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Abstract
Background  The mucosa serves as the first defence against pathogens and facilitates the surveillance and 
elimination of symbiotic bacteria by mucosal immunity. Recently, the mRNA vaccine against SARS-CoV-2 has 
been demonstrated to induce secretory antibodies in the oral and nasal cavities in addition to a systemic immune 
response. However, the mechanism of induced immune stimulation effect on mucosal immunity and commensal 
bacteria profile remains unclear.

Methods  Here, we longitudinally analysed the changing nasal microbiota and both systemic and nasal immune 
response upon SARS-CoV-2 mRNA vaccination, and evaluated how mRNA vaccination influenced nasal microbiota in 
18 healthy participants who had received the third BNT162b.

Results  The nasal S-RBD IgG level correlated significantly with plasma IgG levels until 1 month and the levels were 
sustained for 3 months post-vaccination. In contrast, nasal S-RBD IgA induction peaked at 1 month, albeit slightly, 
and correlated only with plasma IgA, but the induction level decreased markedly at 3 months post-vaccination. 16 S 
rRNA sequencing of the nasal microbiota post-vaccination revealed not an overall change, but a decrease in certain 
opportunistic bacteria, mainly Fusobacterium. The decrease in these bacteria was more pronounced in those who 
exhibited nasal S-RBD IgA induction, and those with higher S-RBD IgA induction had lower relative amounts of 
potentially pathogenic bacteria such as Pseudomonas pre-vaccination. In addition, plasma and mucosal S-RBD IgG 
levels correlated with decreased commensal pathogens such as Finegoldia.

Conclusions  These findings suggest that the third dose of SARS-CoV-2 mRNA vaccination induced S-RBD antibodies 
in the nasal mucosa and may have stimulated mucosal immunity against opportunistic bacterial pathogens. This 
effect, albeit probably secondary, may be considered one of the benefits of mRNA vaccination. Furthermore, our data 
suggest that a cooperative function of mucosal and systemic immunity in the reduction of bacteria and provides a 
better understanding of the symbiotic relationship between the host and bacteria in the nasal mucosa.
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Background
Recent reports indicate that SARS-CoV-2 (severe acute 
respiratory syndrome coronavirus 2) infection induces a 
strong humoral immune response characterized by the 
production of virus-specific antibodies of immunoglob-
ulin M (IgM), IgG, and IgA isotypes [1–3]. These anti-
body inductions are not limited to detection in plasma 
but have also been shown to be secreted in saliva, and a 
strong correlation between antibodies to SARS-CoV-2 in 
blood and saliva has been reported [4, 5]. Several vaccines 
have been developed to control SARS-CoV-2 infection, 
including two mRNA vaccines, BNT162b2 (Pfizer/Bio-
tech) and mRNA-1273 (Moderna). These mRNA-based 
vaccines are administered intramuscularly to induce anti-
bodies against SARS-CoV-2 spike protein, including neu-
tralizing antibodies (NAb) against the receptor binding 
domain of SARS-CoV-2 (anti-S) [6].

Protective anti-S IgG and anti-S IgA have been detected 
in the peripheral blood and respiratory tract after post 
vaccination in recent reports [7–14]. In particular, IgA is 
secreted mainly on the mucosa as a dimer and is known 
to inhibit the entry of pathogens into the mucosa, and 
these antibodies are expected to be effective in prevent-
ing infection [15]. Some papers have reported that the 
amount of antibodies secreted in saliva is lower than in 
blood after recent SARS-CoV-2 mRNA vaccination [9, 
12, 13]. It has also been reported that antibody induction 
by vaccination is more pronounced in previously infected 
individuals than in uninfected individuals [7, 8, 10–14], 
and post vaccination break-through infected individu-
als who experienced infection have been reported to 
have statistically significantly lower levels of anti-S IgA 
in saliva than uninfected individuals [13]. These reports 
suggest that anti-S IgA induction in the mucosa epithe-
lium, despite its low value, may be useful in protection 
against certain viral infections.

