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Abstract
Purpose The purpose of this study was to investigate immunological variations between a group that received the 
hepatitis B vaccine and a non-vaccine group. We focused on a cohort that achieved HBsAg seroclearance after Peg-
IFNα treatment of CHB.

Methods We enrolled twenty-eight individuals who achieved HBsAg seroclearance after Peg-IFNα treatment. They 
were divided into two groups: a vaccine group (n = 14) and a non-vaccine group (n = 14). We assessed lymphocyte 
subpopulations, B cell- and T cell-surface costimulatory/inhibitory factors, cytokines and immunoglobulin levels were 
detected at different time points to explore immune-function differences between both groups.

Results The seroconversion rate in the vaccine group at 24 weeks post-vaccination was 100%, which was 
significantly higher (p = 0.006) than that of the non-vaccine group (50%). Additionally, more individuals in the vaccine 
group exhibited anti-HBs levels exceeding 100 IUs/L and 300 IUs/L compared to the non-vaccine group (p < 0.05). 
The vaccine group demonstrated significantly increase total B cells and class-switched B cells at 24 weeks and plasma 
cells, CD80+B cells, Tfh cells, and ICOS+Tfh cell at 12 weeks, compared with baseline levels (p < 0.05). Conversely, Bregs 
(CD24+CD27+ and CD24+CD38high) decreased significantly at 24 weeks (p < 0.05). None of the above changes were 
statistically significance in the non-vaccine group (p > 0.05). Total IgG increased significantly in the vaccine group, and 
IL-2, IL-5, and IL-6 concentrations increased significantly at week 24 (p < 0.05). Differences in various types of cytokines 
and immunoglobulins in the plasma of the non-vaccine group were not significant (p > 0.05). Anti-HBs titers positively 
correlated with Th1/Th2 cells at 24 weeks (r = 0.448 and 0.458, respectively, p = 0.022 and 0.019, respectively), and 
negatively with CD24+CD38highBreg cells (r = -0.402, p = 0.042).

Conclusions After achieving HBsAg seroclearance through Peg-IFNα treatment for CHB, administering the 
hepatitis B vaccine significantly increased anti-HBs-seroconversion rates and antibody levels. We also observed 
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Background
Hepatitis B virus (HBV) infection is a major cause of cir-
rhosis and hepatocellular carcinoma (HCC), posing a 
serious global public health problem [1]. Previous find-
ings showed that hepatitis B surface antigen (HBsAg) 
seroclearance resulted in improved liver histology and a 
reduced incidence of HCC [2, 3]. Consequently, HBsAg 
seroclearance is considered a functional cure for chronic 
hepatitis B (CHB) infection with a desirable therapeu-
tic endpoint and is recommended by guidelines for 
CHB prevention and treatment [4, 5]. In recent years, 
an increasing number of studies focusing on maintain-
ing the HBsAg-seroclearance status after treatment have 
revealed that hepatitis B surface antibodies (anti-HBs) 
seroconversion and high antibody levels are correlate 
strongly with lower HBsAg-recurrence rates [6–8]. To 
mitigate HBsAg recurrence, researchers have adminis-
tered hepatitis B vaccines to elevate anti-HBs levels in 
CHB patients with HBsAg seroclearance. For instance, 
in a study including 11 patients who achieved HBsAg 
seroclearance after receiving a single dose of hepatitis B 
vaccine, the anti-HBs seroconversion rate at the 9-month 
follow-up was 81.8% [9]. In another prospective study 
with 33 individuals who experienced recurrence after 
HBsAg seroclearance and who were re-treated with 
pegylated-interferon α (Peg-IFNα), all 18 patients who 
received hepatitis B vaccination were positive for anti-
HBs, with only 26.7% of the 15 patients who did not 
receive hepatitis B vaccination developed antibodies [10]. 
These findings underscore the effectiveness of hepatits 
B vaccination in increasing anti-HBs levels among indi-
viduals with HBsAg seroclearance. However, the impact 
of hepatits B vaccination on immune functions remains 
less explored. Therefor, we investigated whether hepatitis 
B vaccination affects immune functions in CHB patients 
and assessed correlations between immune functions 
changes and anti-HBs production in a population that 
achieved HBsAg seroclearance following Peg-IFNα 
treatment.

