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and non-dividing cells with high efficiency to yield long-
term transgene expression, relatively low immunogenic-
ity, and selective tissue tropism [6]. Gene therapy has 
wide-ranging potential to improve the treatment options 
for patients suffering from inherited or acquired diseases 
and can pave the way for a new era in the treatment of 
uncommon illnesses and cancer [7], as well as in the 
prevention of infectious diseases [8]. Some AAV-based 
gene therapy products have already been authorized for 
human use, including Glybera (lipoprotein lipase defi-
ciency), Luxturna (retinal dystrophy), Zolgensma (spinal 
muscular atrophy), Hemgenix (hemophilia type B), Roc-
tavian (hemophilia type A), and Upstaza (AADC defi-
ciency) [9, 10].

Given that AAV is endemic in the human population, 
it is remarkable that many questions on its natural infec-
tion remain unresolved. There have been few research 
addressing the influence of AAV infection on human 
health, and the findings are inconsistent (reviewed 
in [11]). In general, AAV has been known to be a non-
pathogenic virus and an inhibitor of carcinogenesis 
caused by coinfecting viruses. It was found to induce 
selective apoptosis in cells lacking active p53, inhibit 

Main text
Discovered as an adenovirus stock contaminant in the 
mid-1960s, adeno-associated virus (AAV) is a non-
enveloped mono-stranded DNA virus that belongs to 
the Dependoparvovirus genus within the Parvoviri-
dae family [1]. AAV infects a variety of animal species, 
including humans, and has a global seroprevalence that 
ranges from around 30–80% in the human population, 
depending on the AAV serotype and analyzed cohort [2, 
3]. The liver has been shown to be the main infection site 
of AAV, with the bone marrow, spleen and uterus being 
important secondary infection sites [4]. Unlike most 
other viruses, AAV requires the simultaneous presence of 
a helper virus to undertake active infection [5].

The most visible and popular application of AAV is 
in gene therapy, where it offers the unique capacity of 
recombinant AAV (rAAV) vectors to transduce dividing 
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Abstract
Adeno-associated virus (AAV) differs from most other viruses, as it requires the simultaneous presence of a helper 
virus for an active infection. Up to 80% of the human population is seropositive for AAV antibodies. AAV has been 
known to be a non-pathogenic virus and an inhibitor of carcinogenesis caused by coinfecting viruses. However, 
the recent reports associating AAV infection with hepatocellular carcinoma development and the mysterious 
cases of acute severe hepatitis in children have challenged the idea that AAV is a harmless virus. Herein, we 
explore the usefulness of AAV in gene therapy and the importance of AAV as a protector or perpetrator in human 
carcinogenesis, ultimately reflecting on the dual role of AAV in human health.
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tumor growth in mice [12], and suppress HPV-induced 
cell transformation in vitro and in vivo [13–15]. Consis-
tent with this, epidemiological data suggest that AAV 
infection plays a tumor-suppressing role in HPV-related 
cervical cancer [16–18].

Surprisingly, the idea that AAV is a non-pathogenic 
virus has been challenged by recent reports. These stud-
ies found that clonal wild-type AAV (wtAAV) insertions 
in human cancer-driver genes were associated with rare 
cases of hepatocellular carcinoma (HCC) in a non-cir-
rhotic liver background [19–21]. In particular, La Bella 
and colleagues (2020) [19] provided a comprehensive 
examination of the wtAAV infection in the liver with a 
description of viral genotypes, molecular forms, helper 
virus relationship, and viral integrations. However, the 
magnitude of the genotoxic potential of wtAAV is still 
little known, considering the prevalence of natural infec-
tions and the few AAV-related HCC cases reported so 
far. Noteworthy, natural infection with AAV has no cor-
relation with the delivery of current rAAV vectors for 
gene therapy, since a considerable portion of the wtAAV 
genome is deleted when developing AAV-based vectors, 
thus preventing rAAV from replicating. Despite the two 
independent mouse models of AAV vectorization that 
developed HCC by insertional mutagenesis [22, 23], the 
risk of rAAV-mediated oncogenesis in humans is theo-
retical since no confirmed genotoxic events have been 
documented to date [24].