The nasal and oral cavities are major entry routes for 
numerous respiratory viral infections [16]. The indig-
enous microbiota coexisting in these cavities may be 
altered by infection or the immune response to infection. 
Although there is limited information on the contribu-
tion of commensal microbiota to SARS-CoV-2 infection, 
reports show that the nasal and gut microbiotas are 
altered depending on SARS-CoV-2 infection [17–21]. 
Especially in the case of severe coronavirus infection 
2019 (COVID-19), it has been reported that the nasal 
microbiota profile contributes to the spread of second-
ary bacterial infection (bacteremia) [22], and dysbiosis 
due to viral infection leads to the growth of opportunistic 
pathogens [23]. Although the causal relationship between 
the immune response to viral infection and changes in 

the composition of the microbiota has not yet been fully 
elucidated, it is suggested that the host immune response 
and antibody secretion in the mucosal epithelium may 
alter the composition of the microbiota in the nasal 
mucosal epithelium. Recent reports have shown that 
the gut microbiota and COVID-19 mRNA vaccination 
affect each other: the gut microbiota influences vaccine-
induced immunity and changes its composition after vac-
cination [24–26].

Unlike systemic immunity, the immune system in the 
intestinal epithelium and mucosa constantly monitors 
and eliminates microorganisms as well as establishes a 
highly symbiotic relationship with the corresponding 
bacterial communities [27]. Secretory IgA (sIgA) is the 
major antibody isotype in secretions, and it monitors 
resident bacteria. IgG is transported through nasopha-
ryngeal epithelial cells via the neonatal Fc receptor FcR, 
and regulation by these immunoglobulins is postulated 
to be involved in commensal microbiota diversity [27]. In 
addition, certain bacteria have been reported to function 
as adjuvants to immune acquisition in vaccination, sug-
gesting that the intestinal microbiota plays an unknown 
role in promoting immunity in response to vaccination 
[28]. Because the mucosal environment forms the bound-
ary between the internal and external environments and 
is the site of conflict between host-side immunity and 
symbiotic mucosal microbiota, it can be inferred that the 
interaction between antibodies secreted on the mucosa 
and the microbiota is important to maintain homeosta-
sis [27]. However, little is known about the relationship 
between mucosal immunity and the nasal microbiota. 
Therefore, this study aimed to clarify the correlation 
between mucosal immunity and the nasal microbiome 
by examining the amount of antibodies secreted into the 
plasma and nasal mucosa and the changes in the nasal 
microbiome in participants vaccinated with mRNA 
against the SARS-CoV-2 S protein.

Methods
Subject recruitment and sample collection
Between December 2021 and June 2022, nasopharyn-
geal swab samples and blood samples were collected at 
IMSUT Hospital, the University of Tokyo Institute of 
Medical Science Hospital, from 18 healthy participants 
who are medical workers. Prior to participation in the 
study, all participants were negative for antibodies to the 
N protein of SARS-CoV-2 and had received two doses 
of the Pfizer-BioNTech COVID-19 mRNA vaccina-
tion (BNT162b). Participants received the third dose of 
BNT162b in this study, and specimens were collected 
before and at 1, 4, and 13 weeks after the third BNT162b. 

Keywords  SARS-CoV-2, COVID-19, Microbiota, Commensal bacteria



Page 3 of 12Ishizaka et al. Virology Journal          (2023) 20:146 

The swab was saturated in universal viral transport (Bec-
ton Dickinson, NJ, USA), and the aliquots were frozen at 
-20  °C until further processing. The plasma fraction of 
blood samples was stored at -80 °C.