Methods
Study population and design
The study population consisted of patients with CHB 
infection who visited Beijing Youan Hospital, Capital 
Medical University between November, 2018 and Feb-
ruary, 2023 and achieved HBsAg seroclearance after 
Peg-IFNα treatment. The enrolled patients with HBsAg 

seroclearance met the following criteria: HBsAg < 0.05 
IUs/mL, anti-HBs < 10 IUs/L, HBeAg-negative, HBV 
DNA below the lower limit of detection, and normal ala-
nine transaminase (ALT) levels. These patients received 
Peg-IFNα consolidation therapy for 24 weeks after 
HBsAg seroclearance. The patients were divided into vac-
cinated and non-vaccinated groups according to whether 
they received hepatitis B vaccination after HBsAg sero-
clearance. All 14 patients in the vaccinated group were 
vaccinated with 20  µg of hepatitis B vaccine every 4 
weeks for a total of six injections during the Peg-IFNα 
consolidation-therapy period, and none of the 14 patients 
in the non-vaccinated group received hepatitis B vaccina-
tion during consolidation therapy. Peripheral blood spec-
imens were collected for clinical laboratory testing and 
immunological testing at the time of HBsAg seroclear-
ance (baseline or 0 week), at 12 weeks, and 24 weeks in 
the vaccinated group, and at baseline and 24 weeks in the 
non-vaccinated group. Relevant adverse reactions were 
recorded in detail during the follow-up treatment period. 
This study was approved by the Ethics Committee of Bei-
jing Youan Hospital (approval number [2018]050), and all 
patients provided written informed consent.

Blood sample processing
Peripheral venous blood samples were transferred to 
ethylenediaminetetraacetic acid tubes (DB) and pro-
cessed within 24 h. Briefly, the tube contents were placed 
in Ficoll–Paque density-gradient centrifuge tubes (GE 
Healthcare) and centrifuged at 2000  rpm for 10  min. 
Pasteur pipettes were used to transfer serum and periph-
eral blood mononuclear cells (PBMCs) to cryovials and 
stored at -80 °C for later use.

Laboratory tests and methods
We detected HBV serological markers using the Elec-
sys-2010 system (Roche, Mannheim, Germany) with a 
lower limit of detection of 0.05 IU/mL for HBsAg and 2 
IUs/L for anti-HBs. HBeAg ≥ 1 and anti-HBs ≥ 10 IUs/L 
were used as cut-offs for positive results. HBV DNA was 
measured using the COBAS TaqMan fluorescent quanti-
tative polymerase chain reaction system (Roche) with a 
lower limit of detection of 20 IU/mL. Liver-function tests 
were performed using an OLYMPUS-AU5400 biochemi-
cal analyzer (Shinjuku, Japan), with a normal range of 
9–40 U/L for ALT.

significant immunological differences between the vaccine and non-vaccine groups. Specifically, the vaccine group 
exhibited significant increases in B cells, plasma cells, and Tfh cells, while Breg levels was significantly lower. These 
immunological changes are likely conducive to the production of anti-HBs antibodies. However, in the non-vaccine 
group, the observed changes were not significantlly significant.
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Fig. 1 (See legend on next page.)
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Mass cytometry
Thawed PBMC were transferred to a 37  °C centrifuge 
tube containing RPMI-1640 medium and resuspended 
in phosphate buffered saline (PBS). PBMCs were washed 
with PBS on ice, stained with cisplatin (195-Pt, Fluidigm, 
USA), and cell viabilities were assessed. Purified antibod-
ies were purchased from BioLegend and then conjugated 
with metals using the Maxpar® X8 Multimetal Labeling 
kit (Fluidigm) according to the manufacturer’s protocol. 
The list of antibodies and reporter isotopes are described 
in detail in Supplementary Table 1. Next, PBMCs were 
stained with cell-surface antibodies, and intracellular 
staining was performed using the Intercalator-Ir reagent 
(Fluidigm). Finally, the specimens were resuspended in 
deionized water containing 10% EQ Four Element beads 
(Fluidigm). A Helios mass cytometer (Fluidigm) was used 
for data acquisition.

