs. The remaining RNAs were
then fragmented into approximately 250 to 300 bp frag-
ments. These fragments were reverse-transcribed into
double-stranded cDNAs using random primers, followed
by end repair (150 bp), A-tailing, and adapter ligation.
Subsequently, fragment size selection and PCR amplifica-
tion were performed to prepare the library for sequenc-
ing. The raw data were processed to remove adapters
and low-quality reads using fastp v 0.20.1 [27]. De novo
assembly was performed using Trinity v2.1.1 [28]. The
assembled contigs were examined employing Blastn and
Blastx [29], referencing the entire non-redundant pro-
tein (nr) and nucleotide (nt) databases, in addition to
the Astrovirus nt and nr databases acquired from NCBI
(https://www.ncbi.nlm.nih.gov/), to identify astrovirus-
associated contigs. The contigs were visualized and ana-
lyzed with Geneious Prime 2022.2.2 (https://www.genei
ous.com/). Genome polishing was performed using Pilon
and BEDTools [30, 31]. Amino acid pairwise distances
(p-dist) were calculated using MEGA 11 software [32].
OREF predictions were done using NCBI Open Reading
Frame Finder (https://www.ncbi.nlm.nih.gov/orffinder/).
Conserved domains were identified using NCBI Con-
served Domain Search (https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi). Transmembrane helices were
predicted using TMHMM v2.0 (https://services.healt
htech.dtu.dk/services/ TMHMM-2.0/). The location of
viral genome-linked protein (VPg) was predicted using
FoldIndex® (https://fold.proteopedia.org/cgi-bin/findex).
Nuclear localization signals (NLS) were identified using
NLStradamus (http://www.moseslab.csb.utoronto.ca/
NLStradamus/), and the coiled-coil region was checked
using Multicoil Scoring Form https://cb.csail. mit.edu/
cb/multicoil/cgi-bin/multicoil.cgi). Stem-loop II motifs
(s2m) were predicted using the RNAfold web server
(http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/
RNAfold.cgi).

Results

Detection of astroviruses in bird fecal samples

A total of 1,712 bird fecal samples collected during the
winters of 2018-2019, 2020-2021, and 2022-2023 in
the Mai Po Marshlands were tested. Astrovirus-positive
rates in the three periods were 8.5%, 12.8%, and 5.6%,
respectively (Table 1). During 2022-2023, the highest
positivity rate occurred in December. DNA barcod-
ing was used to identify the host species, with 91.6%
of the positive samples having the host species suc-
cessfully identified (Table 2). The main species identi-
fied included Mareca falcata, Anas acuta, Anas crecca,
and Spatula clypeata (Table 2). All identified bird spe-
cies are consistent with the "Mai Po Bird Species List"
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Table 1 Detection of astrovirus in wild bird samples in 2018-
2019, 2020-2021, and 2022-2023 in Mai Po

Year / Month for sample  Total No. of No. of AstV-positive
collection samples samples (% of total)
2018-2019 94 8(8.5)
2020-2021 94 12(12.8)
2022-2023 1524 86 (5.6)

November 2022 216 18(8.3)

December 2022 288 44 (15.3)

January 2023 288 3(1.0)

February 2023 300 7(23)

March 2023 288 10 (3.5)

April 2023 144 4(2.8)
Total 1712 106

in the World Wildlife Fund’s 2022 report [33]. Mareca
falcata is listed as near-threatened in global conserva-
tion status.

Phylogenetic analysis of partial astrovirus sequences

The partial RdRp sequences of our detected positive
samples (n=106) were used for comparison and phy-
logenetic analysis with previously known astrovirus
sequences obtained from GenBank (n=80, Table S1).
Phylogenetic analysis revealed that most astroviruses
(86 samples) detected in this experiment belonged to
the genus Avastrovirus, 8 samples belonged to the genus
Mamastrovirus, and 12 samples belonged to the unclas-
sified astroviruses (related to aquatic host species) (Fig-
ure S1). Three recognized species, Avastrovirus 1-3,
were identified following the ICTV 2019 classification
and nomenclature. Newer unclassified viral clades are
present in the phylogenetic analysis, such as Avastro-
virus 4 and 5 (PasAstV), as previously described [34].
Avastrovirus 4 is a novel clade that includes samples we
previously identified in 2009 and the samples from this
study [21]. The classification will be further explained
in the Discussion section.