DNA extraction, amplification, and 16 S rRNA gene 
sequencing
We extracted bacterial genomic DNA from frozen swab 
samples using the DNeasy PowerSoil Pro kit (Qiagen, 
Hilden, Germany) according to manufacturer’s instruc-
tions. The 16  S rRNA gene libraries were prepared 
according to the 16 S Metagenomics Sequencing Library 
Preparation guide (Illumina, CA, USA). Briefly, the 
hypervariable V3–V4 region of the 16 S rRNA gene was 
amplified using specific primers: forward (5′-ACACGAC-
GCTCTTCCGATCTCCTACGGGNGGCWGCAG-3′) 
and reverse (5′-GACGTGTGCTCTTCCGATCTGAC-
TACHVGGGTATCTAATCC-3′), comprising Illumina 
adapter overhang nucleotide sequences (underlined) 
[29]. Next, adapter ligation for polymerase chain reaction 
(PCR) amplicons was performed using NEBNext Multi-
plex Oligos for Illumina (Dual Index Primers Set 1; New 
England Biolabs, MA, USA). Sequencing was performed 
using the MiSeq Reagent Kit v3 (600-cycle) with a 15% 
PhiX (Illumina) spike-in.

Sequencing and statistical analyses
Sequences were quality filtered, denoised, and analyzed 
using Quantitative Insights Into Microbial Ecology 2 
(QIIME 2 version 2019.4) as previously reported [30]. 
In brief, DADA2 was used to denoise the paired-end 
reads into amplicon sequence variants [31]. A bacterial 

taxonomic classification was assigned to the resulting 
amplicon sequence variants against the SILVA database 
(release 132) [32]. This was trimmed to the V3–V4 region 
of the 16 S rRNA gene using a naïve Bayesian classifica-
tion method [33]. The Kruskal-Wallis test was used for 
statistical analysis of alpha diversity (Shannon index) and 
analyzed with QIIME2 software (cut-off p-value < 0.05). 
OTU tables were aligned to an equal sampling depth of 
10,000 per sample by alpha-rarefaction analysis to avoid 
bias caused by differences in sequence depth. Data were 
pre-processed as described in ANCOM-II to remove 
low-abundance or rare taxa before differential presence 
ratio analysis [34]. Bacterial species identification of the 
microbiota was performed using the expanded human 
oral microbiome database (eHOMD: version 15.22) [35]. 
All data were statistically compared using GraphPad 
Prism v9. Statistical analysis of metagenomic profiles was 
performed using the LEfSe method to identify differen-
tially abundant taxa.

Antibody analysis
SARS-CoV-2 specific IgG and IgA levels were quantified 
using COVID-19 ELISA kits, namely IEQ-COVS1RBD-
S-RBD IgA (Ray Biotech Life, GA, USA) and Anti SARS-
CoV-2 S-RBD IgG ELISA Kit (Wako, Osaka, Japan) from 
plasma and nasopharyngeal swab. Total IgG and IgA lev-
els were quantified using Bio-Plex Pro Human Isotyping 
6-plex panel (Bio Rad, CA, USA). For comparative analy-
sis, nasal and plasma SARS-CoV-2-specific S-RBD IgG 
and S-RBD IgA levels were normalized by dividing by 
total IgG and total IgA levels, respectively.

Results
Clinical characteristics of study participants
For this study, 18 healthcare workers were enrolled. All 
subjects enrolled in the study had received two previous 
doses of BNT162b2 (Pfizer/Biotech) vaccine 6 months 
prior to enrolment in the study, were not infected with 
SARS-CoV-2, and had no autologous diseases of note. 
Subjects received their third dose of BNT162b2 (Pfizer/
Biotech) vaccine, and blood and nasal swab samples were 
collected at the following time points: before (Pre), 1 
week (1  W), 1 month (1  M), and 3 months (3  M) after 
vaccination between December 2021 to June 2022. At 
each sample collection, quantitative RT-PCR for SARS-
CoV-2 was performed and confirmed negative. The 
demographic and clinical characteristics of these subjects 
are shown in Table 1. The cohort consisted of 8 men and 
10 women with a median age of 50 years (range: 25–62 
years).