Cytokine and immunoglobulin (ig) detection with Luminex 
kits
Cytokine and Ig in plasma were analyzed by performing 
Luminex bead-based MILLIPLEX assays. MILLIPLEX 
panel kits were used to measure interleukin (IL)-2, IL-4, 
IL-5, IL-6, IL-10, IL-12, IL-17, IL-22, IFN-γ, tumor necro-
sis factor (TNF)-β, IgA, IgG1, IgG2, IgG3, IgG4, and 
IgM levels. We used the xPONENT software to read and 
quantify the data, which was generated using the Flex-
MAP3D (Luminex) platform.

Statistical analysis
Each mass cytometry sample was manually gated and 
exported from Cytobank. Mass cytometry results were 
analyzed using the FlowJo software. The gating strategy 
for the B cell and CD4+T cell subsets is shown in Fig. 1. 
Cytokine-expression levels were expressed as the per-
centage of positive cells to the total number of cells for 
each cell type. Data and image processing were per-
formed using R and GraphPad Prism software. The 
independent samples t-test or paired t-test was used 
to compare groups with normally distributed mea-
surements, and the Wilcoxon test was used compare 
groups with skewed measurements. Linear relationships 
between measurements were analyzed using Spearman’s 
correlation coefficient. A p-value of < 0.05 was consid-
ered to indicate a statistically significant difference.

Results
Patient demographics
In this study, there were two groups: the vaccinated group 
and the non-vaccinated group. Each group consisted of 
14 individuals. Among these participants, there were 16 
males and 12 females. The average age of all participants 
was 36.46 ± 10.55 years. At the beginning of the study 
(baseline), there were no significant differences between 
the two groups in terms of sex ratio, age, liver funcion, or 
cytokine levels (Table 1 and Supplementary Table 2).

Comparison of antibody levels between the vaccinated 
and non-vaccinated groups
The anti-HBs-seropositivity rate at 24 weeks after vac-
cination was 100% in the vaccinated group, which was 
significantly higher than the 50% rate observed in the 
non-vaccinated group (Table  1). The anti-HBs lev-
els were significantly higher at both 12 and 24 weeks in 
the vaccinated group than at the baseline (p-values of 
0.006 and 0.001, respectively; Fig.  2A). In the non-vac-
cinated group, we observed increases, decreases, and 
non-significant changes in anti-HBs levels at 24 weeks 
when compared with baseline levels (Fig.  2A). Paired 
comparisons indicated no overall statistically signifi-
cant differences (p > 0.05). With respect to anti-HBs lev-
els between groups, the median 24-week anti-HBs level 
was significantly higher in the vaccinated group than in 
the non-vaccinated group (409.3 IUs/L vs. 8.97 IUs/L, 
respectively, p = 0.007). The proportions of individu-
als in the vaccinated group with anti-HBs levels of ≥ 100 
IUs/L and ≥ 300 IUs/L were 64.3% and 57.1%, respec-
tively, which were significantly higher than those in the 
non-vaccinated group (21.4% and 14.3%, respectively) 
(all p-values < 0.05; Table 1). Beyond common interferon-
associated adverse reactions, the vaccinated group only 
exhibited slight redness, swelling, and pain at the vac-
cine-injection site, with no obvious abnormalities in the 
remaining patients.

Changes in B cell subsets and surface-marker expression 
levels in the vaccinated group
The proportion of total B cells was significantly higher 
in the vaccinated group at 24 weeks than at baseline 
(p = 0.002; Fig.  3A). The change in class-switched mem-
ory B cells was consistent with the overall change in 
B cells, which were significantly elevated from base-
line at 24 weeks (all p-values < 0.05; Fig.  3A). The 

