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Abstract 

Introduction Duck enteritis virus (DEV) mainly causes infectious diseases characterized by intestinal haemorrhage, 
inflammation and parenchymal organ degeneration in ducks and other poultry. However, the mechanism by which 
it causes intestinal damage in ducks is not well understood. Metabolomics can provide an in-depth understanding 
of the full complexity of the disease.

Methods In this study, 24 clinically healthy green-shell ducks (weight 1.5 kg ± 20 g) were randomly divided into 2 
groups (experimental group, 18; control group, 6). The experimental group was intramuscularly injected with 0.2 mL 
of DEV virus in solution  (TCID50 3.16 ×  108 PFU/mL), and the control group was injected with 0.2 mL of sterile normal 
saline. Duck duodenum and ileum tissue samples were collected at 66 h, 90 h and 114 h post-injection (12 h of fast-
ing before killing), and metabolomics analysis of duck duodenum and ileum tissues at the three time points (66, 90, 
114 h) was performed by liquid chromatography–mass spectrometry (LC–MS) to screen for and analyse the potential 
differentiated metabolites and related signalling pathways.

Results Screening was performed in the positive/negative mode (Pos: Positive ion mode; the ionization of sub-
stances at the ion source with positive ions such as  H+,  NH4

+,  Na+ and  K+; Neg: Negative ion mode; the ionization 
of substances at the ion source with negative ions such as  Cl−,  OAc−), and compound abundance was compared 
to that in the control group. The total number of differentially abundant compounds in the duodenum at 66 h, 90 h 
and 114 h of DEV infection gradually increased, and metabolites such as cytidine, 2′-deoxyriboside and 4-guanidin-
obutyric acid were differentially abundant metabolites common to all three time periods. The metabolic pathways 
related to inflammatory response and immune response were tryptophan acid metabolism, cysteine-methionine 
metabolism, histidine metabolism and other amino acid metabolism and fat metabolism. Among them, the meta-
bolic pathways with more differentially abundant metabolites were amino acid biosynthesis, cysteine and methionine 
metabolism, tryptophan metabolism, unsaturated fatty acid biosynthesis and purine metabolism, and the meta-
bolic pathways with more enrichment factors were the IgA-related intestinal immune network pathway and lyso-
some pathway. Compared with the control group, there were 16 differentially abundant metabolites in the ileum 
tissue of DEV-infected ducks at 66 h of infection, 52 at 90 h of infection, and 40 at 14 h of infection with TD114. The 
metabolic pathways with more enriched differentially abundant metabolites were pyrimidine metabolism, tyrosine 
metabolism, phenylalanine metabolism and tryptophan biosynthesis. The metabolic pathways with the most enrich-
ment factors were the mTOR signalling pathway, ferroptosis pathway, tryptophan metabolism pathway and caffeine 
metabolism pathway.

*Correspondence:
Ming Wen
as.mwen@gzu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12985-023-02266-x&domain=pdf


Page 2 of 18Cai et al. Virology Journal          (2023) 20:305 

Conclusion Comparative analysis showed that the number of differentially abundant metabolites in the duodenum 
and ileum differed to some extent after DEV infection, with significantly more differentially abundant metabolites 
in duodenal tissues and fewer in ileal tissues; after DEV infection, the highest number of differentially abundant 
metabolites was obtained at 114 h of DEV infection, followed by the second highest at 90 h of infection and the low-
est at 66 h of infection. The common differentially abundant metabolites in duodenal and ileal tissues were prosta-
glandins, arachidonic acid, and arachidonic ethanolamine. The main metabolic pathways in the duodenum were 
the IgA-associated intestinal immune network pathway and the lysosomal pathway, and the metabolic pathways 
with more enriched factors in the ileum were the mTOR signalling pathway, the ferroptosis pathway, and the trypto-
phan metabolism pathway.

Keywords Duck enteritis virus, Duck, Gut, Differentially abundant metabolites, Nontargeted metabolomics

Introduction
Duck enteritis virus (DEV), also known as duck plague 
virus (DPV), has a typical herpesvirus structure: the 
virion is spherical and has a capsule, and its genome con-
sists of 158,091 bp of double-stranded linear DNA [1]. It 
can cause acute septic and highly contagious infectious 
disease in ducks, geese, and a variety of Anseridae poul-
try. DEV is an important pathogen that seriously threat-
ens the development of the duck industry [2]. It mainly 
replicates in the mucosa of the digestive tract and then 
spreads to the bursa, thymus, spleen and liver [3].

Untargeted metabolomics enables systematic access 
to biological compounds metabolized by DEV in ducks, 
such as amino acids and related amines, lipids, sugars, 
nucleotides, and other intermediate metabolites [4]. By 
biological definition, targeted metabolites are known 
and represent specific pathways or molecular classes in 
metabolomics, whereas untargeted metabolomics mainly 
identifies differential metabolites. Untargeted metabo-
lomics, i.e., the discovery of metabolites, can identify 
differences between metabolite profiles associated with 
specific biological conditions [5]. Untargeted metabo-
lomics uses LC‒MS, GC‒MS, NMR and other techniques 
to detect all small molecule metabolites (mainly endog-
enous small molecule compounds with a relative molecu-
lar weight less than 1000 Da) in cells, tissues, organs or 
organisms without bias, dynamic changes before and 
after stimulation or interference, screening differentially 
abundant metabolites through bioinformatics analysis, 
and conducting pathway analysis on differentially abun-
dant metabolites to reveal the physiological mechanism 
of their changes [6]. At present, scholars at home and 
abroad have not stopped research on DEV, but they are 
all basic research, and the material changes in the devel-
opment of the pathogenic mechanism of DEV are less 
involved, especially metabolome sequencing of the host’s 
anti-viral infection response analysis [7]. At present, our 
laboratory has completed transcriptome sequencing of 
DEV-infected duck duodenum and high-throughput 
sequencing of the duodenum, although metabolome 

sequencing technology has been widely used in drug 
research and development or different stages of livestock 
and poultry as well as outside world substance changes 
under changing conditions. To date, no studies have 
reported on the changes in intestinal tissue in ducks after 
DEV infection.

In this study, we used LC–MS technology to detect the 
dynamic changes in all small molecule metabolites in the 
intestines caused by DEV infection of ducks, screened 
differentially abundant metabolites by bioinformatics 
analysis, and performed pathway analysis of differentially 
abundant metabolites to understand the mechanisms and 
changes in intestinal metabolic disorders in ducks after 
DEV infection.