Eighteen samples from genetically distinct clades,
including Avastrovirus 4, and those from mamastro-
virus and unclassified astroviruses, were selected for
metagenomic analysis (Table S2). One sample, MP22-196
(PP623814, Avastrovirus 4), returned a near-complete
genome sequence, while partial sequences of unclassified
astrovirus were found in two other samples, MP18-799
and MP22-114 (Table 3). For the remaining 15 sam-
ples, despite testing positive in the heminested RT-PCR
screening assay, they each had a poor RNA yield after
the initial nucleic acids extraction. No astrovirus-like
sequence was detected in these 15 studied samples.
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Table 2 Overview of host identification for AstV-Positive samples in 2018-2019, 2020-2021, and 2022-2023 in Mai Po

Avian (Order/Family) Common Name (Species) No. of AstV-positive No. of AstV-positive samples in different
samples (% of total)  year
2018-2019  2020-2021  2022-2023
Anseriformes/ Anatidae Falcated duck (Mareca falcata) 27 (25.5) 2 3 22
Northern pintail (Anas acuta) 21(19.8) 0 4 17
Common teal (Anas crecca) 12(11.3) 0 0 12
Northern shoveler (Spatula clypeata) 11(104) 2 2 7
Eurasian wigeon (Mareca penelope) 5(4.7) 0 0 5
Mallard (Anas platyrhynchos) 1(0.9) 0 1 0
Charadriiformes/ Scolopacidae Redshank (Tringa totanus) 5(4.7) 0 0 5
Charadriiformes/Recurvirostridae Pied avocet (Recurvirostra avosetta) 3(2.8) 0 0 3
Charadriiformes/ Charadriidae Pacific golden plover (Pluvialis fulva) 3(2.8) 0 0 3
Lesser sand plover (Charadrius mongolus) 1(0.9) 0 0 1
Grey plover (Pluvialis squatarola) 1(0.9) 0 0 1
Pelecaniformes/ Arteidae Grey heron (Ardea cinerea) 4(3.8) 1 0 3
Suliformes/ Phalacrocoracidae Great cormorant (Phalacrocorax carbo) 3(2.8) 1 2 0
Unidentified host 9(8.5) 2 0 7
Total 106 8 12 86
Table 3 Astrovirus sequences detected in MP18-799 and MP22-114
Clades Sample name Contig Read Result of BlastX
Length (bp)
Viruses Accession No Region nt (ORFs)
Avastrovirus 4 MP18-799 371 52 Bastrovirus-like virus NC_032426 374-744 (ORF1a)
Unclassified astroviruses MP22-114 471 44 Blencathra virus MT993595 4073-4547 with 3 gaps (ORF1b)
201 23 Blencathra virus MT993595 4563-4812 with 49 gaps (ORF1b)
150 20 Blencathra virus MT993595 4813-4964 with 2 gaps (ORF1b)

Genome characterization of Avastrovirus 4

We further extracted reference sequences (n=41) to
undergo phylogenetic analysis including Mamastrovirus
1-19 and Avastrovirus 1-5, along with MP22-196 (Fig. 1).
The phylogenetic results of the full genome (Fig. 1A),
ORF1a (Fig. 1B), or ORF2 (Fig. 1D) confirmed that MP22-
196 is a new genetic lineage closely related to Avastrovi-
rus and distinct from Mamastrovirus. Interestingly, in the
ORF1b phylogenetic tree (Fig. 1C), MP22-196 appears as
an independent branch outside the Avastrovirus genus.
The current astrovirus classification of ICTV is based on
the host and p-distance of the capsid region [35]. Pair-
wise comparisons between MP22-196 and these refer-
ence sequences were performed to calculate nucleotide
(nt) and amino acid (aa) identity and p-distance (Table 4).
For ORF1b, MP22-196 showed the highest nt identity
(67.72-93.08%) and aa identity (66.14—98.46%) with par-
tial clade 4 avastrovirus sequences previously detected in
Hong Kong and Sweden. By contrast, the nt identity and
aa identity of MP22-196 with avastroviruses from other
clades are much lower (<45%). The p-distance results

between MP22-196 and each Avastrovirus 1-5 clades
(0.697 to 0.722) were met with ICTV classification crite-
ria, which requires the average p-distances between sub-
clades to be within 0.576 to 0.742. However, MP22-196
had higher p-distances with Mamastrovirus and unclassi-
fied astroviruses, indicating its distance from these refer-
ence sequences.