(See figure on previous page.)
Fig. 1 The gating strategy of B cells and CD4+T cells populations. CD19+cells were gated. Plasma cells were determined as CD19+ CD20− CD38+ CD27+ 
cells. Class switch B cells (CSB: CD19+ IgD− CD27+), Non class switch B cell (NCSB: CD19+ IgD+ CD27+), Double negative B cell (DNB: CD19+ IgD− CD27−), 
Naive B cell (NB: CD19+ IgD+ CD27−) subsets were gated based on gated B cells. Two subsets of regulatory B cells (Breg) cells were determined as CD19+ 
CD24+ CD38high and CD19+ CD24+ CD27+ cells. Then CD3+ CD4+ cells were gated. Follicular helper T cells (Tfh cells) were determined as CD3+CD4+ 
CXCR5+PD-1high cells. Th1, Th2 and Th17 cells were identified as CXCR6−CXCR3+ (Th1), CXCR6−CXCR3− (Th2) and CXCR6+CXCR3− (Th17) within CD3+CD4+ 
group. CD80, CD86 and CD40 were gated based on gated CD19+cells. CD28 and CTLA4 were gated based on gated CD3+ CD4+ cells. ICOS and IL-21 were 
gated based on gated Tfh cells
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proportion of plasma cells also tended to be signifi-
cantly higher and peaked at 12 weeks (p = 0.035; Fig. 3A). 
However, CD24+CD38high regulatory B (Breg) and 
CD24+CD27+Breg cells were significantly lower at 24 
weeks than at baseline (all p-values < 0.05; Fig. 3A).

With respect to surface co-stimulatory molecule 
expression in B cell subsets, the proportions of CD80+B, 
CD86+B, and CD40+B cells all tended to increase 
(Fig.  4A). However, only the increase in CD80+B cells 
from the baseline to week 12 was statistically significant 
(p = 0.018; Fig. 4A).

Changes in CD4+T cell subsets and surface-marker 
expression in the vaccinated group
The proportions of total CD4+T cells and Th1 cells 
tended to increase from baseline to 12 weeks, but the 
difference was not statistically significant (all p-val-
ues > 0.05; Fig. 3B). The proportions of Th2 cells and Th17 
cells were significantly higher than baseline at 12 and 24 
weeks (all p-values < 0.05; Fig. 3B). The proportion of fol-
licular helper T cell (Tfh) cells was significantly higher at 
24 weeks than at baseline (p = 0.007; Fig. 3B).

Regarding surface co-stimulatory molecule expression 
in CD4+T cell subsets, the proportions of CD28+CD4+T, 
ICOS+Tfh, and IL-21+Tfh cells all increased from base-
line to 12 weeks, but only the difference in ICOS+Tfh 
cells was statistically significant (p = 0.001; Fig.  4B). 
CTLA4+CD4+T cells tended to decrease and were sig-
nificantly lower than baseline at both 12 and 24 weeks 
(p-values of 0.008 and 0.018, respectively; Fig. 4B).

Changes in cell-subset proportions and surface-marker 
expression in the non-vaccinated group
Among the changes that occurred in different cell sub-
sets in the non-vaccinated group from baseline to 24 

weeks, the proportions of total B, memory B, plasma, 
CD4+T, and Tfh cells all tended to increase, but only 
the difference in memory B cells was statistically sig-
nificant (p < 0.05; Fig.  2B). With respect to the expres-
sion of cell-surface co-stimulatory/inhibitory molecules, 
the proportions of CD40+B, CD80+B, CD28+CD4+T, 
CTLA4+CD4+T, ICOS+Tfh, and IL-21+Tfh cells tended 
to increase at 24 weeks, but these differences were not 
statistically significant from those at the baseline (all 
p-values > 0.05; Fig. 2B).

Changes in plasma cytokines and immunoglobulins
Changes in the plasma levels of cytokines such as IFN-γ 
and IL-2 were determined at different time points in both 
groups. In the vaccinated group, IL-2, IL-5, and IL-6 lev-
els were significantly higher at 24 weeks than at baseline 
(all p-values < 0.05; Fig. 5A). The changes in the remain-
ing cytokines were not significant (all p-values > 0.05; 
Supplementary Fig.  1). In the non-vaccinated group, no 
significant changes were observed in these cytokines at 
24 weeks compared to baseline levels (all p-values > 0.05; 
Supplementary Fig. 2).

With respect to changes in plasma Ig, total IgG tended 
to be significantly higher than baseline at both 12 and 
24 weeks in the vaccinated group (p-values of 0.016 
and 0.004, respectively; Fig.  5A). In the non-vaccinated 
group, IgG levels did not differ significantly at 24 weeks 
compared to that at baseline (all p-values > 0.05; Supple-
mentary Fig. 2).