Materials and methods
Virus strains and experimental animals
The Guizhou strain of duck enteritis virus (DEV-GZ 
strain), provided by Guizhou Provincial Key Laboratory 
of Animal Epidemiology and Veterinary Public Health, 
had a  TCID50 of 3.16 ×  108 PFU/mL and was titrated by 
the Reed and Muench method [8] (Reed—Muench). 
Twenty-four one-day-old Anas platyrhynchos were pur-
chased from Guangdong Mingyan Poultry Industry Co., 
Ltd., and all were negative for DEV through serological 
and pathogenic tests. After being boiled and sterilized, 
they were fed with full-price feed until 41 days of age. All 
ducks excluded the possibility of several common viruses 
(i.e., AIV, DHV, NDV) infecting ducks. The experimen-
tal operation strictly adhered to the Guidelines for the 
Breeding and Use of Laboratory Animals [9]. The experi-
mental grouping of TD represents different time periods 
of DEV-infected groups, CK represents the control group, 
"duodenum" represents the duodenum, abbreviated as 
"Du"; "ileum" represents the ileum, abbreviated as "I". All 
the procedures of sample collection were approved and 
agreed upon by the Ethics Committee of Guizhou Uni-
versity in accordance with the requirements of animal 
ethics (approval number EAE-GZU-2021-T005).
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Main reagents and instruments
LC–MS grade acetonitrile (ACN) and methanol 
(MeOH) were purchased from Fisher Scientific (Lough-
borough, UK). Formic acid was obtained from TCI 
(Shanghai, China). Chloroform was obtained from 
Sinopharm (Shanghai, China). Ultrapure water was 
generated using a Milli-Q system (0.22  μm, Millipore, 
Bedford, USA). 2-Amino-3-(2-chloro-phenyl)-pro-
pionic acid was obtained from Aladdin (Shanghai, 
China). Ultrahigh-performance liquid chromatogra-
phy (UHPLC) and high-resolution mass spectrometry 
(HRMS) columns were supplied by Shenzhen Huada 
Genetics Co., Ltd. (Shenzhen, China).

Establishment of the DEV‑infected duck model
Pathological and serological tests in our laboratory 
were performed in accordance with the requirements 
of the experiment, and there were no other pathogens 
present (including DEV, MDV, AIV, etc.). The ducks in 
the experimental group were inoculated with 0.2 mL of 
DEV-GZ strain virus each via the leg muscles at 41 days 
of age, and after the viral challenge, the ducklings were 
observed for mental status and lesions every 6 h. Blood 
was collected and analysed at 66  h, 90  h and 114  h. 
The control group was inoculated with 0.2 mL of ster-
ile saline, and the blood was collected and analysed at 
66 h. After 1 mL of blood was collected from the sub-
wing vein, the ducklings were anaesthetized with ether 
and sacrificed by dislocation of the neck. Tissues such 
as the duodenum and ileum were collected, and some 
were stored in a − 80  °C deep freezer for later use. 
Some were immediately frozen in liquid nitrogen after 
collection. After all samples from different time periods 
were obtained, they were sent to Shenzhen BGI Tech-
nology Service Co., Ltd. on dry ice for metabolomics 
sequencing.

Nucleic acid PCR of intestinal tissues of DEV‑infected ducks
Duodenal and ileal samples were collected aseptically 
from the control and DEV-infected groups and pro-
cessed by grinding, and then the DNA in the samples 
was extracted using the Ezup Column DNA Nucleic 
Acid Extraction Kit for subsequent experiments. The 
control and DEV-infected groups were used as tem-
plates for the detection of the DEV-NP gene using the 
PCR method established in our laboratory (primers: F 
5′-CTG GAA GAT GCA GTA ACG TCTG-3′, R 5′- CTG 
GGG TTG TCT GTA TTC GGAGT-3′), the viral fluid of 
the DEV GZ strain was used as a positive control, and 
 ddH2O was used as a negative control. The amplified 
fragment was 133 bp (PCR procedure: predenaturation 
at 95 °C for 30 s, 95 °C for 5 s, 60 °C for 30 s, 72 °C for 

40 s, 40 cycles: extension at 72 °C for 10 min), and the 
amplified product was detected by electrophoresis on a 
1.2% agarose gel.

Preparation of samples and metabolites
Samples were collected from the control group at 66  h. 
The ducks were fasted for 12 h before sampling (no water 
restriction). Three time points were selected for sam-
pling, and duodenum and ileum tissues were collected at 
each: 66  h, 90  h, and 114  h. The sample size was more 
than 0.1 g. Six samples in parallel were numbered on the 
outside of the cryotube with an oily marker pen, accord-
ing to the number designating one duck. After removing 
the connective tissue and adipose tissue, the intestinal 
tissue was rinsed with normal saline, and the sample was 
clamped with tweezers and placed in a cryotube. The 
samples were placed in liquid nitrogen overnight and 
then stored at − 80  °C until they were sent for inspec-
tion. TD66-Du, TD90-Du, TD114-Du, TD66-I, TD90-I, 
TD114-I, CK-Du and CK-I were stored on dry ice and 
sent to Shenzhen Huada Gene Co., Ltd., and the remain-
ing tissue samples were placed in sterile sampling bags 
for subsequent analysis of pathogenic nucleic acids and 
stored at − 80 °C for later use.

Data processing and quality control
Raw data were exported using Compound Discoverer3.1 
software to convert formats for further data analysis. The 
R software metaX was used to calculate the probability 
quotient normalization to correct the data of the QC 
sample, including high noise reduction, peak alignment 
extraction and normalization, to obtain the relative peak 
area. The peak in the mixed QC should produce a com-
pound with an RSD of less than 30%. After data normali-
zation using the QC-RLSC method for different batches 
of tissue, the data were extracted into the data matrix.

Before the experimental sample detection, the stabil-
ity of the instrument and the balance of the MS system 
relied on the repeatability of the QC sample detection 
to evaluate the data quality. Before every 10 samples, 
the system was injected with blank solvent, mixed qual-
ity control samples, and instrument quality control sam-
ples of 6 standards. The display of the results includes 
the chromatogram overlap, PCA, peak number and peak 
response intensity difference of QC samples.

Compound test results and notes
The metabolites were obtained using metaX, a metabo-
lomics R software package independently developed by 
Shenzhen BGI, and identified by online databases such 
as Chempider, HMDB, and KEGG. MetaboAnalyst4.0 
software was used to analyse the biological informa-
tion of each pathway and network, match the identified 
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compounds, and obtain the main biochemical metabolic 
pathways and signal transduction pathways in which 
these metabolites participate.