Table 1  Background characteristic of participants in this study
No. ID Sex1 Age
1 HP(H)- 007 F 45

2 HP(H)- 008 M 38

3 HP(H)- 019 F 56

4 HP(H)- 026 F 24

5 HP(H)- 065 F 40

6 HP(H)- 106 F 29

7 HP(H)- 115 F 48

8 HP(H)- 131 M 61

9 HP(H)- 168 M 49

10 HP(H)- 173 M 39

11 HP(H)- 181 M 53

12 HP(H)- 193 M 43

13 HP(H)- 194 M 49

14 HP(H)- 197 F 59

15 HP(H)- 216 F 49

16 HP(H)- 221 F 55

17 HP(H)- 303 M 50

18 HP(H)- 304 F 47
1 F: Female (n = 10), M: Male (n = 8)
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Humoral immunity of peripheral blood and nasal cavity to 
S-RBD by SARS-CoV-2 mRNA vaccination
Antibody responses to the receptor-binding domain 
on the spike of SARS-CoV-2 (S-RBD) were evaluated 
in serum and nasal swab samples after the third dose of 
BNT162b at all time-points. Nasal mucosal S-RBD IgG 
and S-RBD IgA were detected in nasal swabs of nearly 
all study participants (Supplementary Fig.  1), and anti-
body levels in serum were measured at the same time 
points for comparison. Figure  1 shows the time course 
of antibody levels of serum S-RBD IgG and S-RBD IgA 
(Fig. 1A) and nasal mucosal S-RBD IgG and S-RBD IgA 
of participants of this study and SARS-CoV-2 infected 

patients (Fig.  1B). Serum S-RBD IgG, S-RBD IgA, and 
nasal mucosal S-RBD IgG increased significantly from 
1 W to 1 M after vaccination. Nasal mucosa S-RBD IgA 
increased slightly by 1 month post inoculation, although 
not statistically significant, but values decreased at 3  M 
post-vaccination. Nasal mucosa S-RBD IgG showed a sta-
tistically significant correlation with serum S-RBD IgG 
levels and S-RBD IgA at 1 W and 1 M after vaccination, 
but nasal mucosa S-RBD IgA did not correlate with them 
(Fig. 1C and D). However, S-RBD nasal IgA levels did not 
correlate with systemic S-RBD plasma IgA levels at 1 W 
post-vaccination, but a strong correlation was observed 
at 1 M post-vaccination.

Fig. 1  Antibody response to S-RBD of SARS-CoV-2 in plasma and nasal cavity of BNT162b2 vaccine recipients
(A) S-RBD IgG and IgA antibodies were measured in plasma before and after the third dose of the BNT162b2 vaccination. (B) S-RBD IgG and IgA antibod-
ies were measured in nasal-swab samples before and after the third dose of the BNT162b2 vaccination. S-RBD IgG and IgA of nasal swab samples from 
SARS-CoV-2 infected patients (n = 3). a: patient-1 (74 years old, male) at 6 days after onset, b: patient-2 (76 years old, male) at 6 days after onset and c1, c2 : 
patient-3 (74 years old, female) at 7 days and 28 days after onset. The dashed line represents the negative cut-offs. (C-D) Correlation analysis of anti-S-RBD 
antibodies in plasma and nasal swabs of study participants one week (C) and one month (D) after the third dose. The solid red line indicates the median 
for the entire subject population. *p < 0.05, **p < 0.01, *** p < 0.001 and **** p < 0.0001
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Changes in nasal bacteria abundance following mRNA 
vaccination
Next, changes in the nasal microbiota were analyzed fol-
lowing vaccination. After extracting DNA from the nasal 
swab samples, the 16  S rRNA region of bacterial origin 
was amplified by PCR and sequenced by a next-genera-
tion sequencer to identify the profile of the nasal micro-
biota. Bacterial level analysis revealed that the subjects’ 
nasal microbiota primarily comprised Corynebacterium 
1 and Staphylococcus. At the class level, the microbiota 
dominant in the nasal cavity were Actinobacteria, Bacilli, 
and Gammaproteobacteria (Fig.  2B). Diversity analy-
sis of the nasal microbiota before and after vaccination 
revealed no change in either the observed operational 
taxonomic units (OTUs) or Shannon index nor any 
change in beta diversity (Fig.  2C). Next, we compared 
changes in nasal microbiota pre-vaccination and 1  M 
post-vaccination using linear discriminant analysis (LDA) 
effect size (LEfSe) analysis. Compared to pre-vaccination, 
a decrease in several microbiota was observed 1 M post-
vaccination, with a decrease in the phylum Fusobacteria 
and its dependent bacterial species, Peptostreptococca-
ceae family and Dermacoccaseae family, and Dermacoc-
cus (Fig.  2D, left). Among these bacteria, the reduction 
in abundance of Fusobacteriia class and Dermacoccaceae 
family at 1  M post-vaccination compared to pre-vacci-
nation was also statistically significant in a paired t-test 
(Fig. 2D, right).