Correlations between anti-HBs and cell-subset proportions
We analyzed correlations between anti-HBs and the rela-
tive proportions of cell subsets in all 28 patients. The 
anti-HBs titer at 24 weeks correlated positively with 
the proportions of plasma, Th1, Th2, and Tfh cells in 
the peripheral blood (Fig.  5B). The correlation between 
Th1 and Th2 cells was statistically significant (r-values 
of 0.488 and 0.458, respectively; p-values of 0.022 and 
0.019, respectively; Fig. 5B). The anti-HBs titer exhibited 
a significant negative correlation with the proportion of 
CD24+CD38highBreg cells (r = -0.402, p = 0.042).

Discussion
With the optimization of hepatitis B antiviral-treatment 
strategies, the number of patients achieving HBsAg sero-
clearance has increased [11, 12]. In turn, reducing HBsAg 
recurrence has become a major clinical issue of concern. 
Several clinical studies have consistently demonstrated 
that anti-HBs seroconversion and high antibody levels 
are strongly associated with HBsAg recurrence sero-
clearance [6, 8, 13]. In a prospective study involving 238 
patients who achieved HBsAg seroclearance following 
Peg-IFNα treatment with a median follow-up period of 
160 weeks, we observed a cumulative HBsAg recurrence 

Table 1 Comparison of baseline data and 24-week anti-HBs 
levels

Vaccine 
group
(n = 14)

Non-vaccine 
group
(n = 14)

p value

Sex,
 Male, n (%)
 Female, n (%)

8 (57.1%)
6 (41.9%)

8 (57.1%)
6 (41.9%)

1

Age, years
 Range

35.64 ± 7.49
26–51

37.29 ± 13.19
27–55

0.688

ALT at baseline (U/L) 19.64 ± 5.94 16.64 ± 5.31 0.171
Anti-HBs positive conversion 
(≥ 10 IU/L) rate at week 24

100% (14) 50% (7) 0.006

Median of Anti-HBs 
at week 24, IU/L

409.3 8.97 0.007

Proportion of anti-HBs 
≥ 100 IU/L at week 24, % (n)

64.3% (9) 21.4% (3) 0.022

Proportion of anti-HBs 
≥ 300 IU/L at week 24, % (n)

57.1% (8) 14.3% (2) 0.018

ALT; alanine aminotransferase
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rate of 9.66% was reported. The recurrence rate was sig-
nificantly lower for those with ≥ 100 IUs anti-HBs/L than 
for those with < 100 IUs anti-HBs/L (4.3% vs. 21.1%, 
p < 0.001) [7]. A meta-analysis of 43,924 patients further 
showed that anti-HBs seroconversion was a protective 
factor against recurrence after HBsAg seroclearance 
[14]. Additionally, the incidence of HCC was much lower 
in patients who achieved HBsAg seroclearance than in 
those who did not (RR = 0.41, p < 0.001). Recent findings 
also suggest that hepatitis B vaccination may increase 
anti-HBs levels and thereby help reduce the recurrence 
rate [9, 10, 15]. The results of a recent retrospective study 
suggested that hepatitis B vaccination can significantly 

increase anti-HBs-positive conversion and antibody lev-
els. Vaccination emerged as the major influencing factor 
enabling anti-HBs levels to reach 100 IUs/L (OR = 4.396, 
p < 0.001) [16]. Furthermore, Jiang et al. found that 
individuals who achieving HBsAg seroclearance after 
IFNα-based therapy had significantly different HBsAg-
recurrence rates based on their vaccination status: 7.7% 
in vaccinated individuals with ≥ 100 IUs anti-HBs/L, 
58.5% in vaccinated with < 100 IUs anti-HBs/L, and 
31.9% in unvaccinated individuals (p < 0.05 in each case) 
[15]. Despite the increasing number of patients achieving 
HBsAg seroclearance due to optimized hepatits B antivi-
ral-treatment strategies, there is limited literature on the 