Screening of differentially abundant metabolites
The data analysis incorporated VIP and univariate anal-
ysis in multivariate statistics at the same time. The P 
value obtained from the t test was used to assess statis-
tical significance. Univariate analysis was used to obtain 
the FC between groups. Unsupervised principal com-
ponent analysis (PCA) was performed. The effective-
ness of the PLS model was evaluated using the goodness 
of fit R2. The results of the Q2 test and the goodness of 
fit of 200 transformation models were compared. The 
t test was used to screen for potential biomarkers with 
VIP values exceeding 1 and P values lower than 0.05. 
For the intersection of the criteria FC ≥ 1.2 or FC ≤ 0.83 
33, P value < 0.05 and VIP ≥ 1, the common ions were 
considered differential ions Those and marked in red 
(FC ≥ 1.2 and  P value < 0.05) or green (FC ≤ 0.8333, and  
P value < 0.05), and the results were visualized using a 
volcano map.

Analysis of differentially abundant metabolites
Cluster analysis of differentially abundant metabolites 
was performed using R software. The pheatmap func-
tion uses heatmap (R version 3.5.3) and z score processes, 
converts Log2 data, calculates Euclidean distance to dis-
play the changes in differentially abundant metabolites, 
and compares the differences between different treat-
ment samples. Simple, intuitive hierarchical clustering 
was performed. Biological functions were analysed, DEV-
related biomarkers were mined, the classification status 
and function of metabolites were assigned, the database 
(KEGG) was matched, and literature reports related to 
inflammation were consulted to determine the biologi-
cal effects of differentially abundant metabolites in DEV-
infected ducks. The main biochemical pathways and 
signal transduction pathways in which metabolites par-
ticipate were annotated in the form of pathway diagrams, 

and then differentially expressed related substances were 
screened. Biochemical pathway diagrams were drawn 
for metabolites. Note: N, represents the number of path-
ways that can be matched in all identified metabolites; n, 
represents the number of pathways that can be matched 
in significantly different metabolites; M, represents the 
number of pathways that can be matched in all identi-
fied metabolites; m: represents the number of pathways 
that can be matched in significantly different metabolites, 
and the formula for the hypergeometric test of the num-
ber of classifications for the differentially expressed sub-
stances that are significantly enriched to the pathway is 
as follows:

With a P value < 0.05 as the threshold, the screened 
differentially abundant metabolites were significantly 
enriched in the rntry. The number of pathways related 
to differentially abundant metabolites pathways and 
the number of upregulated pathways in this study were 
counted, and a bubble map of metabolic pathway enrich-
ment analysis was obtained. Metabolic pathways were 
searched using the web database KEGG (http:// www. 
kegg. jp) to elucidate biological metabolic pathways asso-
ciated with DEV.

Results
Establishment of the DEV infection model
DEV detection was carried out on the intestinal sam-
ple DNA of ducks in the control group and DEV infec-
tion group by PCR. The results (Fig. 1) showed that there 
was no corresponding band of the DEV-NP gene in the 
intestinal tissue of ducks in the control group, and cor-
responding bands could be detected in each period of 
time in the experimental group. The presence of the band 
indicated that ducks were infected with DEV, which was 
used for subsequent screening of differentially abundant 
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Fig. 1 PCR detection results of DEV-NP in intestinal tissues. A Control group; B DEV 66 h; C DEV 90 h; D DEV 114 h

http://www.kegg.jp
http://www.kegg.jp
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metabolites between the control group and the DEV 
infection group.

Metabolomics grouping and data processing of ducks 
infected with DEV
Experimental grouping and program design
The control group and the infection group were designed 
according to the research plan. Since the infection group 
was divided for sampling at three time points (66 h, 90 h, 
and 114  h), the grouping information and difference 
comparison scheme are shown in Table 1. Each group of 
samples was parallelized 6 times to reduce the variation 
among samples.

Data preprocessing and quality control
After initial preliminary processing of the raw data, the 
probability quotient-normalized corrected QC samples 
were calculated using the R software metaX, including 
high noise reduction, peak alignment extraction and nor-
malization to obtain the relative peak area. The peaks in 
the mixed QCs yielded compounds with less than 30% 
RSD, which were extracted into the data matrix after 
normalizing the data using the QC-RLSC method for dif-
ferent batches of tissues. The results showed that 18,735 
compounds were available in positive ion mode, and 
the proportion of qualified data was 78.98%; 3090 com-
pounds were available in negative ion mode, and the pro-
portion of qualified data was 86.02%. Both percentages 

were greater than 60%, which suggests that the quality is 
adequate, reflecting the high amount of data.

(1)  Chromatograms of QC samples

The BPC spectrum of the sample had a good peak shape 
and large peak capacity, good spectral overlap, and small 
fluctuations in retention time and peak response inten-
sity (Fig.  2), indicating that the instrument was in good 
condition, the signal was stable, the peak shape was 
consistent, and it only the time when the maximum ion 
intensity appeared was variable (See Additional file 1 for 
the remaining subgroup BPC diagrams).

(2) Aggregation analysis of principal components of all 
samples

A two-dimensional scatterplot of the PCA model of QC 
samples (Fig.  3) showed complete separation of the CK 
and DEV groups, indicating that DEV infection altered 
the metabolite profiles. In both representative ion modes, 
there are no obvious outliers, and the separation of sam-
ples is relatively good. Although the metabolic profiles 
partially overlap, the metabolic components are sig-
nificantly different between the DEV group and the CK 
group, and the metabolic profiles of TD90-Du, TD66-I, 
and TD90-I also significantly differed from the metabolic 
profiles of the other groups.

Compound detection results and identification
Multiple databases of the BGI Library, mzCloud and 
ChemSpider (HMDB, KEGG, LipidMaps) were used to 
identify compounds, and there was no difference in the 
results for the same groups in different databases. After 
identification and quality control of the compounds in 

Table 1 Group information and scheme

Compare_Group Compare_Group Compare_Group

TD66-Du-vs.-CK-Du TD90-Du-vs.-CK-Du TD114-Du-vs.-CK-Du

TD66-I-vs.-CK-I TD90-I-vs.-CK-I TD114-I-vs.-CK-I

Fig. 2 BPC overlay spectrum of QC sample ion mode in two ion modes. A positive ion mode; B negative ion mode
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the preprocessed data, 14,796 compounds were obtained 
in positive ion mode, of which 6771 compounds were 
identified, and 2658 compounds were obtained in nega-
tive ion mode, of which 1300 compounds were identified.