mRNA vaccination induces mucosal S-RBD IgA response 
accompanied by changes in nasal bacteria abundance
Although mucosal S-RBD IgA secreted into the nasal 
cavity is expected to effectively inhibit viral infection, 
there are few reports on the induction of nasal mucosal 
S-RBD IgA by mRNA vaccination against SARS-CoV-2 
[36]. Therefore, we analyzed the correlation between 
the induction of nasal mucosal S-RBD IgA by vaccina-
tion and changes in nasal microbiota due to vaccination. 
Because participants in this study had already received 
two vaccinations, individual differences were observed 
in nasal mucosal S-RBD IgA levels before the third vacci-
nation (Fig. S1). Therefore, the mucosal S-RBD IgA level 
at the time before vaccination was used as a baseline, 
and the change in nasal S-RBD IgA level due to vaccina-
tion was quantified by the rate of increase. An increase 
in nasal S-RBD IgA was observed in 13 of 18 subjects at 
1 M post-vaccination, while no induction of S-RBD IgA 
was observed in the remaining 5 subjects (Fig.  3A and 
Fig. S1). Since it is known that secreted IgA regulates 
microbial diversity in the gut, we examined whether the 
increasing levels of S-RBD IgA affect the nasal microbi-
ota [37–39]. Although the rate of increase in IgA within 
the analysis period was within a 3-fold movement in 
all but one sample, we selected 2-fold movement to 

conveniently distinguish high and low IgA induction. We 
then, divided the five subjects with a 2-fold or greater 
increase in S-RBD IgA into a high S-RBD IgA increase 
group (n = 5) and a lesser group into a low S-RBD IgA 
response group (n = 13) to examine whether values in the 
microbiota before vaccination affected the rate of S-RBD 
IgA increase by LEfSe analysis (Fig. 3B). Increased abun-
dance of genera such as Abiotrophila Neisseria and Lep-
totrichiaceae belonging bacteria, as well as a decreased 
abundance of Pseudomonas, Sphingomonas, Prevotella7 
and bacteria belonging to the Burkholderiaceae family, 
were mainly observed in the high S-RBD IgA induction 
group compared to the low S-RBD IgA group.

Furthermore, as mucosal IgA secreted into the gut 
has been reported to affect microbiota [40], we com-
pared changes in the nasal microbiota before and one 
month after vaccination using LEfSe analysis to evalu-
ate the microbiota response to vaccination in 13 subjects 
exhibiting an increase in S-RBD IgA. The results showed 
that several microbiota reductions were observed 1  M 
after vaccination compared to that before vaccination 
(Fig.  3C). In particular, the reduction of Fusobacterium 
observed in the overall analysis (Fig.  2D) in addition to 
the Negativicutes class and Haemophilus, was consis-
tently observed at each level of the paired t test (Fig. 3D). 
These results indicate that the abundance of certain bac-
terial species changed as S-RBD IgA induction occurred 
in the nasal mucosa.