Fig. 2 Changes of anti-HBs levels within groups and cell subsets in non-vaccine group. Comparison of anti-HBs levels at different time points in Vaccine 
group and non-vaccine group (A). Changes in proportion of cell subsets and the expression of surface cytokines in non-vaccine group (B). The statistical 
analysis of changes in anti-HBs was determined by Wilcoxon matched-pairs signed-rank test. The statistical analysis of changes in cell subsets was deter-
mined by independent sample t-test. *p < 0.05; **p < 0.005; ***p < 0.001
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immune function changes following hepatitis B vaccina-
tion in these patients. To address this gap, we formed a 
cohort of patients who achieved HBsAg seroclearance 
after Peg-IFNα treatment. We then categorized them 
based on whether they received hepatitis B vaccination 

after HBsAg seroclearance, and investigated the changes 
in their antibody levels and immune functions.

First, we analyzed differences in antibody production 
between the groups with or without hepatitis B vacci-
nation. In terms of intra-group comparisons, Anti-HBs 

Fig. 4 Changes of expression of surface cytokines in vaccine group. Changes in expression of CD80, CD86 and CD40 on surface of B cells in vaccine group 
at different time points (A). Changes in expression of CD40 and CTLA4 on surface of CD4+T cells, ICOS and IL-2 on surface of Tfh cells in vaccine group at 
different time points (B). The statistical analysis was determined by paired sample t-test

 

Fig. 3 Changes of B cell and CD4+T cell subsets proportion of surface cytokines in vaccine group. Changes in the proportion of B cells, class switch B 
cells, plasma B cells, CD24+CD38high Breg and CD24+CD27+ Breg in vaccine group at different time points (A). Changes in the proportion of CD4+T cells, 
Th1 cells, Th2 cells, Th17 cells and Tfh cells in vaccine group at different time points (B). The statistical analysis was determined by paired sample t-test
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levels increased significantly from baseline at both 12 
and 24 weeks in the vaccinated group (all p-values < 0.05), 
whereas they did not change significantly from baseline 
to either time point in the non-vaccinated group (all 
p-values > 0.05). In terms of inter-group comparisons, 
the anti-HBs-seroconversion rate reached 100% in the 
vaccinated group at 24 weeks but only 50% in the non-
vaccinated group (p = 0.006. The proportions of individu-
als showing anti-HBs levels of ≥ 100 IUs/L or ≥ 300 IUs/L 
at 24 weeks in the vaccinated group were significantly 
higher than those in the non-vaccinated group (all p-val-
ues < 0.05). The results of similar studies showed that the 
anti-HBs-seroconversion rates post-hepatitis B vaccina-
tion ranged from 81.8 to 100% in individuals with HBsAg 
seroclearance after IFNα-based therapy, compared to 
0–36.4% in unvaccinated individuals [9, 10, 15]. Patients 
with CHB who were treated with Peg-IFNα for 24 weeks 
showed significant increases in memory B and plasma 
cells, relative to baseline levels [17]. In contrast, untreated 
patients with CHB had difficulty producing anti-HBs 
even when administered multiple hepatitis B-vaccine 
doses, which may relate to severe B cell dysfunction in 
patients with CHB [18, 19]. In vitro data showed that B 
cells from patients with HBsAg seroclearance reversed 
B cell dysfunction and facilitated anti-HBs production 
through co-stimulation with HBsAg and other cyto-
kines [20]. Therefore, in this study, we selected patients 
with HBsAg seroclearance following Peg-IFNα treatment 
for hepatitis B vaccine. Our results showed that the rate 
of anti-HBs seroconversion and antibody levels signifi-
cantly increased, indicating that vaccination is effective 
clinically for reducing recurrence in patients with HBsAg 

seroclearance. Furthermore, no new adverse effects were 
observed with increased doses of the hepatitis B vaccine.