Compound notes

(1)  Category Notes

The metabolites identified after comparing the TD group 
with the CK group were classified and annotated with 
reference to the KEGG and HMDB databases. Under 
the two ion modes, the identified compounds were 
divided into 4 categories, namely, biologically signifi-
cant compounds, lipid compounds, phytochemicals and 
substances not yet classified in other categories. The bio-
logically important compounds obtained in positive ion 
mode included amino acids, benzene, phenols, amines, 
steroids, indole, purine, imidazole, pyridine, and their 
derivatives, as well as organic acids, hormones, transfer 
factors, antibiotics, and vitamins. A total of 2094 bio-
logically important metabolites 9included 850 lipids, 
368 phytochemicals, and 637 unclassified metabolites 
(Fig.  4A). A total of 192 metabolites were lipid sub-
stances, 64 metabolites were plant compounds, and 71 
were unclassified metabolites (Fig. 4B).

(2) Path annotation

The KEGG database was used for metabolite function 
annotations. To investigate the pathways involving vari-
ous metabolites more deeply, the biochemical metabolic 

pathways and signal transduction pathways associated 
with the differentially abundant metabolites were ana-
lysed. Pathway diagrams and substance change trends 
were examined. Metabolic pathways are divided into 5 
major functional branches: cellular processes, genetic 
information processing, organic systems, environmental 
information processing (environmental information pro-
cessing), and metabolism (metabolism), and branches of 
differentially abundant ions in negative ion mode were 
consistent with those of the positive ions. The metabolic 
processes involving differentially abundant metabolites 
can be divided into 23 functional categories. In posi-
tive ion mode, differentially abundant metabolites par-
ticipated in 627 pathways, with relatively few pathways 
involved in cellular process pathways and organic system 
systems, whereas global and global overview maps and 
the pathways of amino acid metabolism were the most 
abundant (Fig.  5A). The metabolic pathways in nega-
tive ion mode were consistent with those in positive ion 
mode, and the differentially abundant metabolites par-
ticipated in 386 pathways (Fig. 5B).

Screening of differentially abundant metabolites

(1) PCA

To distinguish the infection group from the control 
group, PCA was performed on the metabolite data to 
observe the distribution and separation trend of the 
two groups of samples. Before building the PCA model, 
log2 transformation was performed on the data, and the 
data were adjusted proportionally by Pareto scaling. For 

Fig. 3 PCA diagram of each tissue sample in positive and negative ion mode. A positive ion mode; B negative ion mode; the abscissa represents 
the first principal component, represented by PC1; the ordinate represents the second principal component, represented by PC2
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metabolomics research on the duodenum and ileum at 
different time points (66 h, 90 h, 114 h), the normal group 
was compared with the infected group to understand the 
degree of sample aggregation and dispersion between 
groups. The PCA results are as follows:
① The TD group duodenum samples were compared 

with those from the CK group. In PCA, the TD group 
formed a cluster, and there was no dispersion among 
the groups. One sample in the CK group deviated from 

the other 5 samples, and there was a partial overlap 
between the CK group and the TD group. The same 
ionic compounds existed in both (Fig.  6). In positive 
ion mode, there was no overlap between the CK group 
and the TD group at 90  h, and there were differences 
in compounds between the two groups, indicating that 
DEV infection significantly changed the metabolite 
profile at 90  h, and the subsequent additional changes 
might be attributable to the activation of the body’s 

Fig. 4 Classification annotations of differentially abundant metabolites in duck infection group compared with control group. A positive ion mode, 
B negative ion mode

Fig. 5 Differences in metabolite pathways between infected ducks and control ducks. A positive ion mode, B negative ion mode
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Fig. 6 PCA results between the duodenumof the DEV infection and CK at different time periods. A1–A3 represent the comparison of DEV 66 h, 
90 h, 114 h in positive ion mode with CK group; B1–B3 represent the comparison of DEV 66 h, 90 h, 114 h in negative ion mode with CK group

Fig. 7 PCA results between the ileum of the DEV infection and CK at different time. A1–A3 represent the comparison of DEV 66 h, 90 h, 114 h 
in positive ion mode with the CK group; B1–B3 represent the comparison of DEV 66 h, 90 h, 114 h in negative ion mode with the CK group
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defence mechanism at 114  h, resulting in significant 
changes in differentially abundant metabolites from 
90 h.
② In the ileum of the CK group and the TD group, the 

PCA of the TD group formed a cluster, and there was no 
dispersion but some overlap between the groups, indicat-
ing that some compounds were the same between groups 
(Fig.  7). However, in positive ion mode, some samples 
deviated from the overall trend in the ileum of the infec-
tion group at 114  h, and two outliers were observed 
(Fig. 7A3).

The comprehensive PCA chart can distinguish the con-
trol group from the infection group; that is, DEV infec-
tion changes the metabolite profile of duck intestinal 
tissue, and there are differentially abundant compounds 
in the duodenum. Note that A1-A3 represent DEV 66 h, 
90 h and 114 h in positive ion mode compared with the 
CK group; B1-B3 represent the comparison of DEV 66 h, 
90 h, and 114 h in negative ion mode with the CK group.

(2)  PLS-DA analysis

In the PLS-DA analysis, the Euclidean distance was used 
to determine the difference between groups. The disper-
sion between groups was obvious, indicating a greater 
difference [10]. To prevent the illusion of "overfitting" in 
the PLS-DA model under computer software, it is nec-
essary to check the quality of the PLS-DA model using 
a 30-fold interactive verification, and the results are rep-
resented by parameters R2 and Q2; that is, to explain 
the model and prediction and verify the reliability of the 

PCA model, the cumulative explanation rate of the model 
is shown in Table 2. If the value of the model evaluation 
parameter (R2Y, Q2) is approximately l, or generally if 
Q2 is greater than 0.5, the model is stable and reliable. 
For 0.3 < Q2 < 0.5, the model stability is moderate, and 
for Q2 < 0.3, the model reliability is low. The informa-
tion in Table  2 shows that the model interpretability is 
high, and the model is stable and reliable; that is, there 
are no overfitting "artefacts", and the established DEV 
infection model can be used for subsequent screening of 
differences.

(3) Screening of the number of differentially abundant 
metabolites

Multivariate statistical analysis (PCA and PLS-DA) com-
bined with univariate analysis (fold change, FC) and the 
t test (Student’s t test) were used to screen differentially 
abundant metabolites between groups. PCA and PLS-DA 
were used to establish the relationship model between 
the expression of metabolites and the sample category to 
predictthe sample category in combination with the dif-
ference multiple and t test, and finally to identify the dif-
ferentially abundant metabolites among the groups. The 
screening conditions for differentially abundant metabo-
lites among groups were VIP ≥ 1 for the first two prin-
cipal components of the PLS-DA model, P value < 0.05, 
FC > 1.2 or FC < 0.833. See Table  3 for the statistical 
results of the up- and downregulation of differentially 
abundant metabolites.