Association of nasal microbiota with changes in plasma 
S-RBD IgG levels following mRNA vaccination
The mRNA vaccine produces a viral antigen through a 
protein synthesis process in host cells, which triggers a 
strong systemic immune response. Induced S-RBD IgG 
is transferred to mucosal sites from the blood [27]. We 
analyzed the correlation between the induction of nasal 
S-RBD IgG and changes in the nasal microbiota caused 
by vaccination. Because the induction of nasal S-RBD 
IgG was confirmed to peak at 1  M post-vaccination, 
we classified the groups based on their induction lev-
els at this time point. First, LEfSe analysis of difference 
between the two groups of the nasal microbiota pre-vac-
cination revealed that mainly Pseudomonas, Finegoldia, 
and bacteria belonging to the Neisseriaceae family were 
in smaller amounts in the high S-RBD IgA induction 
group than the low induction group (Fig. 4A). A similar 
analysis of plasma S-RBD IgG showed that the relative 
abundance of Clostridia, Clostridiales, Family XI, Peto-
niphilus, and Finegoldia decreased in the high induction 
group from before vaccination, as observed for mucosal 
S-RBD IgG (Fig.  4B). Notably, the relative pre-vaccina-
tion amounts of Pseudomonas as well as uncultured bac-
teria of the Neisseriaceae family and Finegoldia showed 
a negative correlation with mucosal S-RBD IgG levels 
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at 1  M post-vaccination (Fig.  4C), whereas the relative 
pre-vaccination amounts of Clostridia class as well as 
Petoniphilus and Finegoldia within this class correlated 
negatively with plasma S-RBD IgG levels at the same 
time point (Fig. 4D). Further, Finegoldia magna exhibited 

a negative correlation with mucosal S-RBD IgG levels at 
1 M post-vaccination (Fig. 4D).

Fig. 2  Analysis of changes to and diversity of nasal microbiota following vaccination
(A) Taxa bar plot for main genus in the participants. (B) Taxa bar plot for class in the participants. (C) Diversity analysis of nasal microbiota in the partici-
pants. Observed operational taxonomic units (OTUs) (left), Shannon analysis (middle), and Beta diversity; unweighted UniFrac distance to pre-vaccination 
(right). (D) Changes in nasal microbiota were analyzed using linear discriminant analysis (LDA) effect size in comparison with the whole cohort (left). 
Changes in nasal bacteria in the nasal cavity due to mRNA vaccination. Change in relative abundance of Fusobacteriia class and Dermacoccaceae family 
from pre-vaccination to one-month post-vaccination (right). Wilcoxon matched pair signed rank test was used to calculate significance between pre and 
1 M. ns not significant, *p < 0.05, **p < 0.01. pre: before, 1 W: 1 week, 1 M: 1 month
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Discussion
Herein, our finding reveals that 3rd mRNA vaccination 
decreased the abundance of certain potentially patho-
genic bacteria, although it did not significantly impact 
nasal microbiota diversity. Specifically, such decreases 
were associated with plasma and nasal IgA and IgG levels 
against SARS-CoV-2 spike and receptor binding domain 
(S-RBD). In this study, we observed that, compared to 
subjects in the low response group, subjects with higher 
nasal S-RBD IgA induction had lower levels of poten-
tially pathogenic bacteria such as Pseudomonas and Bur-
kholdariaceae before vaccination. The same group also 

showed reduced levels of potentially pathogenic bacte-
ria such as Haemophilus and Fusobacterium at 1 M post 
vaccination.

Previous reports have shown that many bacteria in the 
intestinal tract are constantly coated by secretory IgA 
or secretory IgM, which are primarily T cell indepen-
dent [27]. The function of secretory IgA is to be used for 
bacterial adhesion and biofilm formation, which helps 
increase bacterial diversity, while it is also thought to 
be effective in inhibiting bacterial growth and eliminat-
ing bacteria. Especially, bacterial groups recognized by 
IgA in normal conditions are often pathogenic and are 

