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Abstract 

Background  HIV-1 produces Tat, a crucial protein for transcription, viral replication, and CNS neurotoxicity. Tat 
interacts with TAR, enhancing HIV reverse transcription. Subtype C Tat variants (C31S, R57S, Q63E) are associated 
with reduced transactivation and neurovirulence compared to subtype B. However, their precise impact on Tat-TAR 
binding is unclear. This study investigates how these substitutions affect Tat-TAR interaction.

Methods  We utilized molecular modelling techniques, including MODELLER, to produce precise three-dimensional 
structures of HIV-1 Tat protein variants. We utilized Tat subtype B as the reference or wild type, and generated Tat 
variants to mirror those amino acid variants found in Tat subtype C. Subtype C-specific amino acid substitutions were 
selected based on their role in the neuropathogenesis of HIV-1. Subsequently, we conducted molecular docking 
of each Tat protein variant to TAR using HDOCK, followed by molecular dynamic simulations.

Results  Molecular docking results indicated that Tat subtype B (TatWt) showed the highest affinity for the TAR ele-
ment (-262.07), followed by TatC31S (-261.61), TatQ63E (-256.43), TatC31S/R57S/Q63E (-238.92), and TatR57S (-222.24). 
However, binding free energy analysis showed higher affinities for single variants TatQ63E (-349.2 ± 10.4 kcal/
mol) and TatR57S (-290.0 ± 9.6 kcal/mol) compared to TatWt (-247.9 ± 27.7 kcal/mol), while TatC31S and TatC31S/
R57SQ/63E showed lower values. Interactions over the protein trajectory were also higher for TatQ63E and TatR57S 
compared to TatWt, TatC31S, and TatC31S/R57SQ/63E, suggesting that modifying amino acids within the Arginine/
Glutamine-rich region notably affects TAR interaction. Single amino acid mutations TatR57S and TatQ63E had a signifi-
cant impact, while TatC31S had minimal effect. Introducing single amino acid variants from TatWt to a more repre-
sentative Tat subtype C (TatC31S/R57SQ/63E) resulted in lower predicted binding affinity, consistent with previous 
findings.

Conclusions  These identified amino acid positions likely contribute significantly to Tat-TAR interaction and the dif-
ferential pathogenesis and neuropathogenesis observed between subtype B and subtype C. Additional experimental 
investigations should prioritize exploring the influence of these amino acid signatures on TAR binding to gain a com-
prehensive understanding of their impact on viral transactivation, potentially identifying them as therapeutic targets.
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Introduction
HIV-1 is classified into types 1 and 2, with HIV-1 hav-
ing evolved from non-human primate immunodeficiency 
viruses of Central African chimpanzees [1] and HIV-2 
from West African sooty mangabeys [2]. As of 2021, an 
estimated 38.4 million cases of HIV were recorded world-
wide, with 650 000 deaths and 1.5 million new infections 
[3]. HIV is mostly prevalent in countries including South 
Africa, Portugal, Brazil, Mexico, Peru, Spain, Germany 
and the United States [4]. Sub-Saharan Africa is home to 
only 12% of the global population, yet accounts for 71% of 
the global burden of HIV infection [5]. HIV-1 is grouped 
into four groups: M, N, O and P. The group M is distrib-
uted worldwide, and it accounts for almost 99% of the 
global HIV-infections [6, 7].

The Group M viruses are further subdivided into nine 
subtypes A-D, F-H, J and K [8]. These subtypes, also 
known as clades, are linked geographically or epide-
miologically [9]. Two subtypes are of particular inter-
est, namely HIV-1 subtype B (HIV-1B) and subtype C 
(HIV-1C) as these subtypes are responsible for the high-
est prevalence of HIV-1 infection and HIV-associated 
neurocognitive disorders (HAND). Statistically, HIV-1C 
represents about 15 million of the world’s HIV infected 
population, while the second most prevalent HIV-1B 
accounts for over 3 million infected individuals [10]. 
HIV-1C is the most prevalent HIV strain and is the pre-
dominant subtype in India and Southern Africa [10]. 
HIV-1B is prevalent in almost all parts of Europe and the 
Americas, while a diverse variety of subtypes are found in 
West and Central Africa [11].

One way to observe diverse clinical outcomes among 
HIV-1 subtypes is through variations in individual pro-
teins [12] in particular, the HIV-1 viral Transactivator or 
transcription (Tat) protein. Genetic variation of HIV-1 
Tat exon 1 and full-length Tat differs according to sub-
types [13]. The rate of nucleotide substitution for Tat in 
HIV-1 subtypes B and C was 1 to 1.7 x 103 substitutions 
per site per year [14]. A mutation rate in the range of 
4.1 ± 1.7 x 103 per base per cell is regarded as extremely 
high for any biological entity [15]. This mutation rate 
mentioned by Cuevas et al refers to the HIV viral DNA 
mutation rate in general resulting from the host cystidine 
deaminases which induce mutations in the viral DNA as 
a defence mechanism. However, Tat variants may differ 
in their capacity to activate viral transcription once it 
becomes engaged in transactivation of the long terminal 
repeat (LTR) [16].

Tat is one of the first proteins produced during viral 
replication and plays an important role by transactiva-
tion of the promoter [17]. HIV-1 Tat triggers efficient 
RNA chain elongation by binding to the transactiva-
tion response (TAR) element forming an initial por-
tion of the HIV-1 transcript. The interaction of Tat with 
the TAR element is critical for enhancing the proces-
sivity of RNA polymerase II elongation complexes that 
initiate at the HIV-1 LTR transcriptional promoter 
[18] and vital for virus replication [19]. The Tat pro-
tein is subdivided into discrete segments (N-terminal, 
cysteine-rich, core, basic, glutamine-rich and C-ter-
minal domains) of which the basic domain (47–59) is 
essential for binding to TAR [20, 21]. It has been argued 
that Tat subtype C has a higher ordered structure and 
is less flexible compared to Tat subtype B [22], thus 
making the Tat-TAR complex of Tat subtype C much 
more stable than the complex with Tat subtype B, and 
increasing NF-kB activation, promoting higher transac-
tivation by Tat subtype C [23]. Further, a study has also 
demonstrated the inverse with a greater transactivation 
capacity for Tat subtype B [22]. Specific Tat amino acid 
substitutions between HIV subtypes have more specifi-
cally shown to influence Tat-TAR binding. In a recent 
review done by our group, we have highlighted that (1) 
both N-terminal and C-terminal amino acids outside 
the basic domain (47–59) may be important in increas-
ing Tat-TAR binding affinity, and (2) substitution of the 
amino acids Lysine and Arginine (47–59) resulted in 
a reduction in binding affinity to TAR observed in Tat 
subtype B [20]. This indicates the relevance of the spe-
cific amnio acids in the biological activity of Tat.

In addition to Tat being a multi-functional regula-
tory protein involved in transcriptional enhancement 
by binding TAR, Tat also plays a crucial role in causing 
neurotoxicity and dysfunction in the central nervous 
system (CNS) [24]. The HIV tat protein, together with 
glycoprotein (gp) 120 decrease glial and synaptic gluta-
mate uptake, stimulating the release of glutamate from 
nerve ending, phosphorylating glutamate receptors, 
thus potentiating the toxicity of neurotransmitters [24]. 
Furthermore, subtype variation has also been shown to 
influence Tat’s neurotoxicity. In vitro studies have found 
that Tat subtype B is more potent in neurotoxicity than 
Tat  subtype C when inducing neuronal death [25]. 
The observed variations are associated with specific 
Tat amino acid substitutions [26]. In subtype C, poly-
morphisms within the TAR binding domain including 
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serine substitutions at residue 31 and residue 57 and 
glutamate substitution at residue 63, can influence neu-
rotoxicity and neurocognitive outcome in PLWH [26]. 
The lesser neurotoxicity of Tat  subtype C compared 
to Tat subtype  B might be attributed to the mutation 
found at cysteine 31 which is vital in mediating per-
sistent excitation of N-methyl-D-aspartate receptor 
(NMDAR) [27]. The R57 signature in Tat subtype B is 
crucial for transactivation and the level of neuroinflam-
mation by Tat subtype B was significantly reduced by 
the R57S substitution which is present in Tat subtype 
C [28]. Furthermore, a Q63E mutation present in Tat 
subtype C was shown to contribute to higher transcrip-
tional activation in human CD4 T cells [29].