To investigate the variability of immunity in individu-
als with HBsAg seroclearance with or without hepatitis 
B vaccination, we examined lymphocytes from periph-
eral blood samples. Compared to baseline levels, the vac-
cinated group had a significantly higher proportion of 
plasma cells at 12 weeks and higher proportions of total 
B cells and class-switched memory B cells at 24 weeks (all 
p-values < 0.05; Fig. 3A). In the vaccinated group, plasma 
anti-HBs titers and total IgG concentrations increased 
significantly from baseline to 24 weeks, suggesting that 
HBsAg seroclearance followed by vaccination resulted in 
significantly enhanced humoral immune function. Huang 
et al. also showed that total B cells and plasma cells were 
significantly higher in a group with ≥ 100 U/L anti-HBs 
than in a group with < 100 U/L anti-HBs, among indi-
viduals demonstrating HBsAg seroclearance following 
Peg-IFNα treatment [8]. Other findings showed that the 
proportion of class-switched memory B cells increased 
after stimulation with exogenous antigens, such as vac-
cines. These cells could further differentiate into plasma 
cells to produce antibodies [21–23]. In this study, we also 
found significantly higher levels of class-switched mem-
ory B cells after vaccination. In addition to an elevated 
percentage of B cells, we also found significant increases 
in co-stimulatory molecules associated with cell acti-
vation. The results of this study showed a significantly 
higher proportion of CD80+B cells at 12 weeks than at 
baseline in the vaccinated group (p = 0.018). The expres-
sion of CD80, a co-stimulatory B cell-surface molecule, 
reflects the antigen-presentation function of B cells. 

Fig. 5 Changes of cytokines and immunoglobulins in serum, correlation between anti-HBs and proportion of cell subsets. Changes of IL-2, IL-5, IL-6 
and total IgG in serum of Vaccine group at different time points (A). Correlations between anti-HBs and the proportion of plasma B cells, CD24+CD38high 
Breg, Th1 cells Th2 cells and Tfh cells at week 24 (B). The statistical analysis of changes in cytokines and immunoglobulins was determined by Wilcoxon 
matched-pairs signed-rank test. The level of anti-HBs and the proportion of cell subsets were evaluated by spearman correlation. *p < 0.05; **p < 0.005; 
***p < 0.001
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Studies on CD80 expression in the context of hepatitis 
B vaccination have not been reported, although similar 
studies have been conducted for HIV-infected individu-
als. Powell et al. observed that among HIV-infected 
patients who received an influenza vaccine, B cell-sur-
face CD80 expression was significantly higher in those 
who responded to the vaccine (antibody titers increased 
by over 4-fold after 7 days) but not in non-responders 
[24]. Tfh cells are required for T cell-dependent B cell 
maturation and play key roles in memory B and plasma 
cell differentiation. As shown in Fig.  3B, the proportion 
of Tfh cells significantly increased from baseline to 12 
weeks, which is consistent with the changes observed 
in plasma cells (p = 0.007). ICOS, an important recep-
tor on the surface of Tfh cells, promoted their prolifera-
tion upon binding to its ligand on the surface of B cells 
[25]. In our study, we observed that the proportion of 
ICOS+Tfh cells increased significantly from baseline to 
12 weeks in the vaccinated group (p = 0.001). However, 
in the non-vaccinated group, the changes in Tfh and 
ICOS+Tfh cells were not significant. Previous reports 
on changes in Tfh cells and ICOS expression after hepa-
titis B vaccination in individuals with HBsAg seroclear-
ance focused on changes during the Peg-IFNα-treatment 
period. Zhang et al. reported that elevated Tfh cells after 
48 weeks of Peg-IFNα treatment correlated significantly 
with decreased HBsAg levels [26]. Liu et al. observed a 
gradual increase in the proportion of ICOS+Tfh cells in 
individuals with HBsAg seroclearance during Peg-IFNα 
treatment, peaking at week 48, whereas the difference in 
individuals without HBsAg seroclearance was not signifi-
cant [27]. Previous data have also suggested that several 
vaccines, including a hepatitis B vaccine, cause elevated 
levels of Tfh cells in healthy adults [28–30]. In addition, 
the proportion of ICOS+Tfh cells was lower in healthy 
adults who did not receive hepatitis B vaccination or had 
a weak response to it, suggesting that Tfh cells and ICOS 
are involved in humoral immunity and promote the pro-
duction of anti-HBs antibodies [30]. However, we did not 
measure HBsAg-specific B cell and Tfh cell ratios. To 
fully understand the exact mechanism involved, further 
investigation is need.