The deduced near-complete genome of MP22-196 is
6566 nt long, with a mean sequence coverage of 2,469
times. The viral genome includes 5 and 3’ untranslated
regions (UTR) and consists of three open reading frames
(ORF), namely ORFla (2811 nt), ORF1b (1500 nt), and
ORF2 (2049 nt) (Fig. 2). ORF1la encodes non-structural pro-
teins (NSP) and includes transmembrane domains (TM)
(Fig. 3B), a serine protease (PRO), a VPg region (Fig. 3A),
an NLS, and a heptanucleotide ribosomal frameshift sig-
nal (A, AAAAAC) (Fig. 4A). A putative monopartite
NLS (K5, KKGKTKKGRGSRINAVRKALRRMK,,5) was
discovered. Although the conserved TEEEY amino acid
motif was not recognized, the VPg region has a TEEEY-like
residue (S,y9sEAEY). The common ribosomal frameshift
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Fig. 1 Phylogenetic analysis of MP22-196 and representative
astrovirus strains of each clade based on A full genome sequences,

B ORF1a, C ORF1b, and D ORF2 region using IQ-TREE by maximum
likelihood. The trees are rooted by the Mamastrovirus clade. The
branch values are bootstrap supports (%) with 1000 replicates

as statistical support. MP22-196 detected from this study are
highlighted in red color. Representative astrovirus references (n=41)
of different clades with GenBank accession numbers are shown.
According to the ICTV taxonomic classification, Mamastrovirus 1

to 19 are selected as references in the Mamastrovirus clade. The
Avastrovirus strains selected include one reference from Avastrovirus 1,
six references from Avastrovirus 2, four references from Avastrovirus 3,
and one reference from Avastrovirus 5. Two representative unclassified
Astrovirus references are also selected. It is worth noting that some
references have only partial sequences so they are not included

in some phylogenetic trees

heptamer signal of astrovirus was found at the 3’ end of
OREF1a, followed by the stop codon of ORFla and stem-loop
structure (Fig. 4A). ORF1b overlaps with ORFla and con-
tains the RNA polymerase coding motif (3317 to 4039 nt).
Its expression is mediated through -1 ribosome frameshift.
When the programmed ribosomal frameshift mechanism
occurs, the non-structural astrovirus protein is trans-
lated into two polyproteins, nspla (104 kDa) and nsplab
(159 kDa). The VPg region of ORFla and the RdRp motif
in ORF1b are responsible for replication and virus particle
production [36]. ORF2 encodes structural proteins, includ-
ing the capsid protein precursor, with conserved (4381 to
5487 nt) and variable domains. The conserved domain is
responsible for astrovirus capsidization and virus particle
formation [37, 38]. The variable domain is related to virus
tropism, neutralizing epitopes, and serotype differentiation
[12]. The conserved astrovirus promoter sequence motif
5-AUUUGGANGNGGNGGACCNAAN; AUG-3’
of the viral subgenomic RNA (sgRNA) could not be accu-
rately identified. However, a potential but modified sgRNA
sequence was found near the ORF2 start codon. It can be
aligned with other sequenced avian astroviruses. Interest-
ingly, the ORF?2 start codon is placed before the ORF1b stop
codon, which differs from other avastrovirus sequences
(Fig. 5). The deduced 5" and 3 UTR of MP22-196 are 15 nt
and 160 nt long, respectively, with a poly(A) tail. The 3’ UTR
contains a highly conserved s2m sequence (5-CCCGCG
GCCACCGCCGAGTAGGATCGAGGGTACAG-3) in the
Astroviridae family (Fig. 4B) [39].