Fig. 3  Changes in nasal IgA and nasal microbiota due to vaccination
(A) 3-fold activation of nasal IgA level before and after vaccination. Changes in IgA values due to vaccination were calculated using the pre-vaccination 
value as a reference. (B) Values of nasal microbiota before vaccination were analyzed using LDA effect size (LEfSe) in comparison with the upper and lesser 
nasal IgA responders (C) Comparison of nasal bacterial content of IgA responders before and after vaccination (1 M) using LEfSe analysis. (D) Changes 
to bacteria in the nasal cavity in nasal IgA responders from pre-vaccination to 1 M post-vaccination. Wilcoxon matched pair signed rank test was used to 
calculate significance between pre and 1 M. ns not significant, *p < 0.05, **p < 0.01. pre: before, 1 W: 1 week, 1 M: 1 month
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captured and cleared by the more constrained T cell-
dependent secretory IgA [37–39]. Given that secretory 
nasal IgA routinely monitors potentially pathogenic bac-
teria in the nasal mucosa to protect the host and regulate 
homeostasis of symbiotic bacteria, therefore, vaccination 
may forcibly stimulate adaptive immune response that 
excludes these specific bacteria in nasal cavity.

In the present analysis, the relative abundance of 
opportunistic bacteria, such as Peptoniphilus and Fine-
goldia, was lower in the group with high S-RBD IgG reac-
tivity in the mucosa and plasma than in the group with 
low reactivity. Moreover, Peptoniphilus and Finegoldia 
showed an inverse correlation with mucosal and plasma 
IgG levels but not IgA, and F. magna, a causal pathogen 

Fig. 4  Changes in nasal and plasma IgG and alteration of nasal microbiota due to vaccination
(A-B) Changes in nasal microbiota were analyzed using LDA effect size in comparison with the upper and lower nasal IgG responders (A) and plasma IgG 
responders (B). (C-D) Correlation analysis between nasal IgG (C) or plasma IgG (D) post 1 month vaccination and nasal bacteria pre-vaccination. Spear-
man’s rank correlation test was used to calculate significance between antibodies level and relative abundance of bacteria. ns not significant, *p < 0.05, 
**p < 0.01. pre: before, 1 W: 1 week, 1 M: 1 month. The dotted lines represent 95% confidential intervals

 



Page 9 of 12Ishizaka et al. Virology Journal          (2023) 20:146 

of bacteremia, had a negative correlation with plasma 
IgG. Systemic IgG plays a role in regulating the diversity 
of intestinal bacteria [41–43], although the mechanism is 
still unclear. Nevertheless, the present observations sug-
gest that, as in the intestinal tract, immune surveillance 
of the symbiotic bacterial microbiota may be functional 
in the nasal mucosa [44, 45]. Therefore, there is likely a 
coordinated but distinct bacterial-targeted regulatory 
mechanisms in systemic and mucosal immunity. This 
idea is consistent with a previous report [46].

It is unlikely that the observed changes in the micro-
biota directly result from immunoglobulins targeting 
the spike-RBD protein of SARS-CoV-2; these changes 
may have occurred as a secondary effect of mRNA vac-
cination. Thus, it is possible that the vaccination-induced 
transient systemic immune response enhanced a local-
ized immune response in the nasal mucosa. The nasal 
S-RBD IgA and IgG levels were highest at 1 M post-vac-
cination and decreased at 3 M, suggesting that this sec-
ondary immune activation is less likely to continue for a 
long duration. At this time, it is not known if this obser-
vation will have a similar effect with different types of 
mRNA vaccines. However, further analysis is needed to 
determine the decreasing duration of the opportunistic 
pathogens observed in this study.

In view of the original purpose of vaccination, the 
observed reduction in opportunistic pathogens due to 
vaccination was unexpected, but this secondary effect 
may significantly reduce the risk of severe COVID-
19. Secondary bacterial infection (bacteremia) dur-
ing hospitalization is known to be a major risk factor 
for the severity of COVID-19 infection, and nearly 50% 
of hospitalized patients with COVID-19 suffered hos-
pital-acquired infection [22]. It has been reported that 
opportunistic pathogens can invade the bloodstream, 
initiated by dysbiosis due to SARS-CoV-2 infection [23]. 
In particular, nosocomial infections are often caused by 
pathogenic bacteria that live symbiotically in the patient’s 
nasal cavity, and the use of antibiotics and antivirals, 
in addition to a weakened immune system, has been 
reported to cause the spread of secondary bacterial infec-
tion [22, 23, 47].