In a recent scoping review conducted by our group, we 
examined all studies investigating Tat-TAR interaction 
using various molecular techniques [20], including but 
not limited to surface plasmon resonance [30], electro-
mobility shift assay [31], gel electrophoresis and circu-
lar dichroism [32]. However, to date, only n = 23 studies 
have evaluated the influence of amino acid substitutions 
on Tat-TAR interaction, despite this being a fundamen-
tally important aspect potentially contributing to the 
observed differential pathogenesis between subtypes. 
Furthermore, a significant majority of these studies were 
conducted before the year 2000 (53%) [20]. To the best 
of our knowledge, only two computational studies have 
been conducted on this topic in 2017 and 2022, respec-
tively [33, 34]. Given the advancements in research tech-
niques, particularly in viral genome sequencing of HIV-1 
and molecular docking simulations, there is a pressing 
need for more recent investigations. Importantly, to date, 
no study, at either the in silico or molecular levels, has 
conducted a comparison of subtype-specific Tat varia-
tions and their impact on Tat-TAR binding.

In a previous study by our group, we compared Tat 
subtype B and subtype C binding to TAR. Our findings 
indicated that Tat subtype B exhibited a higher affinity 
for the TAR RNA element compared to Tat subtype C. 
This conclusion was based on several factors, including 
a higher docking score of -187.37, a higher binding free 
energy value of -9834.63 ± 216.17 kJ/mol, and a greater 
number of protein-nucleotide interactions (26 interac-
tions). Additionally, it was observed that Tat subtype B 
displayed more flexible regions when bound to the TAR 
element, which could potentially account for its stronger 
affinity to TAR [34]. However, it is important to note that 
the previous study only compared variations between Tat 
subtypes, without specifically examining the potential 
impact of individual amino acid substitutions. Further-
more, both our previous investigation [34] and another 
in silico study [33] utilized truncated versions of the 
Tat protein. However, it has been established that the 

full-length Tat protein holds greater biological relevance 
for understanding Tat function [35, 36].

Therefore, to further explore the initial findings, our 
objective was to investigate the impact of specific amino 
acid substitutions in the full length Tat (known to be 
involved in neuropathogenesis) on TAR binding. These 
substitutions include C31S, R57S, Q63E, and a combina-
tion of these three (C31S/R57S/Q63E). The main aim was 
to determine which of these substitutions would exert 
the most significant effect on TAR binding by using an in 
silico approach including molecular modelling, docking 
and simulation studies. We hypothesized that all inves-
tigated subtype C-specific amino acid substitutions may 
reduce the predicted binding affinity to TAR compared 
to the reference Tat subtype B-specific amino acids. Fur-
thermore, we anticipated that the most significant effects 
will be noted for amino acid substitutions within the Tat 
basic domain. By examining the influence of these spe-
cific amino acid substitutions on Tat-TAR binding, we 
hope to shed light on the potential impact of subtype-
specific amino acid variations on the dynamics of Tat-
TAR binding and contribute to a better understanding of 
HIV infection in diverse populations.

Materials and methods
Retrieval of Tat subtype B sequence and TAR RNA structure
The HIV-1 subtype B Tat wildtype (TatWt) protein 
sequence was obtained from the Universal Protein Data-
bases (Taxon ID: 11696) (https://​www.​unipr​ot.​org/) (Ver-
sion release 2023_04). The Tat subtype B (Isolate MN, 
P05905) was used as it contained the sequence variation 
which is related to the differential HIV-1 neuropatho-
genesis [26]. Tat interacts with various host factors that 
contribute to its binding affinity with TAR. In our study, 
we specifically focused on TAR as the major interacting 
partner to investigate how Tat variants lead to diverse 
levels of binding. The experimentally determined 3D 
structure of the TAR RNA was obtained by download-
ing the corresponding file from the Protein Data Bank 
(PDB ID: 1ANR). In this study, a specific region of TAR 
RNA spanning from nucleotides 17 to 45 was chosen for 
subsequent docking studies. This region was deemed suf-
ficient to assess Tat-TAR binding, consistent with meth-
odologies employed in prior computational studies [33, 
34]. This region includes the bulge region (+23 to +25) 
known to contain nucleotides that interact with the 
HIV-1 Tat protein [37].

Three‑dimensional protein structure prediction using 
MODELLER v10.4
MODELLER (v 10.4) is a free for academic use, stan-
dalone software tool widely used for the homology 
or comparative modelling of the three-dimensional 

https://www.uniprot.org/
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structures of protein molecules that allows for user input 
and modification [38]. This tool utilizes a set of stand-
ard Python libraries to process a user-provided protein 
sequence in the PIR format. The initial template search 
is performed by the ‘Proile.build()’ command which ini-
tializes a Python ‘environment’ for the particular mod-
elling build. This creates a MODELLER-built sequence 
database, and filters sequences less than 30 and greater 
than 4000 amino acids in length. The script then reads 
both the generated binary database and target sequence 
to perform an alignment for template identification with 
standard BLOSUM62 similarity matrix parameters. 
The target TatWt sequence was used to search the pro-
tein data bank profile database and only four templates 
(1JFW, 1K5K, 1TAC, 1TBC) were identified by execut-
ing the build_profile.py routine in MODELLER. All four 
templates were downloaded and selected for creating a 
multiple sequence alignment due to their high sequence 
identities: 1JFW at 91%, 1K5K at 72%, 1TAC at 65%, and 
1TBC at 75%, with all E-values equal to 0, indicating suit-
ability for modelling. Subsequently, the ’Alignment.com-
pare_structure()’ routine, which implements "malign3d" 
and is part of the compare.py script, was executed. This 
routine performs an iterative least-squares superposition 
of the four 3D structures, generating an alignment and 
dendrogram based on both sequence and structural simi-
larities, as depicted in Fig. 1.

The TatWt protein sequence was aligned with the 
template sequence 1JFW, because it showed the highest 
sequence similarity and lowest crystallographic resolu-
tion (1Å). This specific template encompasses 11 differ-
ent conformations, all the different conformations were 
considered in the model generation process as it gener-
ates an averaged conformation accounting for muti-con-
formational states of the structure. An alignment was 
created between the target sequence and the template 
sequence, and the resulting output file was passed to 
the MODELLER ’AutoModel’ class. This class was uti-
lized to generate a set of five potential 3D models, each 
with coordinates in the PDB format. These models were 

based on the alignment file and the 3D structures of the 
templates. Additionally, MODELLER calculates Discrete 
Optimized Protein Energy (DOPE) assessment scores 
and GA341 scores for the predicted protein models. The 
DOPE score is a pairwise atomistic statistical potential 
score that is used to distinguish favourable protein mod-
els from poorly predicted protein models [39]. Usually, 
protein models with lower DOPE score values are close 
to their native state [39]. GA341 scores is a fold assess-
ment score used to determine if the correct template was 
selected for model building and ranges between 0 (worst) 
to 1 (best) [40]. Following this, a DOPE assessment plot 
was generated to compare scores between the template 
and the selected model to determine any regions of high 
energy corresponding to unresolved loop regions. The 
final protein model with the lowest DOPE score and a 
GA341 value close to 1 was selected for further analysis.