It can be seen from Table  3 that compared with the 
control group, the total number of differentially abundant 
compounds identified by screening of the duodenum 
at 66  h, 90  h, and 114  h after DEV infection gradually 
increased, especially in positive ion mode, with 1569, 
1656 and 1876 differentially abundant compounds. In 
negative ion mode, the TD group had fewer differences 
than the CK group, with 403, 405 and 444 differentially 
abundant compounds. While the differences in com-
pounds in the ileum were not as large as those in the duo-
denum, the overall metabolism changed significantly.

(4)  Duodenal differentially abundant compound screen-
ing

The differentially abundant compounds in Table  3 were 
defined as follows: FC is greater than or equal to 1.2 or 
less than or equal to 0.833; the P value indicates signifi-
cance (P < 0.05); and VIP is greater than or equal to 1. The 
metabolites detected by the LC‒MS analysis platform are 
all consistent with the standard. The metabolites in the 
product database are matched at the first and second 

Table 2 PLS-DA model parameters of different sample 
comparison groups under the two modes

+: positive ion mode; –: negative ion mode

Group Ion mode Model 
explanation 
rate

Model 
prediction 
rate

R2Y (cum) Q 2(cum)

TD66-Du-vs.-CK-Du + 0.99 0.57

– 0.97 0.74

TD66-I-vs.-CK-I + 1 0.36

– 1 0.38

TD90-Du-vs.-CK-Du + 1 0.72

– 0.99 0.76

TD90-I-vs.-CK-I + 1 0.37

– 1 0.54

TD114-Du-vs.-CK-Du + 1 0.86

– 0.98 0.82

TD 114—I -vs.-CK- I + 0.98 0.45

– 0.99 0.59
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levels, and the final difference is obtained by referring 
to the existing numbers in the KEGG Database or the 
HMDB.

Compared with the CK-Du group, the TD66-Du 
group contained 41 significantly differentially abun-
dant compounds; in positive ion mode, there were 
27, and in negative ion mode, there were 14. Among 
these, 18 were increased in abundance, and 23 kinds 
were decreased. Compared with the CK-Du group, the 
TD90-Du group contained 52 significantly differentially 
abundant compounds; among them, there were 33 dif-
ferentially abundant substances in positive ion mode 
and 19 differentially abundant substances in negative 
ion mode, and 10 were increased in abundance, while 
42 differentially abundant substances were decreased. 
Compared with the CK-Du group, the TD114-Du 
group contained 64 significantly differentially abundant 
compounds: 38 in positive ion mode, 26 in negative ion 
mode, 22 increased in abundance, and 22 decreased in 
abundance. The infection group had 42 differentially 
abundant metabolites in common at all three time 
points (66 h, 90 h, 114 h). To further screen for impor-
tant differentially abundant metabolites, in the range 
of P value < 0.01 & VIP ≥ 2, the metabolites were sorted 
by logFC value (for logFC greater than 1, larger values 
are more meaningful; for logFC less than − 1, smaller 
values are more meaningful). According to the above 
screening results, the number of significantly differen-
tially abundant metabolites in the duodenum gradually 
increased from 2 to 12 to 22 as the time increased from 
66 to 90 h and then to 114 h. The metabolites cytidine, 
2’-deoxynucleoside and 4-guanidinobutyric acid were 
common differentially abundant metabolites at all three 
points.

(5)  Screening of differentially abundant compounds in 
the ileum

Compared with the CK-I group, the TD66-I group con-
tained 16 significantly differentially abundant com-
pounds. There were 10 differentially abundant substances 
in positive ion mode and 6 differentially abundant sub-
stances in negative ion mode. Among them, 14 were 
increased in abundance and 14 were decreased in abun-
dance. Compared with the control group, the TD90-I 
group contained 52 identified differentially abundant 
compounds compared with the CK-I group, 32 sub-
stances in positive ion mode, and 20 in negative ion 
mode, of which 24 were increased in abundance and 28 
were decreased in abundance. The TD114-I group con-
tained 40 significantly differentially abundant compounds 
compared with the CK-I group, 21 in positive ion mode 
and 19 in negative ion mode, of which 11 substances had 
a contribution value greater than 1, and 29 substances 
had a contribution value less than 1. The infection group 
had the same differentially abundant metabolites at dif-
ferent time periods (66 h, 90 h, 114 h) compared with the 
CK group. To further screen for meaningful differentially 
abundant metabolites, within the range of P value < 0.01 
& VIP > 2, the metabolites were sorted by logFC value (for 
logFC greater than 1, larger values are more meaningful; 
for logFC less than − 1, smaller values are more meaning-
ful). According to further screening, the number of sig-
nificant differentially abundant metabolites in the ileum 
gradually increased 2 at 66 h to 8 at 90 h and then to 11 at 
114 h, and the number of types of differentially abundant 
metabolites was smaller than that in the duodenum.

Table 3 Statistical table of differential compound detection

+: positive ion mode; −: negative ion mode

Group Ion mode Increased quantity Reduced quantity Different quantity
Group Mode Up Down Different

TD66-Du-vs.-CK-Du + 1127 442 1569

− 274 129 403

TD90-Du-vs.-CK-Du + 596 1060 1656

− 159 246 405

TD114-Du-vs.-CK-Du + 867 1009 1876

− 216 228 444

TD66-I-vs.-CK-I + 340 359 699

− 117 74 191

TD90-I-vs.-CK-I + 491 573 1064

− 187 136 323

TD 114—I -vs.-CK- I + 464 725 1189

− 197 184 381
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Heatmap analysis of differentially abundant metabolites
To visualize the differences and perform cluster analysis 
between the control group and the infected group, the 
differentially abundant substances obtained above were 
imported into the pheatmap in the pheatmap package for 
scaling to obtain a heatmap. At 66 h, 90 h and 114 h, clus-
ter analysis of the differentially abundant metabolites in 
the duodenum and ileum of the DEV-infected group and 
the control group was performed and presented in com-
bination with a heatmap.
① There was an overall difference in the expression 

of metabolites between the TD-Du and CK-Du groups 
when viewed horizontally (the colour difference between 
the two groups was more obvious), and the number of 
rows was greater, indicating a larger number of differ-
entially abundant metabolites. In positive ion mode, the 
differential abundance in TD-Du compared to CK-Du 
changed from higher at 66 h to lower at 90 h, as reflected 
by the change from red to green. At 114 h, an increased 
number of differentially abundant substances were found. 

