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Abstract 

The European rabbit (Oryctolagus cuniculus) populations of the Iberian Peninsula have been severely affected by 
the emergence of the rabbit haemorrhagic disease virus (RHDV) Lagovirus europaeus/GI.2 (RHDV2/b). Bushflies 
and blowflies (Muscidae and Calliphoridae families, respectively) are important RHDV vectors in Oceania, but their 
epidemiological role is unknown in the native range of the European rabbit. In this study, scavenging flies were col‑
lected between June 2018 and February 2019 in baited traps at one site in southern Portugal, alongside a longitudi‑
nal capture‑mark‑recapture study of a wild European rabbit population, aiming to provide evidence of mechanical 
transmission of GI.2 by flies. Fly abundance, particularly from Calliphoridae and Muscidae families, peaked in October 
2018 and in February 2019. By employing molecular tools, we were able to detect the presence of GI.2 in flies belong‑
ing to the families Calliphoridae, Muscidae, Fanniidae and Drosophilidae. The positive samples were detected during 
an RHD outbreak and absent in samples collected when no evidence of viral circulation in the local rabbit population 
was found. We were able to sequence a short viral genomic fragment, confirming its identity as RHDV GI.2. The results 
suggest that scavenging flies may act as mechanical vectors of GI.2 in the native range of the southwestern Iberian 
subspecies O. cuniculus algirus. Future studies should better assess their potential in the epidemiology of RHD and as a 
tool for monitoring viral circulation in the field.
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Main text
Rabbit haemorrhagic disease virus (RHDV) is a calicivi-
rus belonging to the genus Lagovirus that causes rabbit 
haemorrhagic disease (RHD) in adult European rabbits 
(Oryctolagus cuniculus). The virus has a hepatic tro-
pism and causes cell loss as a result of virally-induced 
apoptosis leading to a necrotizing hepatitis (reviewed 
in [1]). Originally detected in China in 1984, RHDV 
rapidly disseminated worldwide and reached almost 
all continents, becoming enzootic in several countries 
(reviewed in [1]). In addition to the significant ecologi-
cal losses associated with the crashes in the wild rabbit 
populations, RHD has also led to serious negative eco-
nomic impacts in the rabbit-associated industries (e.g. 
[2, 3]). In 2010, French rabbit populations experienced 
atypical RHD outbreaks [4]. These were shown to be 
caused by a novel RHDV genotype later named Lagovi-
rus europaeus/GI.2 [5], which is antigenically dissimilar 
and fatally infects kittens as young as 11 days old [6]. 
GI.2 replaced older RHDV circulating strains (genotype 
GI.1; [7–10]) and quickly spread worldwide [11, 12]. 
Recombination is an important mechanism in GI.2 evo-
lution with all known strains resulting from recombina-
tion events with either pathogenic (GI.1b and GII.1) or 
non-pathogenic strains (GI.3 and GI.4), including those 
associated with the first outbreaks [13–16].

Transmission of RHDV occurs via contact of a sus-
ceptible rabbit with an infected animal or carcass, 
through contaminated surfaces, food, burrows, cages, 
etc., or by vectors such as insects, scavenging birds 
and mammals (reviewed in [1]). Calliphorid and mus-
cid flies were first implicated in GI.1 RHDV dissemina-
tion following the escape of the virus from a quarantine 
compound on the off-shore Australian Wardang Island, 
subsequently spreading to mainland Australia [17, 18]. 
Similarly, spread of RHDV to the United Kingdom was 
also suggested to have been mediated by insect vectors 
[19]. Later  investigations, both in the field and under 
laboratory conditions, suggested that flies (Calliphora, 
Chrysomya, Hydrotaea, Lucilia, Musca, Oxysarcodextia 
and Sarcophaga genera), fleas (Spilopsyllus cuniculi and 
Xenopsylla cunicularis) and mosquitoes (Aedes noto-
scriptus, Ae. postspiraculosus and Culex annulinostris) 
could mechanically transmit RHDV [20–29]. Rabbits 
are infected by ingestion or contact with  contami-
nated flyspots deposited on vegetation or  at burrow 
entrances. Absorption of virus particles from flyspots 
deposited on mucous membranes such as rabbit con-
junctiva  was also put forward as a pathway of disease 

transmission [20]. Flyspots were shown to contain 
enough viral particles to cause RHD in susceptible rab-
bits [4]. Yet, insects do not support RHDV replication.

A recent study by Calvete and colleagues [30] showed 
the inability of GI.2 mechanical transmission by the mos-
quito Aedes albopictus (Culicidae) and a limited ability of 
the sandfly Phlebotomus papatasi (Psychodidae). These 
insects were selected for study based on their availability 
in laboratory colonies and their feeding habits that ren-
der them efficient mechanical vectors of viruses.