Energy minimization
Input files were generated with CHARMM-GUI web 
servers [41, 42] with the predicted TatWt protein struc-
ture (section "Three-dimensional protein structure pre-
diction using MODELLER v10.4") undergoing energy 
minimization (EM), optimizing the arrangement of 
atoms within the three-dimensional structure to achieve 
the most energetically favourable state for the protein 
[43]. EM was performed using the CHARMM36M force 
field within the GROMACS package with 50,000 steps of 
steepest descents to eliminate any steric overlaps.

Predicted protein structure quality assessment
After energy minimization, the TatWt protein structure 
was submitted to the Structure Analysis and Verifica-
tion Server (SAVES v.6) web server, accessible at: https://​
saves.​mbi.​ucla.​edu. This web server offers a range of 
tools, including ERRAT, which is utilized to identify areas 
where errors resulted in random atom distributions; Veri-
fy3D, employed to analyse the compatibility of the atomic 
model (3D) with its amino acid sequence (1D); and PRO-
CHECK, which assesses the stereochemical quality of the 

Fig. 1  Clustering tree representing template structural similarity

https://saves.mbi.ucla.edu
https://saves.mbi.ucla.edu
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protein structure(s). Each tool has specific criteria for 
evaluation. A score of 50 and above for ERRAT is consid-
ered a pass, while a score of 50 and below is considered 
a failure. For Verify3D, a score above and close to 80% 
is deemed a pass, whereas scores below 70% are consid-
ered a less than optimal protein structure. PROCHECK 
analyses include the generation of a Ramachandran plot 
that calculates the distribution of torsion angles (φ and 
ψ) of C-alpha residues in a protein structure and if more 
than 90% of residues satisfy the dihedral angle distribu-
tion [44].

Lastly, the TatWt minimized protein model was passed 
to the ProSA webserver which compared 3D models to 
experimentally resolved structures based on the z-scores 
of the X-ray or crystallographic resolution techniques 
[45]. The z-score indicates overall model quality and 
measures the deviation of the total energy of the struc-
ture with respect to an energy distribution derived from 
random conformations. Z-scores outside a range char-
acteristic for native proteins indicate erroneous struc-
tures [45]. The 1JFW template was superimposed onto 
the predicted protein model using PyMOL (v2.5.5) align 
command. RMSD values lower than 1.5Å indicate a high 
structural similarity between a pair of structures suggest-
ing homology [46].

Structural quality assessment
We utilized Tat subtype B structure as the reference or 
wild type, and generated Tat variants to mirror those 
found in Tat subtype C. Therefore, once the TatWt model 
passed all quality checks, the variant positions were 
introduced into the Wt structure generating TatC31S, 
TatR57S, TatQ63E, and TatC31S/R57S/Q63E variant 
structures using the initial phase of the Automated Muta-
tion Introduction and Analysis (AMIA) pipeline. These 
amino acid variants are predominantly found in subtype 
C Tat, with prevalences of C31S = 82%, R57S = 74%, and 
Q63E = 80% in Brazilian subtype C cases [47]. These sub-
type C-specific mutations were selected for investigation 
based on their role in the neuropathogenesis of HIV-1 
[34]. This pipeline allows the user to automatically intro-
duce residue substitutions at specific positions within 
the static protein structure and subsequently automati-
cally analyses the trajectory statistics of the simulations 
of these systems, and the pipeline is accessible at: https://​
github.​com/​kbrow​n3687​524/​amia.​git. Subsequently, the 
TatWt and Tat variant structures were used in docking 
studies of the TAR element to the respective structures.

Molecular docking using HDOCK
Molecular docking is a method used to predict the 
binding affinity between protein-ligand, protein-DNA/
RNA and protein-protein/peptide complexes [48]. The 

HDOCK webserver (http://​hdock.​phys.​hust.​edu.​cn/) is 
a highly integrated suite of homology search, template-
based modelling, structure prediction, macromolecular 
docking, biological information incorporation and job 
management for robust and fast protein–protein dock-
ing. It distinguishes itself from similar docking servers 
in its ability to support amino acid sequences as input 
and a hybrid docking strategy in which experimental 
information about the protein-protein binding site and 
small-angle X-ray scattering can be incorporated during 
the docking and post-docking processes [49]. HDOCK is 
also beneficial to use as it supports protein–RNA/DNA 
docking with an intrinsic scoring function. The docking 
scores are calculated by knowledge-based iterative scor-
ing function ITScorePP or ITScorePR and a more nega-
tive docking score means a stronger association between 
the molecules. Roughly, when the confidence score is 
above 0.7, the two molecules would be very likely to bind; 
when the confidence score is between 0.5 and 0.7, the 
two molecules will possibly bind; when the confidence 
score is below 0.5, the two molecules would be unlikely 
to bind [49]. The 3D minimized structures of the respec-
tive Tat proteins and the TAR structure obtained from 
the Protein Data Bank were uploaded to the HDOCK 
server. The region of the Tat protein known as the basic 
region, comprising residues 48-58 [20, 50] and the bulge 
region of the TAR, spanning positions +23 to +25 [37], 
have been identified as the binding site for Tat-TAR inter-
action. These specific residues were selected as the active 
site residues to define the search space for the docking 
simulation.

Protein‑ RNA interaction analysis
Furthermore, we analysed the protein-RNA interaction. 
We used the Protein-Ligand Interaction Profiler (PLIP), 
an analytical tool designed to detect and visualize rel-
evant non-covalent protein-ligand interactions in 3D 
structures (https://​plip-​tool.​biotec.​tu-​dresd​en.​de/​plip-​
web/​plip/​index) [51]. It functions by detecting hydrogen 
bonds (H-bonds), hydrophobic contacts, π-stacking, 
π-cation interactions, salt bridges, water bridges, metal 
complexes and halogen bonds between ligands and  tar-
gets [52]. The cut off distance values considered in PLIP 
for interactions to occur between atoms were 4.1 Å 
for H-bonds, 4.0 Å for hydrophobic contacts, 5.5 Å for 
π-stacking, 6.0 Å for π-cation interactions, 5.5 Å for salt 
bridges, 4.1 Å for water bridges, 3.0 Å for metal com-
plexes, and 4.0 Å for halogen bonds.

Molecular dynamic (MD) simulation
Five systems were created, comprising the TatWt-TAR 
system (TatWt) and four variant systems with Tat sub-
type C variant residues introduced into Tat B structure 

https://github.com/kbrown3687524/amia.git
https://github.com/kbrown3687524/amia.git
http://hdock.phys.hust.edu.cn/
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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at positions C31S (TatC31S), R57S (TatR57S), Q63E 
(TatQ63E), and a multi-variant combination system of 
TatC C31S, R57S, and Q63E (TatC31S/R57S/Q63E). 
These systems were prepared using the CHARMM-GUI 
webserver [42, 53]. The webserver’s capabilities include 
generating base parameter files for various biologi-
cal system types with easy modification for integration 
with different force fields such as CHARMM, AMBER, 
GROMOS, OPLS, and simulation packages like NAMD, 
AMBER, and GROMACS [54]. Within the CHARMM-
GUI webserver interface, the Solution Builder simulator 
was chosen to generate the energy minimization, equi-
libration, and production parameter files, as there were 
no membrane, fibrous proteins, or lipid-like molecules 
present.