The differences in samples between infection groups as 
well as between the infection and CK group caused the 
colour classification to be blurred. Relatively speaking, 
the differences within each group were small (Fig.  8A1, 
A2, A3). In negative ion mode, the situation was generally 
consistent with that in positive ion mode, but longitudi-
nal analysis showed that TD90-Du has decreasing num-
bers of differentially abundant metabolites compared to 
CK-Du over time (Fig. 8B1, B2, B3).
② Compared with CK-I, TD-I showed differences in 

the abundance of metabolites in the horizontal direction 
(the colour difference between the two groups was more 
obvious), and the number of rows was greater, indicating 
a larger number of differentially abundant metabolites. In 
positive ion mode, the abundance of a number of metab-
olites compared to that in CK-I changed from higher at 
66 h to lower at 114 h, reflected in a colour change from 
red to green. The comparison of the TD-I and CK-I 
groups at 90  h revealed an increased number of differ-
entially abundant substances. CK-I and TD-I showed 

Fig. 8 Heatmap of differentially abundant metabolites between experimental and control duodenums at different time periods. A1, A2, A3: 
comparison between TD66, TD90, TD114 and CK in positive ion mode; B1, B2, B3: comparison between TD66, TD90, TD114 and CK in negative ion 
mode. Each row in the figure represents a differentially abundant ion. Each column represents a sample, different colours represent differences 
in abundance, and the colour range from green to red, representing low to high differences
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improved clustering. The overall colour change within 
each group was not large, but there were differences in 
samples between the infection groups and the CK group. 
The colour classification is relatively fuzzy when the dif-
ference within the group is small (Fig.  9A1, A2, A3). In 
negative ion mode, the overall situation was generally 
consistent with that in positive ion mode, and the num-
ber of differentially abundant metabolites in TD-I com-
pared to CK-I increased with later time points (Fig. 9B1, 
B2, B3).

Metabolic pathway analysis of differentially abundant 
metabolites

(1) Metabolic pathway analysis of differentially abundant 
metabolites in the duodenum

In positive ion mode, differentially abundant metabo-
lite pathway analysis of the TD66- Du group, TD90- Du 
group, TD114- Du group and CK- Du group showed 

that the pathways in which the differentially abundant 
metabolites participated were consistent and that the 
number of pathways was consistent with the number of 
differentially abundant metabolites. The pathways were 
sorted according to the number of differentially abundant 
metabolites involved (number ≥ 10) as follows: metabo-
lism, amino acid biosynthesis, tryptophan metabolism, 
tyrosine metabolism, purine metabolism, ABC trans-
porters, cysteine and methionine metabolism, pheny-
lalanine metabolism, neuronally active ligand-receptor 
interactions, cytochrome P450 metabolism xenobiotics, 
arginine and proline metabolism, 2-oxocarboxylic acid 
metabolism, steroid hormone synthesis, nicotinate and 
nicotinamide metabolism, aminoacyl tRNA biosynthe-
sis, pyrimidine metabolism, glycine, serine and threonine 
metabolism, lysine degradation, histidine metabolism, 
ferroptosis, carbon metabolism, etc.

In negative ion mode, differentially abundant metabo-
lite pathway analysis of the TD66-Du group, TD90-Du 
group, TD114-Du group and CK- Du group showed 

Fig. 9 Heatmap of differentially abundant metabolites between experimental and control (CK) ileum at different time points. A1, A2, A3: 
comparison between TD66, TD90, TD114 and CK in positive ion mode; B1, B2, B3: comparison between TD66, TD90, TD114 and CK in negative ion 
mode. Each row in the figure represents a differentially abundant ion. Each column represents a sample. Different colours represent differences 
in abundance, and the colour range from green to red represent low to high differences
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that the pathways involving the differentially abundant 
metabolites were consistent, and the pathways were 
sorted according to the number of differentially abundant 
metabolites involved (Number ≥ 10) as follows: metabo-
lism, amino acid biosynthesis, purine metabolism, carbon 
metabolism, 2-oxocarboxylic acid metabolism, unsatu-
rated fatty acid biosynthesis, aminoacyl tRNA biosyn-
thesis, arginine and proline metabolism, phenylalanine 
metabolism, ABC transporters, glyoxylate and dicarbo-
xylate metabolism, cysteine and methionine metabolism, 
alanine, aspartate and glutamate metabolism, pyrimidine 
metabolism, tyrosine metabolism, etc.

In positive ion mode, pathway enrichment analysis of 
the differentially abundant metabolites in the TD66-Du 
group and the CK-Du group, was performed with a sig-
nificance threshold of P < 0.05, and pathways were ranked 
by the number of differentially abundant metabolites 
annotated to the pathway. The top four were metabolism, 
neuroactive ligand‒receptor interaction, cysteine and 

methionine metabolism, and tryptophan metabolism. 
The largest enrichment factor of differentially abundant 
metabolites was in the lysosomal pathway (Fig. 10A+). In 
negative ion mode, the top four pathways were metabo-
lism, biosynthesis of unsaturated fatty acids, purine 
metabolism and ferroptosis, and the largest enrichment 
factor of differentially abundant metabolites was likewise 
in the lysosome pathway (Fig. 10A−).

In positive ion mode, enrichment analysis of the path-
ways involved in the differentially abundant metabolites 
of the TD90-Du group and the CK-Du group, was per-
formed, and sorting was performed according to the 
number of differentially abundant metabolites (P < 0.05) 
annotated to the pathways. The top four were metabo-
lism, amino acid biosynthesis, ABC transporter and 
purine metabolism, and the largest enrichment factor 
of differentially abundant metabolites was in the intes-
tinal immune network pathway formed for the produc-
tion of IgA (Fig.  10B++). In negative ion mode, the top 

Fig. 10 Enrichment bubble chart of metabolic pathways with significant differences between TD-Du and CK-Du. A, TD66-Du group; B, TD90-Du 
group; C, TD114-Du; Note: + positive ion mode, −negative ion mode
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four pathways were metabolism, 2-oxocarbonyl acid 
metabolism, amino acid biosynthesis and carbon metab-
olism, and the largest enrichment factor of differentially 
abundant metabolites was in the lysosome pathway 
(Fig. 10B−).

In positive ion mode, enrichment analysis of the path-
ways involving the differentially abundant metabolites 
between the TD114-Du group and the CK-Du group 
was performed, and the pathways were sorted accord-
ing to the number of differentially abundant metabo-
lites (P < 0.05) annotated to each pathway. The top 
four were metabolism, tryptophan metabolism, purine 
metabolism and tyrosine metabolism, and the largest 
enrichment factor of differentially abundant metabo-
lites was in the intestinal immune network pathway 
formed for the production of IgA (Fig. 10C+). In nega-
tive ion mode, the top four pathways were metabolism, 
purine metabolism, tryptophan metabolism, and argi-
nine and proline metabolism, and the largest enrich-
ment factor of differentially abundant metabolites was 
in the lysosomal pathway (Fig. 10C−).