Among B cell subsets, Breg cells play a negative regu-
latory role. For example, IL-10 secretion by Breg cells 
inhibits B-cell activation and leads to reduced antibody 
production [31, 32]. The present findings demonstrated 
that the abundances of both types of Breg cells in the vac-
cinated group decreased significantly compared to base-
line levels during treatment. Anti-HBs levels showed a 
significant negatively correlated with the proportion of 
CD24+CD38highBreg cells (all p-values < 0.05; Fig.  3A). 
The differences in the number of Breg cells were not sig-
nificant in the non-vaccinated group. Previous reports 
revealed that, overall, Breg cells increased significantly 

during the early stage of Peg-IFNα treatment (12–24 
weeks) [17, 33]. However, Fu et al. showed that with 
extended Peg-IFNα treatment, the proportion of Breg 
cells gradually decreased, which correlated significantly 
with a higher HBeAg-seroconversion rate and higher 
IgG secretion [33]. Those results are consistent with our 
present findings. In contrast, Breg cells were significantly 
elevated in untreated patients with CHB, which represent 
the primary source of elevated IL-10 production [34]. No 
reports have described changes in Breg cell abundances 
in individuals with HBsAg seroclearance after Peg-IFNα 
treatment and hepatitis B vaccination. However, changes 
in Breg cells following hepatitis B vaccination have been 
better studied in healthy adults. It is generally believed 
that lower numbers of Breg cells are associated with 
higher anti-HBs-antibody production. Previous findings 
showed that among healthy adults vaccinated against 
hepatitis B, the proportions of CD24+CD27+Breg and 
CD24+CD38high Breg cells were significantly lower in 
the anti-HBs-positive group than in the anti-HBs-neg-
ative group [35]. In this study, these two types of Breg 
cells were significantly less abundant in the vaccinated 
group during treatment. In another study, the high-anti-
HBs group showed fewer CD24+CD38highBreg cells and 
reduced IL-10 production [36]. Therefore, the present 
findings suggest that the concomitant use of Peg-IFNα 
and hepatitis B vaccination in individuals with HBsAg 
seroclearance may improve humoral immune function.

Th cells and their cytokines play regulatory roles dur-
ing multiple stages of humoral immunity, including B 
cell development, differentiation, and antibody produc-
tion [37]. We observed a significant positive correlation 
between anti-HBs antibodies and the proportion of Th2 
cells at week 24 in the overall patient cohort (r = 0.456, 
p = 0.019). Among patients in the vaccinated group, Th2/
Th17 cells were significantly higher at 12 and 24 weeks 
than at baseline (all p-values < 0.05; Fig. 3B). In addition, 
the IL-2, IL-5, and IL-6 concentrations were significantly 
higher in the vaccinated group at 24 weeks than at base-
line (all p-values < 0.05). However, no statistically signifi-
cant changes were observed in the non-vaccinated group. 
Thus, we hypothesize that Th cells may contribute to anti-
HBs production. While few reports have described the 
correlation between Th cells and HBsAg seroclearance, 
Islam et al. found that Peg-IFNα drove Th1/Th17 cell dif-
ferentiation, and increased Th1/Th17 cells were associ-
ated with HBsAg seroclearance [38]. In addition, Doedée 
et al. reported that highly active Th2 cells were associated 
with higher anti-HBs-antibody titers in healthy adults 
who were vaccinated against hepatitis B [39].

In conclusion, the present findings suggest that hepati-
tis B vaccination in individuals with HBsAg seroclearance 
significantly enhances the anti-HBs-seroconversion rate 
and increases antibody levels. Therefore, we believe that 
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concomitant hepatitis B vaccination to increase anti-HBs 
levels during the late stage of Peg-IFNα treatment may 
be an effective measure for preventing recurrence. Our 
results also revealed significant increases in plasma, Tfh, 
CD80+B, and ICOS+Tfh cells and a significant decrease 
in Breg cells during treatment. These results suggest that 
treatment with Peg-IFNα plus hepatitis B vaccination 
strongly promotes the restoration of humoral immunity 
in CHB-infected patients. However, due to the small 
sample size analyzed in this study and the absence of 
decriptions for HBsAg-specific B and T cells, our conclu-
sions require further validation in future studies.
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