Discussion

We previously detected novel astroviruses in wild birds
in 2010-2011 [21]. The current study applied a simi-
lar strategy to screen for astroviruses in wild bird fecal
samples collected from 2018-2023 at the same site. The
positive rate for DNA barcoding assay for host identifi-
cation in the current study fluctuated between 57 and
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Table 4 Estimates of percentage nucleotide and amino acid identity and genetic distances between MP22-196 and references

MP22-196
Percentage identity (%) p-distance
Clade Viruses Accession No Nt ORF1a(aa) ORF1b(aa) ORF2(aa) ORF2(aa)
Mamastrovirus Mamastrovirus 1 NC_030922 2943 12.58 NA? 11.65 0.804
Mamastrovirus 2 ON595830 2917 1151 36.58 14.43 0.762
Mamastrovirus 3 NC_025379 29.31 11.99 34.78 1539 0.744
Mamastrovirus 4 KY933398 2842 1140 36.07 13.92 0.757
Mamastrovirus 5 KR349491 2550  NA 41.58 14.54 0.764
Mamastrovirus 6 MF596153 2040  NA NA 13.62 0.796
Mamastrovirus 7 NC_043096 3288 NA 358 14.42 0.759
Mamastrovirus 8 GQ415660 2945 1167 37.69 15.89 0.724
Mamastrovirus 9 NC_013060 3044 1282 38.52 15.73 0.734
Mamastrovirus 10 NC_004579 29.13 13.08 36.19 15.69 0.734
Mamastrovirus 11 FJ890351 3130 NA 3393 16.69 0.732
Mamastrovirus 12 NC_043098 2388 NA 37.36 17.25 0.722
Mamastrovirus 13 NC_002469 29.72 1236 3548 16.48 0.719
Mamastrovirus 14 EUB47144 3025 NA 38.98 14.60 0.759
Mamastrovirus 15 NC_043100 3477 NA 39.59 1637 0.729
Mamastrovirus 16 EUB47145 3249  NA 3597 16.29 0.741
Mamastrovirus 17 NC_038368 2365 NA NA 14.99 0.737
Mamastrovirus 18 NC_043102 2976 1256 3561 14.16 0.742
Mamastrovirus 19 NC_043103 2628 NA 36.95 14.19 0.737
Astrovirus Er SZAL6 NC_027426 2819 1244 3576 13.50 0.771
Avastrovirus 1 Turkey astrovirus NC_002470 34.26 17.96 41.01 2047 0.702
Avastrovirus 2 Avastrovirus 2 MH453801 32.88 16.93 41.02 20.81 0.697°
Avian nephritis virus 2 MH028405 3114 1729 41.25 19.53 0.722
Avian nephritis virus MN732559 31.85 17.48 41.05 19.78 0.712
Chicken astrovirus NC_003790 3165 1722 40.63 20.87¢ 0.714
Feral pigeon astrovirus FR727146 3265 NA 4345 1847 0.712
Wood pigeon astrovirus FR727149 3209 NA 44.20 19.73 0.699
Avastrovirus 3 Chicken astrovirus JF414802 31.65 17.22 38.92 20.87 0.714
Duck astrovirus NC_012437 32.08 16.47 37.84 1837 0.707
Goose astrovirus NC_034567 3332 1757 39.73 19.12 0.714
Turkey astrovirus 2 NC_005790 3316 18.12 38.83 17.81 0.704
Avastrovirus 4 ° Avastrovirus 3 MPJ0552 JX985682 67.72 NA 66.14 NA NA
Avastrovirus 3 MPJ1332 JX985700 7634  NA 80.65 NA NA
Avastrovirus 3 MPJ1348 JX985704 776 NA 82.03 NA NA
Avastrovirus 3 MPJ1364 JX985709 93.08 NA 98.46 NA NA
Avastrovirus 3 MPJ1433 JX985714 72.85 NA 70.97 NA NA
Avastrovirus 3 MPJ1442 JX985715 7312 NA 70.97 NA NA
Avastrovirus 3 Sweden 701 KY320411 75 NA 824 NA NA
Avastrovirus 5 Passerine astrovirus 1 MKO096773 30.58 15.01 36.86 19.26 0.709
Unclassified astroviruses  Beihai astro-like virus NC_032439 2534 10.97 34.74 11.17 0.836
Wenling righteye flounders astrovirus ~ MG599899 2420 1124 28.06 11.76 0.765