Each of the five systems were individually uploaded and 
solvated, with TIP3 water molecules in a cubic box ensur-
ing a minimum distance of 10 Å between the protein and 
the edges of the box. The TIP3 water model was selected 
for its accurate representation of a predictive aqueous 
environment [55]. The solvated systems were neutralized 
by introducing default potassium cations (K+) and chlo-
ride anions (Cl-) at a concentration of 0.15M, utilizing the 
Monte Carlo ion placing method [56, 57]. This method 
was chosen as K+ ions are plentiful within the cell cyto-
plasm and do not adversely affect biomolecules [58]. 
The systems were neutralized with specific ion counts: 
50 K+ and 34 Cl- ions for both the TatWt and TatC31S 
systems, 51 K+ and 34 Cl- ions for the TatQ63E system, 
68 K+ and 41 Cl- ions for the TatR57S system, and 53 K+ 
and 43Cl- ions for the TatC31S/R57S/Q63E system. The 
CHARMM36M force field was utilized to generate the 
topology and coordinate files, chosen for its enhanced 
accuracy in analysing proteins, peptides, and nucleic acid 
molecules [41]. Each system underwent 50,000 steps of 
steepest descents energy minimization (EM) to eliminate 
any steric overlaps. Additionally, all H-bonds were con-
strained using the LINCS constraints algorithm [59].

After the EM, the systems underwent a two-step equi-
libration phase, namely, NVT (isothermal-isochoric 
ensemble) and NPT (isothermal-isobaric ensemble). The 
NVT equilibration phase ensured that the number of 
particles, volume, and temperature of the systems were 
maintained by immobilizing the solutes while allow-
ing the solvent to move freely. The NPT equilibration 
phase ensured the constant maintenance of the num-
ber of particles, pressure, and temperature [60]. For the 
NVT equilibration, the systems were run for 100 pico-
seconds (ps) with a 2 femtosecond (fs) timestep, employ-
ing the V-rescale temperature-coupling method [60] 
with a constant coupling of 0.1 ps at 310 K to stabilize 
the temperature of the systems. In contrast, for the NPT 
equilibration, the systems were ran for 500 ps with a 2 fs 

timestep, utilizing the Parrinello-Rahman barostat [61] 
in tandem with the V-rescale thermostat under identical 
coupling parameters [34]. In both NVT and NPT, elec-
trostatic forces were calculated using the Particle Mesh 
Ewald method [62].

The production phase for the simulations of the five 
systems ran under conditions of no restraints for 500 
nanoseconds (ns) at an integration step of 0.002 ps [34] 
with the trajectory being recorded every 10ps. Trajec-
tory analyses were performed using the AMIA Pipeline, 
available at: https://​github.​com/​kbrow​n3687​524/​amia. 
These analyses included RMSD of the protein struc-
tures backbone atoms and TAR RNA nucleic acids, Root 
Mean Square Fluctuation (RMSF) of the protein residues, 
Radius of Gyration (Rg/Rgyr) of the protein backbone. 
Principal Component Analysis (PCA) of the protein 
backbone atoms, H-bonds as well as Ionic Interaction 
Analysis between the Tat and TAR element.

Molecular mechanics poisson‑boltzmann surface area 
(MMPBSA) calculations
The binding free energies of the TatWt and mutant 
systems (TatC31S, TatQ63E, TatR57S and TatC-
31SQ63ER57S-multi) with TAR were calculated for 1001 
frames over the last 100 ns of the trajectory using the 
gmx_MMPBSA tool v1.4.3 [63, 64]. The MMPBSA tool 
is an effective strategy employed for the calculation of 
binding free energy of several protein-ligand complexes 
[65–69]. The formula for calculating binding free energy 
is defined as ΔG = ΔH -TΔS, with ΔG being the change 
in binding energy and ΔH is the change in enthalpy while 
T is the temperature and ΔS is the change in entropy 
[65–69].

Results
3D Structure prediction and quality assessment
After predicting the 3D structure using MODELLER, 
the software calculates its own in-built quality measures 
of the protein model. Based on the DOPE and GA341 
scores provided by MODELLER, we selected the third 
model with a DOPE score of -5464.01 and a GA341 
score of 1 for subsequent Quality Assessment (QA) and 
docking analyses. This protein model represented the 
TatWt structure and therefore was subjected to QA via 
the SAVES platform. The ERRAT score (52.2), Verify3D 
(76.24%), and PROCHECK summary indicated that the 
model met the quality criteria. ProSA-web results indi-
cated that the model fell within the range of NMR struc-
tures with a z-score of -2.8. The RMSD was calculated by 
superimposing TatWt onto 1JFW, resulting in a value of 
0.95 Å, indicating a high correlation between the atomic 
placements in the two structures. All Tat proteins were 

https://github.com/kbrown3687524/amia
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largely disordered and presented with 1 alpha helix at 
amino acids 38-41 (Fig. 2A, E).

Molecular docking: HDOCK
The TatWt demonstrated the highest predicted binding 
affinity to TAR, with a score of -262.07 (Table  1). This 
was followed by TatC31S (-261.61), TatQ63E (-256.43), 
TatC31S/R57S/Q63E (-238.92) and TatR57S (-222.24) 
(Table  1). In comparison to TatWt, the TatR57S amino 
acid variant exhibited the most substantial percentage 
decrease (15%) in binding affinity to TAR. This was fol-
lowed by TatC31S/R57S/Q63E (8.8%), TatQ63E (2.2%), 
and TatC31S (0.2%). Using PLIP analysis, various types 
of interactions, including hydrogen bonds (H-bonds), 
salt bridges, and hydrophobic interactions, were identi-
fied between Tat and TAR. The number of interactions 
for the TatWt and Tat variants with TAR were similar, 
with TatC31S, TatWt and TatC31S/R57S/Q63E having 
16 total interactions while TatR57S and TatQ63E hav-
ing 15 and 14 interactions, respectively (Table 1). Given 
that H-bonds are significant contributors to intermo-
lecular energy between molecules, it is noteworthy that 
TatWt, TatC31S, and TatC31S/R57S/Q63E all exhib-
ited 13 hydrogen bond interactions. Following closely, 
TatQ63E demonstrated 10 hydrogen bonds, while R57S 
had the lowest number of hydrogen bond interactions of 
8, showing strong correlation with the predicted binding 

affinity values (Table 1). Importantly, all binding occurred 
within the same binding pocket for all variant structures, 
besides R57S (Fig. 3C).

MD simulations
To further assess the interactions between the Tat pro-
teins and TAR, we utilized AMIA pipeline to explore 
the flexibility, stability, and dynamic behaviour of the 
Tat-TAR interactions. The comparison of RMSD values 
across the trajectory offers an initial approach to investi-
gate the structural conformations of the protein systems 
during the simulation. Significant differences in means 
and standard deviations between the wild type (Wt) and 
mutant variant systems provide insights into whether the 
substituted amino acid(s) lead to a noteworthy devia-
tion from Wt dynamics or if the new residues cause 
the system to conform to Wt dynamics [70]. Analysing 
the backbone RMSD of the four Tat variant systems in 
comparison to the TatWt system revealed that TatC31S, 
TatR57S, TatQ63E, and TatC31S/R57S/Q63E (multi) 
exhibited larger mean deviation values of 1.24 ± 0.19 
nm, 1.39 ± 0.18 nm, 1.37 ± 0.12 nm, and 1.34 ± 0.18 nm, 
respectively, compared to the TatWt system value of 0.77 
± 0.13 nm (Fig. 4A). Analysing the TAR element RMSD 
of each mutant system in comparison to the TatWt 
revealed that the TAR element for TatR57S, TatQ63E, 
and TatC31S/R57S/Q63E (multi) possessed lower mean 

Fig. 2  A-E Cartoon representation of the 3D structures for the TatWt (A), TatC31S (B), TatR57S (C), TatQ63E (D) and TatC31S/R57S.Q63E (E). The 
alpha-helical structure is indicated in red. The N-terminal Met1 and C-terminal Asp101 are shown in yellow sticks and text. The Tat amino acid 
variants are indicated as blue sticks for each respective model
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deviation values of 0.52 ± 0.01 nm, 0.62 ± 0.05 nm, and 
0.60 ± 0.09 nm, respectively. In contrast, system TatC31S 
exhibited values of 0.77 ± 0.085 nm, similar to the TatWt 
values of 0.77 ± 0.13 nm (Fig. 4B).