Among the bacteria decreased in this study were bac-
teremia-causing opportunistic pathogens, such as Pseu-
domonas, Peptoniphilus, and Finegoldia. Particularly, 
Pseudomonas and Peptoniphilus are more likely to be 
detected in the nasal passages of SARS-CoV-2-infected 
individuals [48, 49]. In addition, research on rhinovi-
ruses, which cause upper respiratory tract infections, has 
reported that the infection severity is increased when the 
abundances of opportunistic pathogens such as Pseudo-
monas in the nasal cavity are high before infection [50]. 
These reports imply that, as is true for many infections 
and diseases, suppressing the growth of nasal pathogens 

may prevent severe COVID-19 infections. In addition, 
the findings of the present study suggest that the mRNA 
vaccine against SARS-CoV-2 may be effective in prevent-
ing the growth of these pathogenic bacteria.

Even concerning Fusobacterium, whose decrease was 
observed in this study, F. nucleatum belonging to this 
family has been reported to be highly pathogenic to 
humans causing periodontal disease and oral lesions [51]. 
Of note, an in vitro study in A549 lung cell line showed 
that F. nucleatum upregulates the expression of ACE2, 
a receptor for SARS-CoV-2 [52]. We are also beginning 
to understand the role of F. nucleatum in promoting 
inflammation in the intestinal tract. Moreover, reduced 
Fusobacterium in the upper respiratory tract due to vac-
cination may be effective in inhibiting de novo infec-
tion of SARS-CoV-2. Based on these observations, these 
observations propose a new aspect of vaccine effec-
tiveness in terms of changes in the symbiotic bacterial 
microbiota in the nasal cavity. However, further analy-
ses are needed to understand the role of the bacterial 
microbiota.

In summary, we observed a decrease in potentially 
pathogenic bacteria via mRNA SARS-CoV-2 vaccination 
in this study. However, this observation was the result of 
the third mRNA vaccination and a combination of fac-
tors, including the persistence of the vaccine effect up to 
the second vaccination, must be considered. The changes 
in the nasal bacterial microbiota at the time of initial vac-
cination and vaccination against other pathogens remain 
to be unraveled. Although this study was based on intra-
muscular injection of mRNA vaccine, differences in vac-
cination methods may also lead to different results. In 
addition, the limitation of this study is that a small num-
ber of participants and a limited cohort were analyzed. In 
addition, as with intestinal microbiota, the nasal micro-
biota has been shown to vary among patients of differ-
ent ethnic backgrounds [53]; therefore, a more extensive 
cross-sectional analysis is required for a more robust 
conclusion. Although the host immune response in the 
nasal environment remains unknown, a comprehensive 
understanding of the relationship between the immune 
response in the nasal cavity, infectious pathogens, and 
nasal symbiotic bacteria is desired.

Conclusion
The protective effect of vaccination against foreign 
pathogens on the nasal mucosa has focused primarily on 
the induction of secretory IgA antibodies so far. Given 
those humoral immune responses at mucosal surfaces 
are known to regulate symbiotic bacterial diversity, vac-
cination may affect the balance of commensal bacteria. 
However, the effects of vaccination on the commensal 
microbiota of the nasal mucosa are not fully understood. 
Here, we show that nasal commensal pathogens were 
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significantly reduced after SARS-CoV-2 mRNA vacci-
nation, and that their amount was inversely correlated 
with the induction of systemic and mucosal antibody 
responses. Our data suggest that a cooperative function 
of mucosal and systemic immunity in the reduction of 
bacteria. This research provides new insights into the 
effects of vaccination, which may lead to a better under-
standing of the symbiotic relationship between the host 
and bacteria in the nasal mucosa, as well as clues for 
effective mucosal vaccination strategies.
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