(2)  Analysis of metabolic pathways of differentially 
abundant metabolites in the ileum

In positive ion mode, pathway analysis of the differ-
entially abundant metabolites of the TD66-I group, 
TD90-I group, TD114-I group and CK-Du group 
showed that the pathways involving the differentially 
abundant metabolites were consistent. The pathways 
were sorted according to the number of differentially 
abundant metabolites involved (number ≥ 10) as fol-
lows: metabolic pathways, amino acid biosynthesis, 
tryptophan metabolism, tyrosine metabolism, purine 
metabolism, ABC protein transport, cysteine and 
methionine metabolism, phenylalanine metabolism, 
Neuroactive ligand‒receptor interactions, cytochrome 
P450 metabolism xenobiotics, arginine and proline 
metabolism, 2-oxocarboxylic acid metabolism, ster-
oid hormone synthesis, nicotinate and nicotinamide 
metabolism, aminoacyl tRNA biosynthesis, pyrimidine 
metabolism, glycine, serine and threonine metabolism, 
lysine degradation, histidine metabolism, ferroptosis, 
carbon metabolism.

In negative ion mode, differentially abundant metabo-
lite pathway analysis of the TD66-I group, TD 90-I group, 
TD114-I group and CK-Du group showed that the path-
ways in which the differentially abundant metabolites 
participated were consistent, and the pathways were 
sorted according to the number of differentially abun-
dant metabolites involved (number ≥ 10) as follows: 
metabolic pathways, biosynthesis of amino acids, purine 
metabolism, carbon metabolism, 2-oxocarboxylic acid 

metabolism, biosynthesis of unsaturated fatty acids, 
biosynthesis of aminoacyl tRNA, arginine and Proline 
metabolism, phenylalanine metabolism, ABC protein 
transport, glyoxylate and dicarboxylate metabolism, 
cysteine and methionine metabolism, alanine, aspar-
tate and glutamate metabolism, pyrimidine metabolism, 
tyrosine metabolism.

In positive ion mode, enrichment analysis of the path-
ways involved in the differentially abundant metabolites 
of the TD66-I group and the CK-I group was performed, 
and the results were sorted by the number of differen-
tially abundant metabolites (P < 0.05) annotated to the 
pathways. The top four were metabolic pathways, pyrimi-
dine metabolism, tyrosine metabolism and drug metab-
olism-cytochrome P450, and the largest enrichment 
factor of differentially abundant metabolites was in the 
gap junction pathway (Fig. 11A+). In negative ion mode, 
the top four metabolic pathways were phenylalanine, 
tyrosine and tryptophan biosynthesis, purine metabolism 
and amino acid biosynthesis, and the mTOR signalling 
pathway had the largest differentially abundant metabo-
lite enrichment factor (Fig. 11A−).

In positive ion mode, enrichment analysis of the path-
ways involved in the differentially abundant metabolites 
of the TD90-I group and the CK-I group was performed, 
and the results were sorted according to the number of 
differentially abundant metabolites (P < 0.05) annotated 
to the pathways. The top four were metabolic pathways, 
tyrosine metabolism, pyrimidine metabolism and purine 
metabolism, and the largest enrichment factor of dif-
ferentially abundant metabolites was in the tryptophan 
metabolism pathway (Fig. 11B +). In negative ion mode, 
the top four were metabolic pathways, amino acid bio-
synthesis, ABC transporter and aminoacyl-tRNA biosyn-
thesis, and the mTOR signalling pathway had the largest 
enrichment factor of differentially abundant metabolites 
(Fig. 11B−).

In positive ion mode, enrichment analysis of the path-
ways involved in the differentially abundant metabolites 
of the TD114-I group and the CK-I group was performed, 
and the results were sorted according to the number of 
differentially abundant metabolites (P < 0.05) annotated 
to the pathways. The top four were metabolic pathways, 
tryptophan metabolism, biosynthesis of amino acids, and 
steroid synthesis, and the largest enrichment factor for 
differentially abundant metabolites was in the ferroptosis 
pathway (Fig. 11C+). In negative ion mode, the top four 
were metabolic pathways, 2-oxocarbonyl acid metabo-
lism, amino acid biosynthesis, and ABC transport-
ers, and the caffeine metabolic pathway had the largest 
enrichment factor for differentially abundant metabolites 
(Fig. 11C−).
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Discussion
Duck enteritis virus (DEV) infection mainly causes 
ducks, geese and other Anseriformes to develop charac-
teristic clinical symptoms, such as body cavity haemor-
rhage, intestinal inflammation and parenchymal organ 
degeneration [11]. At present, to explore its pathogenesis, 
it is necessary to establish an infection model. Gener-
ally, the establishment of the model involves simulating 
natural infection, and the quality of the model must then 
be judged. In this study, a common PCR identification 
method and a PLS-DA model prediction method were 
used for this purpose, and the high predictability val-
ues obtained from each PLS-DA model indicated effec-
tive simulation of natural infection. Metabolomics is 
an emerging field of systems biology in which analyti-
cal chemistry methods are used to explore endogenous 
small-molecule metabolites in tissues or biological flu-
ids. In terms of metabolomics research techniques, LC‒
MS has become the next step of GC‒MS and the main 
technological platform after 1H NMR metabolic profiling 

[12, 13]. Metabolomics has been applied to the study of 
various viral infections, examining the characteristics of 
human patient body fluid or tissue samples, clinical ani-
mal models of viral infection, and electronic models of 
viral metabolic networks [13, 14]. In this study, untar-
geted metabolomics technology was used to examine the 
changes in intestinal metabolites and related metabolic 
pathways in DEV-infected ducks at 66 h, 90 h, and 114 h 
compared with the control group at 66 h. With increasing 
infection time, increasing numbers of differentially abun-
dant metabolites were observed, and related metabolic 
pathways are increasingly enriched.