The RMSF values for each residue were calculated 
during the equilibrated phase of the simulation (200 – 
500ns), representing the plateau region of the TatWt 
system [71]. The mean RMSF values for the TatC31S, 
TatR57S, and TatQ63E system protein residues were 
higher than the TatWt system each at 1.88 ± 0.67 nm, 
1.51 ± 0.37 nm, 1.54 ± 0.47 nm, and 1.41 ± 0.41 nm. Con-
versely, the mean RMSF values for TatC31S/R57S/Q63E 
(1.36 ± 0.37 nm) were lower than those for the TatWt 
system (Fig. 5). Notably, the C31S and the Q63E systems 
both had 2 regions of high flexibility that coincided with 
the location of the mutations.

The radius of gyration (Rg/Rgyr) defines compact-
ness of the protein structure by describing the weighted 
mean square distance of atoms from the centre of mass 
[72]. These values were calculated over the same time-
frame as the RMSF analysis (200 – 500ns). Variant sys-
tems TatC31S, TatR57S, and TatQ63E showed higher Rg 
values at 2.07 ± 0.09 nm, 1.63 ± 0.09 nm, and 1.63 ± 0.04 
nm, respectively, than the TatWt system at 1.51 ± 0.048 
nm. In contrast, TatC31S/R57S/Q63E (multi) conformed 

to similar values at 1.52 ± 0.13 nm (Fig. 6). After 450ns, 
the multi variant system jumped slightly, perhaps due 
to increased number of mutations in the system result-
ing in a decrease in the compactness of the structure and 
possibly unfolding of the protein structure similar to the 
RMSD backbone values seen in last part of the simula-
tion trajectory in Fig. 4A.

The primary motions characterizing each protein 
structure within their respective systems were explored 
employing Principal Component Analysis, a statis-
tical method for reducing data dimensionality [73]. 
This method was used to calculate which of the princi-
pal components (PCs) account for the largest amount 
variance in the dataset. Here we considered PC1 and 2 
known to account for the largest amount of variance in 
protein movement. The PC1 and PC2 variance were plot-
ted in 2D space for ease of visualization. The mutant sys-
tems TatC31S and TatR57S demonstrated significantly 
greater collective motion within the essential subspace, 
while TatQ63E exhibited a significant decrease, and the 
TatC31S/R57S/Q63E system showed a minor decrease 
in collective motions, in comparison to the TatWt sys-
tem. This is evident from the covariance matrix values 
after diagonalization, where for the TatWt system the 
value was 8.14 nm2, and for the mutant systems TatC31S, 

Fig. 3  A-E The top predicted binding poses for TatWt and respective Tat variants against TAR. A TatWt, (B) TatC31S, (C) TatR57S, (D) TatQ63E and (E) 
TatC31S/R57S/Q63E. The alpha-helical structure is indicated in red. The N-terminal Met1 and C-terminal Asp101 are shown in yellow sticks and text. 
The Tat amino acid variants are indicated blue sticks and text for each respective model. R57S was the only variant amino acid interacting with TAR 
(Red stick, C). Molecular docking was carried out with the basic region of Tat with the bulge region of TAR​
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TatR57S, TatQ63E, and TatC31S/R57S/Q63E, the values 
were 14.75 nm2, 13.8 nm2, 4.71 nm2, and 9.2 nm2, respec-
tively, as depicted in the PCA plot (Fig. 7).

The variations in hydrogen bonding between the pro-
tein and the respective ligand throughout a simulation 
contribute to the understanding of the specificity of the 

interaction [74] within the Tat-TAR complex. Introduc-
ing amino acid substitutions alters the potential number 
of hydrogen acceptors and donors, as well as the bonds 
(H-bonds) between the protein and the ligand. This 
may influence the binding stability and binding affinity 
of the ligand [75, 76]. From the analysis of the H-bonds 

Fig. 4  Comparison of Backbone RMSD Values for (A) Tat Variant and (B) TAR Systems. A depicts the RMSD plot showing the changes in Tat 
backbone atoms of the TatWt system (orange) and mutant systems TatC31S (red), TatR57S (blue), TatQ63E (purple), and TatC31S/Q63E/R57S 
(multi) (green) over the 500ns molecular dynamic simulation trajectory. All systems reported exhibited larger mean deviation values compared 
to the TatWt system value (orange). B shows the RMSD plot illustrating the changes in TAR backbone atoms of the TatWt system (orange) 
and mutant systems TatC31S (red), TatR57S (blue), TatQ63E (purple), and TatC31S/Q63E/R57S (multi) (green) over the 500ns molecular dynamic 
simulation trajectory. TatR57S (blue), TatQ63E (purple), and TatC31S/R57S/Q63E (multi) (green) exhibited lower mean deviation values compared 
to TatWt (orange) and TatC31S (red)

Fig. 5  RMSF Plot of Tat Protein Residues in Variant System. This figure illustrates the Root Mean Square Fluctuation (RMSF) plot showing 
the changes in Tat protein residues of chain A for the TatWt system (orange) and variant systems TatC31S (red), TatQ63E (purple), TatR57S (blue), 
and TatC31S/Q63E/R57S (multi) (green) over the equilibrated phase (200-500ns) of the molecular dynamic simulation trajectories. The mean RMSF 
values for TatC31S (red), TatR57S (blue), and TatQ63E (purple) were higher than those for the TatWt system (orange), whereas the mean RMSF 
values for TatC31S/R57S/Q63E (multi) (green) were lower than those for the TatWt system (orange). Regions with high flexibility for the mutations 
of interest are circled. Notably, the C31S and Q63E systems both exhibited two regions of high flexibility that coincided with the location 
of the mutations
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using the AMIA pipeline, the number of bonds dur-
ing the equilibrated region of the simulation noticeably 
increased in the Tat variants systems TatC31S, TatR57S 
and TatQ63E, except for TatC31S/R57S/Q63E, which 
showed similar values compared to the TatWt system. 
This is further supported by the mean and standard 
deviation values for TatWt of 7 ± 2 NHB with the corre-
sponding values of 10 ± 2 NHB for TatC31S, 11 ± 4 NHB 
for TatR57S, 13 ± 3 NHB for TatQ63E and 7 ± 2 NHB for 
TatC31SQ63ER57S (Fig. 8A).

Ionic interactions (II) arise directly from the dif-
ferences in charge between two groups of opposite 
charge. These interactions significantly contribute to 
the stability of the protein structure as well as the sta-
bility of the protein-ligand interaction [77]. The sub-
stitution of a positively or negatively charged residue 
within a specific local region of the protein conforma-
tion may directly impact the dynamics, not only within 
the Tat protein but potentially influencing the Tat-
TAR interactions as well [78]. The protein-self II (NII) 
for variant systems TatR57S and TatQ63E attained a 
higher mean and deviation values of 11 ± 4 NII and 12 
± 3 NII, respectively. Conversely, the C31S and TatC-
31SQ63ER57S system had lower mean values of 8 ± 2 
NII and 9 ± 3 respectively, in comparison to the TatWt 
value of 10 ± 4 NII (Fig. 8B).

The Protein-Nucleic Acid ionic interactions (NII) 
indicates that the TatWt system had a mean value of 16 
± 5 while the mutant system values were higher with 
TatC31S having 21 ± 5, TatR57S at 28 ± 8, TatQ63E at 
26 ± 5 whereas the TatC31SQ63ER57S was lower at 8 ± 
4 (Fig. 8C).