2 No sequences available of specific ORF region in the public database
b Underlined values are the lowest and highest p-distance
€ Bolded value is the highest percentage identity (%) of each ORF region

d4The reference sequence identified as Avastrovirus 4 only has RdRp region (ORF1b)
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93% [23]. The results of this experiment have a high posi-
tive rate of 91.6%, which is similar to the results of oth-
ers [40, 41]. This allowed us to observe the evolution of
astroviruses in wild birds over the past decade and gain
insight into their complete genome sequencing through
metagenomics.

During the winter months (November to April), our
surveillance team collected samples from shallow waters
and mudflats in Mai Po. The positive rate for astrovirus
detection varied throughout the months, with Decem-
ber having the highest rate (15.3%) and the other months
showing lower rates (8.3% to 1%) (Table 1). Compared to
our 2010 survey, avian diversity with positive astrovirus

detection is higher during 2022-2023, indicating inter-
species transmission between populations and a high risk
of virus transmission among different wild birds [21].

We performed metagenomic sequencing on 18 samples
to understand viral communities and their functional
characteristics [42]. A near-complete astrovirus genome
from the Avastrovirus 4 clade was successfully obtained
in Sample MP22-196. To understand the characteristics
of the Avastrovirus 4 clade, we used the nearly complete
genome and different ORF regions to conduct phyloge-
netic analyses (Fig. 1). The results of these phylogenetic
trees were similar. Only the ORF1b region phylogenetic
tree suggests MP22-196 is an outlier of Avastroviruses.
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To further confirm that MP22-196 belongs to the Avas-
trovirus 4 branch and its relationship with each clade, we
calculated the aa identity of each ORF region with the
representative reference sequence and the p-distance of
its ORF2. The highest aa identity (66.14—98.46%) was pre-
sented at ORF1b of MP22-196 with Avastrovirus 4 refer-
ence sequences which prove it to be closely related to
this clade. Although ORF1b phylogenetic result suggests
MP22-196 is genetically distinct from other avastrovi-
ruses, it shares a relatively higher aa identity with Avas-
trovirus 1 (41.01%) and Avastrovirus 2 (40.63—44.20%).
According to the ICTV classification criteria, the aver-
age p-distance between clades should be 0.576 to 0.742,
while that within a clade should be 0.204 to 0.284 [35].
Average p-distances of MP22-196 with each Avastrovirus
clade (0.702-0.710) meet the criteria for distinguishing
between clades. The result also showed our sample dis-
tance from Mamastrovirus or unclassified astroviruses.
This supports that MP22-196 is closely related to the
Avastrovirus genus. Whole-gene sequencing of Avastro-
virus 4 has not been reported, and our results can pro-
vide valuable insights into its characteristics, evolution,
and transmission by wild waterfowl.

Mamastroviruses detected in avian hosts are rare.
While a prior study identified mammalian-like astrovi-
ruses in wild birds [18], our research further substanti-
ates the presence of mamastroviruses in avian hosts
through phylogenetic and barcoding analyses. The eight
mamastroviruses we examined exhibit close relation-
ships with porcine and dromedary astroviruses; however,
no relevant host genes from the Suidae and Camelidae
families were discovered in the metagenomic data. Our
bar-coding analysis also confirmed that these fecal sam-
ples were of avian origin (Figure S1). Our detection of
mamastroviruses in avian hosts raises potential concerns
regarding cross-species transmission. However, other
hypotheses, such as environmental contamination or
ingestion of food containing mamastroviruses by these
birds, cannot be excluded. Further investigation on this
topic is warranted.