In this study, the intestinal metabolites of DEV-infected 
ducks were analysed using multivariate statistical analy-
ses, such as PCA and PLS-DA, and the results showed 
that the metabolite profiles differed significantly between 
the CK group and the DEV group. Classification of the 
differentially abundant metabolites showed that they 
were predominantly in physiological activities such as 
amino acid metabolism, exogenous biodegradation and 

Fig. 11 Enrichment bubble diagram of metabolic pathways with significant differences between TD-I and CK-I. A TD66-I group; B TD90-I group; C 
TD114-I; Note: + positive ion mode, −negative ion mode
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lipid metabolism, cell growth and death, signal trans-
duction, and the regulation of the immune system. 
These results are consistent with the findings of Zhang 
et  al. [15], who determined that DEV infection changes 
signalling pathways, the production of IgA in the intes-
tinal immune network, and smooth muscle activity and 
regulates a-linolenic acid metabolism, glycine, serine and 
threonine metabolism and other metabolic pathways and 
signalling pathways. Consistently, amino acid metabo-
lism plays a nonnegligible role in this process. Amino 
acids are important for organisms because they can not 
only be used in the synthesis of proteins and other bio-
logically active molecules but also provide raw materials 
for the synthesis of most cytokines. Many recent metabo-
lomic studies have found that viral infection can increase 
the synthesis of amino acids in organisms 16. Similar 
results were obtained in this experiment: DEV infection 
increased the production of lysine, tryptophan, citrulline, 
histidine, methionine, serine, ornithine, and threonine.

Tryptophan (Trp) catabolism is considered to be 
an important factor in inflammation and the immune 
response [17], and various Trp metabolites, such as 
kynurenic acid (Kyn) [18], 5-serotonin (5-hydroxy-
tryptamine) [19] and indole-3-carboxylic acid (IALD) 
[20], contribute to beneficial functions. Tryptophan is 
considered to have a positive role in reducing intesti-
nal permeability and the expression of proinflammatory 
cytokines in IBS and is also considered to be a promising 
therapeutic candidate for the treatment of IBS [21]. In the 
present study, increased levels of tryptophan indicated a 
shift in metabolism towards normal levels, possibly due 
to further remission of IBD, which may be partly related 
to the addition of phytochemicals.

Methionine (Met) and cysteine (Cys) are sulfur-con-
taining amino acids involved in various physiological 
functions. For example, they regulate intestinal func-
tions such as digestion and metabolism of nutrients and 
mucosal resistance by maintaining the integration of 
the epithelial layer [22]. Therefore, after DEV infected 
the intestinal tract, methionine and cysteine were pre-
sent, but there were no differential changes in methio-
nine, and cysteine was found only at 114 h also in the 
form of N-acetyl-l-cysteine. N-acetylcysteine (NAC) 
is a powerful antioxidant and free radical scavenger, 
so it has a protective effect on the peroxidation of cell 
membrane lipids [23]. At 114  h, the level of N-acetyl-
l-cysteine, which is the precursor of the tripeptide glu-
tathione (GSH in the methionine cycle, was higher than 
that in the control group. Glutathione is the main cel-
lular antioxidant in mammals and is closely related to 
free radical formation and lipid peroxidation [24]. Sul-
fur-containing amino acids, especially cysteine, play a 
key role in the cellular redox function of the digestive 

tract, and the protective role of cysteine is well known 
because it is the rate-limiting amino acid for glu-
tathione synthesis [24, 25]. The application of methio-
nine significantly increased the number of cells in the 
lamina propria, which may indicate a proinflamma-
tory effect, and cysteine and N-acetyl-L-cysteine also 
exert anti-inflammatory effects [26]. L-cysteine and 
N-acetyl-L-cysteine have potential as effective drugs for 
the treatment of IBD to reduce inflammation and tis-
sue damage [27]. At 114  h, N-acetyl-l-cysteine in the 
duodenum of DEV-infected ducks was elevated, possi-
bly due to the influence of inflammatory factors on the 
intestinal wall cells of the duck at this time. The duck 
may have been compensating for the effects of DEV 
invasion by producing N-acetyl-l-cysteine to protect 
the intestinal mucosa.

Linoleic acid (LA), which can be found in the duo-
denum after DEV infection at 114  h, is an unsaturated 
fatty acid with an inhibitory effect on the inflammatory 
response, and its metabolites are related to cancer and 
various biological functions [28]. Fatty acids (FAs) are 
necessary for the normal functioning of all organisms; 
their structure can be changed by extension and desatu-
ration, and their biological effects depend on the num-
ber of unsaturated bonds in their molecules [29]. Recent 
studies have found that unsaturated fatty acids have 
significant anti-inflammatory effects, confirming that 
NF-κB and NLRP 3 inflammasomes are involved in the 
pathological process of inflammation [30]. Arachidonic 
acid (AA, a fatty acid) can produce a variety of active 
metabolites (such as prostaglandin E, thromboxane, leu-
kotrienes) [31]. These active metabolites can enhance 
vascular permeability and cause tissue oedema, increase 
the activity of adhesion molecules, promote the migra-
tion of inflammatory cells out of the blood vessel wall, 
and enhance the chemotactic response of monocytes 
and neutrophils, suggesting that AA plays an important 
role in the inflammatory response [32]. Prostaglandin 
G2 showed a downward trend in both groups, which 
may be due to the easy conversion of a large amount of 
prostaglandin G2 into other more effective inflamma-
tory factors (such as prostaglandin H2 and prostaglandin 
E2). Another possible reason is that there is competition 
between prostaglandin G2 and AA. Prostaglandins can 
be found in the duodenum and ileum, but in different 
forms. In the duodenum, prostaglandins take the form 
of PGA2; in the ileum, prostaglandins take the form of 
PGB1. Although the names are similar, the roles of PGA2 
are different: PGA2 induces apoptosis [33], and role of 
PGB1 has not yet been reported.

In the results of these experiments, there were fewer 
differentially abundant metabolites in the ileal segment 
and more differentially abundant metabolites in the 
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duodenal segment, which may be related to the fact that 
substances are metabolized in the body by passing first 
through the duodenum, which is performs the function 
of digesting and absorbing nutrients, so that few sub-
stances reach the ileum.

Conclusion
In this experiment, we successfully established a duck 
DEV infection model, which has good predictability 
and supervision and can meet the needs of subsequent 
metabolomics data determination. After comparative 
analysis, the number of differentially abundant metabo-
lites in the duodenum and ileum after DEV infection dif-
fered to some extent, with the duodenal tissues having 
significantly more differentially abundant metabolites 
and the ileal tissues having fewer differentially abun-
dant metabolites. The number of differentially abundant 
metabolites changed over time after DEV infection. The 
highest number of differentially abundant metabolites 
was found at 114 h of infection, followed by 90 h of infec-
tion, and the lowest was found at 66 h of infection. The 
same differentially abundant metabolites were present 
at all time points: prostaglandins, arachidonic acid and 
ethanolamine arachidonic acid, among others. The main 
metabolic pathways in the duodenum were the IgA-asso-
ciated intestinal immune network pathway and the lyso-
somal pathway, and the metabolic pathways that were 
more enriched in the ileum included the mTOR signal-
ling pathway, the ferroptosis pathway, and the tryptophan 
metabolism pathway.
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