Also surprising were the three independent studies 
published in the March 2023 issue of Nature demon-
strating that infection with AAV serotype 2 (AAV2) was 
linked to recent clusters of unexplained acute severe hep-
atitis in children [25–27]. The mysterious cases of non-A 
to E hepatitis were first identified in April 2022 in Scot-
land and, by July 2022, the World Health Organization 
had reported over 1,000 probable cases across 35 coun-
tries, including 46 cases that required liver transplants 
and 22 deaths [28]. Based on metagenomic sequencing 
of available whole blood, plasma, stool, or liver tissue, 
the three investigative groups observed AAV2 positivity 
in 96%, 93%, and 81% of cases but only 9.2%, 3.5%, and 
7% of controls in London [26], the U.S. [27], and Scot-
land [25], respectively. Many of the patients also showed 
evidence of infection with a helper virus, such as human 
adenovirus or herpesviruses. Furthermore, it is known 
that human leukocyte antigen (HLA) polymorphisms 
can affect both the susceptibility and the severity of viral 
infections, since this complex contains the key immune 
response genes determining peptide presentation to T 
cells [29]. Interestingly, genotyping analysis revealed 
that the affected children had a high frequency of HLA 
class II DRB1*04:01 allele (93% of cases compared to 16% 
of the overall United Kingdom population), supporting 
an immunological predisposition [25]. Consistent with 

this, liver samples from cases were found to be enriched 
in adaptive immune cells and immune-related pro-
teins, and RNA transcriptome analysis of these samples 
pointed to the occurrence of active AAV2 infection [25, 
26]. These data suggest that acute hepatitis was caused 
by aberrant immune responses, with AAV2 acting as 
a potential trigger for immune-mediated liver damage 
rather than as a hepatotoxic factor. Remarkably, the tim-
ing of the hepatitis outbreak coincided with the global 
relaxation of COVID-19 restrictions. Given that com-
munity lockdowns may have altered children’s regular 
exposure patterns and immunity, those with a specific 
genetic background may have been more susceptible to 
viral coinfections [30, 31]. Of note, three months after the 
publication of the Nature studies, Gates and colleagues 
(2023) [32] investigated the epidemiology of AAV in the 
United Kingdom by analyzing 300 pediatric respiratory 
samples collected before (April 2009–April 2013) and 
during (April 2022) the COVID-19 pandemic. Waste-
water samples were also collected from 50 locations in 
London (August 2021–March 2022). Interestingly, the 
detection frequency of AAV2 was a sevenfold higher in 
the pediatric samples from 2022 than those from 2009 
to 2013 (10% vs. 1.4%). Moreover, in wastewater col-
lected in 2021, AAV2 sequences were either extremely 
low or absent, but increased in January 2022 and peaked 
in March 2022. Taken together, these findings support 
the etiological link between AAV2 infection and the 
cases of acute hepatitis in children, and demonstrate the 
potential of AAV2 to cause severe disease under specific 
conditions (e.g. host genetic background and increased 
postpandemic host susceptibility).

Conclusion
Clearly, the recent studies associating AAV infection 
with HCC development and acute hepatitis in children 
are paving the way for renewed interest in wtAAV biol-
ogy. Further research is needed to determine the impact 
of AAV infection and the frequency of insertional muta-
genesis in additional cohorts of patients. Moreover, to 
evaluate whether AAV2 infection can cause, or contrib-
ute to, acute hepatitis in children, prospective and well-
controlled follow-up studies are necessary. The existing 
literature on AAV shows us that the virus-host relation-
ship is complex and the viruses can be useful in several 
healthcare contexts.
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