Our phylogenetic analysis identified 5 distinct clades
of Avastrovirus (Figure S1). Avastrovirus 1, 2, and 3 are
closely related, followed by Avastrovirus 5. Avastrovirus
3 was the most prevalent in our wild waterfowl samples,
accounting for 58.5% of the positive samples. According
to the current ICTV virus classification, Avastrovirus 3
primarily infects ducks and turkeys, with reference gene
sequences being Duck astrovirus (NC_012437) and Tur-
key astrovirus 2 (NC_005790). Notably, Avastrovirus 4
detected by us is genetically distinct from Avastrovirus
3. In a previous investigation in 2010, we grouped Avas-
trovirus 4 as Avastrovirus 3 based on limited pre-existing
astrovirus sequences. But our latest phylogenetic analyses
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indicate that they are more distantly related. Therefore, it
is more appropriate to differentiate them into 2 different
genetic clades. Based on partial sequences, Fernadez-
Correa et al. also referred to this clade as Avastrovirus 4
[34]. Avastrovirus 4 exhibits a high degree of host speci-
ficity, as observed in a 2010 survey [21]. The main hosts
of this clade are from the Order of Anseriformes and the
Family of Amnatidae. The species include Anas acuta,
Anas crecca, Mareca falcata, and Spatula clypeata. There
is only one specimen from the Ardea cinerea, which
belongs to the Order of Pelecaniformes and Family of
Arteidae.

The virus genome of MP22-196 has three open reading
frames: ORFla and ORF1b, which encode non-structural
proteins involved in viral transcription and replication,
and ORF2, which encodes the capsid polyprotein neces-
sary for viral assembly [12, 36]. Several key features were
observed (Fig. 2). First, the ORF1la stop codon is located
after the highly conserved heptamer signal and before
the stem-loop structure, a typical characteristic of avian
astroviruses (Fig. 4A) [43, 44]. Ribosomal frameshift-
ing is induced by the above two cis-acting elements [45,
46]. Normally, when translating ORFla, the produc-
tion of nspla stops at the stop codon. When the ribo-
somal frameshift mechanism occurs, the -1 frameshift
at the overlap of ORFla and ORF1b will allow the viral
polymerase to translate into nsplab [45]. However, a
previous study indicated that this distinctive feature
affects the ability to induce frameshift in avian and sug-
gests they may use different strategies for translating
ORFlab compared to human astroviruses [2]. The num-
ber of resulting non-structural proteins is not yet fully
elucidated. Further studies are needed to elucidate the
translation mechanisms and encoded non-structural pro-
teins of this Avastrovirus 4 clade. Second, the putative
sgRNA sequence differs from other avian astrovirus in
that the ORF2 start codon is positioned before ORF1b.
The impact of this start codon positioning on the sgRNA
sequence remains to be determined. Previous research
has indicated that human astroviruses frequently display
a slight overlap between the ORF1b and ORF2 regions,
whereas it is rare in avian astroviruses [47, 48]. Third, the
3’ UTR of MP22-196 is shorter (160 nt) than other avian
astroviruses [2]. The impact of 3’ UTR shortening on
avian astroviruses remains unknown. However, a study in
human astrovirus pointed out that 3’ UTR deletion elimi-
nates viral protein expression [49]. Also, shortened 3’
UTR has fewer protein binding sites in the porcine astro-
virus 3 [50]. We didn’t conduct 5’ and 3’ RACE to ascer-
tain the ends of the viral genome. Through alignment
with other avastrovirus genomes, we estimate that our
deduced viral sequence misses the first 6 bases of viral
RNA. Deduction of the 5 end of the MP22-196 would
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require further experimental work (e.g. 5 RACE). In con-
trast, the deduced 3’ end ended with a short poly(A) tail,
indicating that it is an authentic 3’ end sequence. Fourth,
a highly conserved s2m element was found in the 3’ UTR,
which some literature indicates that it may affect viral
and host cellular proteins in RNA replication, though its
exact function is not fully understood [51].

This study reveals the first complete sequence of
Avastrovirus 4, along with its phylogenetic analy-
sis and genome organization. Avastrovirus 4 has been
detected in wild winter migratory birds in Hong Kong
since 2009. These birds likely act as reservoirs. Ongoing
surveillance of avian astroviruses in Hong Kong’s wild
birds can provide insights into their evolution, geo-
graphical distribution, and host relationships.
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