Analysing the binding free energy calculated using 
MMPBSA (Table  2), the TatQ63E followed by TatR57S 
showed the highest overall binding free energy (∆G 
TOTAL of -349.2 ± 10.4 kcal/mol and -290.0 ± 9.6 kcal/
mol) compared to the three variant systems tested. This 
was contributed by higher van der Waals energy -290.0 
± 9.6 kcal/mol and ESURF (-23.7 ± 1.4 kcal/mol) for 
TatQ63E while for Tat R57S the highest energy contrib-
utors were ELE (-757.5 ± 26.7 kcal/mol) and non-polar 
energies (-906.4 ± 27.8 kcal/mol). TatR57S mutant system 
also recorded the largest positive EGB (783.6 ± 29.3 kcal/
mol) and polar (761.4 ± 29.3 kcal/mol) energies com-
pared to all the systems tested. Furthermore, the TatC-
31SQ63ER57S-multi system showed the lowest binding 
free energy (∆G TOTAL of -235.4 ± 32.5 kcal/mol) due 
to lower EGB (582.8 ± 31.3 kcal/mol) and polar (566.5 ± 
29.3 kcal/mol) contribution energies. Compared to all the 
mutant systems, the TatWt recorded higher binding free 
energy compared to mutant systems TatC31S and the 
TatC31SQ63ER57S-multi system.

Discussion
In this study, we employed molecular modelling to pro-
duce a reliable 3D structure of TatWt that was used to 
generate Tat variant structures. Subsequent molecular 
docking and dynamic simulations studies were con-
ducted to investigate the potential impact of subtype 
C-specific amino acid substitutions on Tat-TAR bind-
ing. Several key findings surfaced in this study which are 
divided firstly into the molecular docking studies and 
secondly molecular dynamics simulation analysis. Dock-
ing studies unveiled that TatWt had the highest predicted 

Fig. 6  The change in Radius of gyration/Center of mass plotted for Tat backbone atoms of the TatWt system and mutant systems TatC31S, TatQ63E, 
TatR57S and TatC31SQ63ER57S (multi) over the equilibrated phase (200-500ns) of the molecular dynamic trajectories. Variant systems TatC31S, 
TatR57S, and TatQ63E showed higher Rg values compared to the TatWt system. In contrast, TatC31S/R57S/Q63E (multi) exhibited similar values
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Fig. 7  A plot of the first two Principal components (PC1 and PC2) (Å2) of the TatWt system (orange) and mutant systems TatC31S (red), TatQ63E 
(purple), TatR57S (blue) and TatC31SQ63ER57S (multi) (green) over the equilibrated phase (200-500ns) of the molecular dynamic simulation 
trajectories. The variant systems TatC31S (red) and TatR57S (blue) demonstrated significantly greater collective motion within the essential subspace, 
while TatQ63E (purple) exhibited a significant decrease, and the TatC31S/R57S/Q63E (multi) (green) system showed a minor decrease in collective 
motions, in comparison to the TatWt system (orange)

Fig. 8  A-C Change in the number and type of H-bond and ionic contacts formed between Tat-TAR. A Plot illustrating the change in Tat-TAR 
hydrogen bonds (NHB), (B) Tat-self ionic interactions (NII), and (C) Tat-TAR NII of the TatWt system (orange) and variant systems TatC31S (red), 
TatQ63E (purple), TatR57S (blue), and TatC31SQ63ER57S (multi) (green) over the equilibrated phase (200-500ns) of the molecular dynamic 
simulation trajectories. Figure 8A indicates that the Tat variant systems TatC31S (red), TatR57S (blue), and TatQ63E (purple), except for TatC31S/R57S/
Q63E (mulit) (green), showed similar values compared to the TatWt system (orange). In Figure 8B, NII for variant systems TatR57S (blue) and TatQ63E 
(purple) attained higher mean and deviation values, conversely, the C31S (red) and TatC31SQ63ER57S (mulit) (green) system had lower mean values, 
in comparison to the TatWt values (orange). Figure 8C indicates that the NII for the Tat variant system TatC31S (red) and TatQ63E (purple) values 
were higher whereas the TatC31SQ63ER57S (multi) (green) was lower compared to the TatWt system (orange)
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binding affinity for TAR among subtype C-specific Tat 
variant structures, while the introduction of single-
point subtype C-specific amino acid substitutions led to 
decreased binding affinity. Notably, TatR57S exhibited 
the most substantial reduction, attributed to fewer inter-
molecular interactions and increased structural flexibil-
ity, elucidating its lower predicted binding affinity relative 
to TatWt. However, the predicted binding free energy as 
reported by MD analysis indicated that the TatQ63E and 
TatR57S had the strongest affinity for the TAR element 
as compared to the TatWt. Furthermore, the TatWt had 
a slightly higher binding free energy for the TAR element 
compared to the TatC31S and the TatC31S/Q63E/R57S 
system.

First, our molecular docking analysis revealed that 
TatWt exhibited the highest predicted binding affinity for 
TAR, consistent with our previous computational study 
[34] and findings reported by other computational work 
[33]. The introduction of single-point amino acid sub-
stitutions resulted in a lower predicted binding affinity, 
with TatR57S showing the greatest reduction in binding 
compared to TatWt. This aligns with previous studies 
suggesting that amino acids within the range of 48-58 are 
within the TAR binding domain, and therefore funda-
mental for TAR interactions [79]. Considering that Argi-
nine is a much larger and positively charged amino acid 
than Serine (neutral), the alteration of this amino acid 
may influence the structure of Tat and the electrostatics 
within this region, and in so doing affect the interaction 
with TAR.

Interestingly, the introduction of only TatC31S resulted 
in the smallest decrease in predicted binding affinity 
compared to TatWt. This observation may be attributed 
to the fact that the C31S amino acid variant is situated 
outside the recognized active TAR-interacting residues 
[50]. This finding aligns with prior experimental studies 
wherein mutations within the Tat N-terminal domain 

(C34S and C37W) led to a minor decrease in TAR bind-
ing affinity [80]. This is in contrast with experimental 
studies indicating that mutations within the basic domain 
result in significant decreases in TAR binding [20, 50, 81]. 
Hence, this further supports the notion that amino acids 
outside the basic domain may not notably influence Tat-
TAR binding. The Tat Q63E amino acid variant is present 
in the N-terminal domain of the Tat protein within sub-
type C. Following the C31S amino acid variant, the Q63E 
amino acid variant displayed the second-lowest reduc-
tion in Tat-TAR binding affinity. Q63E is also situated 
outside the basic domain of the Tat protein, known for its 
interaction with TAR. Consequently, its impact on Tat-
TAR binding may be limited.

However, molecular docking primarily focuses on 
predicting the binding mode and affinity of ligands to a 
receptor at a single static conformation, while MD simu-
lations capture the dynamic behaviour and interactions 
of molecules over time. Therefore, to characterize the 
influence of single-point mutations on Tat-TAR bind-
ing, we employed MD analysis. All the MD parameters 
demonstrated that the TatWt protein was more stable 
compared to the mutant structures, however we postu-
late that reduced flexibility reduces surface contacts and 
affinity for the TAR element as seen with the interac-
tion results. Similarly, analysing the binding free energy 
results, the TatQ63E followed by TatR57S showed the 
highest overall binding free energy compared to the 
TatWt and to the other variant systems tested. This was 
contributed by higher van der Waals energy for TatQ63E 
while for Tat R57S the highest energy contributors were 
ELE and non-polar energies. The TatR57S mutant system 
also recorded the largest positive EGB, and polar ener-
gies compared to all the systems tested. Furthermore, 
the TatC31SQ63ER57S-multi system showed the lowest 
binding free energy due to lower EGB and polar contri-
bution energies. Compared to all the mutant systems, 

Table 2  MMPBSA analysis comparing TatWt and variant systems (TatC31S, TatQ63E, TatR57S and TatC31SQ63ER57S-multi), performed 
for 1001 frames for the last 100ns

Abbreviations: VDW Van Der Waals forces, ELE Electrostatic force of attraction, EGB polar contribution to solvation energy by GB/PB method, ESURF non-polar 
contribution to solvation energy using solvent accessible surface area (SASA)

Energy component Average (kcal/mol)

TatWt TatC31S TatQ63E TatR57S TatC31S/Q63E/R57S

∆G VDW -118.5 ± 12.5 -114.3 ± 15.1 -169.1 ± 13.4 -148.9 ± 12.3 -118.7 ± 20.3

∆G ELE -644.9 ± 24.0 -648.7 ± 19.8 -611.1 ± 20.2 -757.5 ± 26.7 -565.5 ± 27.9

∆G EGB 655.0 ± 24.6 660.4 ± 21.0 629.3 ± 22.5 783.6 ± 29.3 582.8 ± 31.3

∆G ESURF -15.6 ± 1.5 -16.1 ± 1.6 -23.7 ± 1.4 -22.2 ± 1.4 -16.3 ± 3.1

∆G non-polar -763.4 ± 28.3 -763.0 ± 20.7 -780.2 ± 20.2 -906.4 ± 27.8 -684.2 ± 41.8

∆G polar 639.5 ± 14.0 644.3 ± 21.1 605.6 ± 22.3 761.4 ± 29.3 566.5 ± 29.3

∆G TOTAL -247.9 ± 27.7 -237.4 ± 36.2 -349.2 ± 10.4 -290.0 ± 9.6 -235.4 ± 32.5
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the TatWt recorded slightly higher binding free energy 
compared to mutant systems TatC31S and the TatC-
31SQ63ER57S-multi system.

The binding free energies obtained from MD simula-
tions are in contrast with the results of molecular dock-
ing. While the molecular docking analysis reported 
the highest docking score for TatWt and the lowest 
for TatR57S, the MMPBSA calculations suggest that 
TatQ63E and R57S exhibit the highest predicted binding 
energies over time possibly due to the higher conforma-
tional flexibility of the binding site.

On a biological basis, the introduction of specific muta-
tions in functionally important positions of the Tat pro-
tein may significantly influence its predicted binding to 
TAR over time. In this context, we hypothesize that (1) 
single mutations at positions within the Arginine and 
Glutamine rich regions of the Tat proteins are crucial for 
TAR interaction and (2) multiple amino acids may func-
tion together as a network contributing to TAR bind-
ing. To our knowledge, this is the first study to evaluate 
single amino acid changes from Tat subtype B to amino 
acids of Tat subtype C. Previous investigations using 
single amino acid mutations introduced the amino acid 
Alanine using site-directed mutagenesis [20], which is a 
well-known amino acid used to maintain overall protein 
structure while evaluating the functional role of specific 
amino acids or amino acid positions. Therefore, creat-
ing subtype C-specific single mutations may significantly 
affect the structure of the Tat protein within fundamental 
domains over time, potentially explaining the disparate 
findings when comparing our molecular docking results 
to the MD analysis.

Thus, we posit that creating single point mutations at 
these positions in isolation may have significant effects 
on Tat-TAR interaction. Supporting this notion, among 
all Tat variants investigated, TatR57S consistently yielded 
higher RMSD, RMSF, Rgyr, and PCA statistical values 
compared to the TatWt system. This suggests that the 
introduction of R57S results in the Tat protein exhibit-
ing greater protein flexibility and conformational changes 
when interacting with TAR compared to Tat with R57 
(TatWt). In the R57S system, TAR was observed to 
exhibit greater stability compared to TAR in the TatWt 
system, indicating that R57S causes more conformational 
changes in the Tat structure but increased stability in the 
TAR structure. Similarly, Q63E showed higher values for 
RMSD, RMSF, Rgyr, and PCA, indicating increased flex-
ibility of the Tat protein during interaction with TAR. 
This collectively suggests that alteration of single amino 
acids at these specific positions may significantly alter the 
binding dynamics to TAR.

Additionally, within these regions of the Tat protein, 
other amino acids may collectively play a structural role 

together with our investigated variants in binding TAR. 
It is known that in addition to the amino acids we investi-
gated within the Arginine/Glutamine region, other amino 
acid variants are present in Tat subtype B compared to 
Tat subtype C. Therefore, multiple amino acids within 
these pockets/domains may contribute to the structural 
capacity in binding TAR, and thus, creating these single 
amino acid variants within this region of the Tat protein 
may have affected the structural capacity of surrounding 
amino acids, significantly influencing the interaction with 
TAR.

Further supporting the idea that positions 57 and 63 
are fundamental in TAR interaction, more negligible 
effects were noted for TatC31S, another single intro-
duced amino acid mutation. However, the effects in 
terms of binding via both molecular docking and MD 
analysis were negligible. This suggests that amino acids 
outside of the Arginine-Glutamine regions may not play 
as significant a role in TAR interaction. Furthermore, the 
C31S amino acid variant also induced greater Tat flexibil-
ity and conformational changes in the Tat protein when 
interacting with TAR, as compared to TatWt. However, 
in the R57S system, the TAR structure exhibits increased 
stability and thus, improved binding, while in the C31S 
system, decreased stability is observed in the TAR struc-
ture, resulting in decreased binding. Consequently, both 
the Tat and TAR systems display decreased stability, 
potentially explaining the limited impact of C31S amino 
acid variation on Tat-TAR binding. This suggests that 
C31S may not play a significant role in Tat-TAR binding 
and subsequently viral transactivation and transcription. 
Instead, it may function in other mechanisms related to 
the development of HIV-1 neuropathogenesis. Specifi-
cally, the discyteine motif in Tat (C30C31) is notably seen 
as a chemokine chemoattractant of infected cells into the 
CNS [82], subsequently leading to increased neuroin-
flammation [83] and neuronal damage [84].

Furthermore, we observed a consistent trend in both 
molecular docking and binding free energies for TatWt, 
representing Tat subtype B, and Tat C31S/R57S/Q63E, 
which more closely resembles subtype C. Collectively, 
our findings suggest that the closer the Tat resembles 
subtype C, the lower the predicted binding affinity of 
TAR and more stable the dynamics of the protein in com-
parison to Tat subtype B. This is in line with previous 
investigations both on a computational [34] and experi-
mental level that report that Tat subtype C has a lower 
affinity for TAR and subsequently a lower level of trans-
activation [22]. In a previous computational study done 
by our group, we compared Tat-TAR binding between 
Tat subtype B and C [34]. However, we were not clear 
which of these previously identified neuropathogenic Tat 
amino acids may have the biggest influence on Tat-TAR 
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binding. Therefore, the MD simulations from this study 
provided crucial insights into the direct contributions of 
each amino acid substitution to TAR binding between 
the Tat subtype B and subtype C.

The findings presented in this paper offer valuable 
insights into the potential differences in binding of TAR 
element to different Tat subtype C introduced vari-
ant structures and may have possible functional roles in 
neuropathogenic outcomes between Tat subtype B and 
C infections. By identifying subtype-specific sequence 
variations in Tat-TAR binding and their impact on down-
stream effects, our study opens up avenues for further 
investigation. In particular, previous studies have shown 
that when comparing the function of Tat subtype variants 
(e.g., Tat subtype B vs. Tat subtype C) on underlying neu-
ropathogenic mechanisms, a greater level of neurotoxic-
ity has been observed for Tat subtype B. Certain studies 
reasoned that Tat subtype B induces higher levels of neu-
roinflammation and neurotoxic products compared to 
subtype C, thereby resulting in a greater degree of neu-
ronal damage. However, it remains unclear whether viral 
transactivation (Tat-TAR interaction) and subsequent 
replication kinetics influence this, as this aspect has not 
yet been investigated.

We believe that the findings presented hold clinical sig-
nificance. Firstly, we offer insights into the pivotal amino 
acids involved in TAR interaction, which constitutes the 
initial step in viral transcription efficiency. Consequently, 
this knowledge could serve as a starting point for devel-
oping inhibitors to disrupt Tat-TAR interactions, thereby 
impeding viral transcription and reducing viral replica-
tion rates. Secondly, we shed light on potential factors 
contributing to differential clinical outcomes observed 
among individuals infected with various virus subtypes. 
This disparity may be attributed to variations in Tat-TAR 
interaction and, consequently, viral fitness. Thus, our 
findings have the potential to inform the development 
of precision medicine strategies tailored to individual 
virus subtypes, optimizing treatment efficacy. The issue 
of subtype-specific treatment regimens has been under 
investigation for many years [85, 86]. Increasingly, recent 
evidence suggests that HIV-1 research and treatment 
strategies should not adopt a one-size-fits-all approach 
[87, 88]. Instead, variations in subtypes should be con-
sidered in understanding (neuro)pathogenesis and devis-
ing treatment strategies. Consistent with our findings, 
we propose that beyond the association of drug resist-
ance with specific subtypes [89], there is a crucial need 
to comprehend the functional properties of HIV-1 in 
(neuro)pathogenesis when comparing different subtypes.

The question regarding subtype specific treatment reg-
imens has been a topic of investigation for many years, 
more and more recent evidence suggest that HIV-1 

research and HIV-1 treatment strategies should not have 
a one size fit all approach and indeed subtype variation 
should eb considered in understanding (neuro)pathogen-
esis and treatment strategies [86]. In line with our find-
ings, we proosed that beyond fact that subtype variation 
have is associated drug resistance in particular subtypes, 
there is also a need to understanding the functional prop-
erties of HIV-1 may in the (neuro)pathogenesis when 
comparing subtypes.

To the best of our knowledge, no study has yet provided 
molecular validation regarding which HIV-1 subtype 
may have a higher binding affinity for TAR [20]. Previ-
ous investigations in this area have primarily focused 
on introducing mutations, typically alanine substitu-
tions, to disrupt specific wild-type amino acid side chains 
and evaluate their impact on TAR binding. In contrast, 
our study specifically examined the influence of subtype 
C-specific amino acid variations on TAR binding. Future 
research should employ molecular techniques to experi-
mentally validate the role of subtype-specific sequence 
variations in Tat-TAR binding and elucidate their poten-
tial implications for pathogenesis and neuropathogenesis. 
By doing so, we can gain a deeper understanding of the 
molecular mechanisms underlying the differential out-
comes observed in different HIV-1 subtypes and pave the 
way for the development of targeted interventions.

Limitations
The results of this study do support the findings from 
previous literature, however there are some limitations to 
the study. Firstly, molecular modelling can result in the 
generated protein model having the incorrect side chain 
placement, potentially affecting protein-protein interac-
tions. However, this issue can be mitigated using addi-
tional side chain optimization tools. Furthermore, not 
considering the protomeric state of the protein structures 
during modelling could result in incorrect surface resi-
due placement for interaction calculations.

Secondly, the findings from the molecular docking 
study should be interpreted in light of relevant limita-
tions. The lack of biological information and homologous 
template protein structure complexes to guide the dock-
ing process may be a confounding factor in accurately 
predicting interactions between the TAT and TAR ele-
ments. Further, the type of docking tool used may influ-
ence the results. In this study, we utilized HDOCK, an 
ab  initio docking program [49]. When using an alterna-
tive docking tool, HADDOCK, we noted differences in 
the predicted binding score (Supplementary file). This 
may be due to the fact that HADDOCK uses data-driven 
approaches that integrate information derived from bio-
chemical, biophysical, or bioinformatics methods to 
enhance sampling, scoring, or both [90]. According to 
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the official evaluation by CAPRI, the HDOCK protocol 
emerged as the top docking server for predicting the 
structure of multimeric proteins in the CASP13-CAPRI 
experiment [4]. Further, we selected HDOCK for this 
study because it was utilized in our primary in silico 
study to perform a direct comparison to our previous 
results [34]. This current study served as a follow-up 
to our original analysis, enabling a clearer comparison 
of our findings since both studies used the same dock-
ing tools. Despite the differences, a common trend was 
observed with both tools: the R57S mutation resulted in 
the lowest predicted binding affinity. This further sup-
ports that this particular amino acid position is funda-
mental in TAR binding.

Furthermore, the inclusion of binding free energies to 
include solvation and accounting for complex conforma-
tional entropy might in part address these limitations by 
estimating accurate binding free energies between the 
Tat protein and TAR element. The MMPBSA is widely 
applied as an efficient and reliable free energy simulation 
method to model molecular recognition, such as for the 
protein-ligand binding interactions [91], as done in this 
study. The MMPBSA also analyses energy contributions 
by free energy decomposition, giving more informa-
tion into the energetics of the system being investigated. 
Finally, despite the computational efficiency and low 
cost of MMPBSA used in this study, MMPBSA does not 
include conformational entropy and do not consider the 
free energy and number of water molecules in the bind-
ing site. This can be ameliorated with the use of alchemi-
cal free energy permutation methods in future studies 
although being computationally expensive they do pro-
vide very accurate binding free energies by considering 
different intermediate states of the protein complex and 
free ligand.

Conclusion
In this study, we employed homology modelling to gen-
erate an accurate 3D structure of the Tat protein using 
multi-conformational states of the template struc-
ture and utilized molecular docking and MD analysis 
to investigate the influence of Tat subtype C-specific 
mutations on Tat-TAR interaction. Docking studies 
revealed that TatWt exhibited the highest predicted 
binding affinity for TAR among subtype C-specific 
Tat variant structures. However, the introduction of 
single-point subtype C-specific amino acid substitu-
tions R57S, Q63E, C31S resulted in decreased binding 
affinity. Notably, TatR57S variant structure showed the 
weakest binding affinity to Tat based on docking score, 
supported by fewer intermolecular interactions. How-
ever, the predicted binding free energy predictions as 
reported by MD analysis indicated that TatQ63E and 

TatR57S had the greatest predicted binding affinity for 
the TAR element compared to TatWt. Interestingly, this 
coincided with increased flexibility of Tat Q63E and 
R57S protein that increased TAR binding and the num-
ber of interactions. The difference in molecular dock-
ing and simulation results should be interpreted with 
caution until additional validation is performed. We 
do, however, hypothesize that the Arginine/Glutamine 
basic domain (residues 48-58, and 60 -72) that contain 
R57S and Q63E is fundamental for TAR interaction, 
and there is the potential for several amino acids within 
these domains/regions to function collectively in main-
taining Tat structure for binding TAR. The findings of 
this study carry clinical significance, as these specific 
amino acids and their positions could serve as poten-
tial target sites for the design of site-specific Tat-TAR 
inhibitors based on the variant profile of Tat subtype. 
Additionally, we offer insights into potential reasons for 
lower viral fitness when comparing different subtypes, 
which may ultimately enhance our understanding of 
the differential clinical outcomes observed among indi-
viduals infected with these subtypes.

To further understand the outcomes of this study, 
future experimental studies involving binding assays and 
transcriptional assays should be conducted. We there-
fore provide insight into By investigating the influence 
of subtype-specific sequence variations, we can gain 
deeper insights into the molecular mechanisms underly-
ing the neurological effects of different HIV-1 subtypes in 
PLWH.
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