While flies were shown to be the main vectors of RHDV 
in Oceania [4, 15, 17, 25], their epidemiological role in 
Europe is unknown. In mainland Portugal, insects from 
orders Coleoptera and Diptera are the most commonly 
found near rabbit enclosures, with Psycodidae, Scara-
baeidae and Staphylinidae families and Culicoides genus 
being the most abundantly trapped [31]. RHDV GI.2 has 
been detected in insects from Mycetophilidae, Staphyli-
nidae and Simuliidae families, Forcipomyiinae subfamily 
and Culicoides genus [31, 32]. However, other fly species 
that may constitute vectors of RHDV have not been inves-
tigated. The main goals of this study were to search for 
evidence of mechanical transmission of GI.2 by insects col-
lected in Portugal in the scope of a longitudinal epidemio-
logical study of wild rabbits and to determine the potential 
of these insects to act as sentinels of GI.2 circulation.

Methods
Rabbit trapping
A longitudinal study of wild European rabbits was per-
formed at one population in central mainland Portugal 
(Companhia das Lezírias, 38°50′43.7″N, 8°51′48.7″W) 
(Pacheco et  al. 2022). Cage-traps (n = 52) were placed 
regularly spaced in an area of 13 hectares and baited with 
fresh vegetables. Eight sessions of 4–5 occasions (nights) 
each were performed between May 2018 and Febru-
ary 2019, in which 50 rabbits were captured 117 times. 
All rabbit specimens were identified with a subcutane-
ous microchip when first captured; whole blood was col-
lected by venipuncture of the saphenous vein, placed in 
clotting tubes, centrifuged at 1430g for 10  min, and the 
serum was recovered and stored at − 20 °C until analysis. 
Rabbits were released at the site of their capture imme-
diately after processing. Live trapping and sample col-
lection were conducted under authorizations 580/2018, 
8/2019, according to the European Union directives on 
the use of animals for research (Directive 2010/63/EU) 
and international wildlife standards [33].
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The presence of RHDV GI.2-specific antibodies in 
rabbit sera was analyzed by an indirect enzyme-linked 
immune serum assay [34] with minor adaptations, as 
further described in [35]. Briefly, ELISA was performed 
by using GI.1 or GI.2 virus-like particles (VLPs) as cap-
ture antigens (100  ng/well), sera samples diluted 1/200 
and a goat anti-rabbit IgG-HRP diluted 1/4,000 as con-
jugate. Dilutions were performed in 5% non-fat milk/PBS 
and incubations were carried out for 1 h at 37 °C, except 
for the VLPs, which were diluted in carbonate/bicar-
bonate buffer, pH 7.4, and incubated at 4 °C overnight. 
After each incubation, plates were washed 3x with PBS-
0.05% Tween. Optical density was read at 450 nm within 
15 min.

Any rabbit carcass found during the trapping sessions 
was recovered, subject to a standard necropsy procedure, 
and liver and lung samples collected and kept stored at − 
20 °C until analysis.

Insect trapping
From June 2018 onwards, during each rabbit trapping 
session and within the same site, three modified bottle 
flytraps [36] were set baited with rotting meat. Rabbit 
meat for human consumption was acquired in commer-
cial stores, left to rot for 2–4 days at room temperature, 
and used as bait. Trapping lasted four days in each ses-
sion in June, August, September, October, and Decem-
ber 2018. Trapping lasted 3 days in January 2019 and 
eight days in February 2019. Trapped insects were 
stored pooled in 70% ethanol at room temperature until 
analysis.

Morphological identification
Collected flies were morphologically identified accord-
ing to [37–39], Szpila (families Calliphoridae and 
Sarcophagidae), Grzywacz (family Muscidae) and sar-
cophagidae.myspecies.info (database with pictures: fam-
ily Sarcophagidae), using a stereomicroscope.

Flies were pooled according to the month of collection 
and the morphology-based taxonomical identification. A 
subset of the collected flies was selected from the most 
abundant taxonomical units in each trapping session 
and subjected to molecular identification. In the peak fly 
abundance season, only 25% of the trapped insects were 
identified.

Molecular identification
Insects were removed from the microtubes, washed in 
sterile water and carefully dried. Sterilized dissection 
material was used to separate the abdomen from the 
remaining parts that were stored for morphological ref-
erence. DNA and RNA were extracted from 20 to 30 mg 
of a pool of abdominal contents of insects from the same 

microtube using the AllPrep DNA/RNA Mini Kit (Qia-
gen) according to the manufacturer’s instructions.

For molecular identification at the genus and, when-
ever possible, species-level, the universal primer set 
for the cytochrome c oxidase subunit I gene (COI) was 
used [40], LCO1490: 5′-GGT CAA CAA ATC ATA AAG 
ATA TTG G-3′ and HCO2198: 5′-TAA ACT TCA GGG 
TGA CCA AAA AAT CA-3′. Reactions were performed 
by adding 1 µL of the extracted DNA to 5 µL of Phusion 
Flash High-Fidelity PCR Master Mix (Thermo Scientific), 
2 pmol of each oligonucleotide and water, to a final vol-
ume of 10 µL. PCR amplification was carried out as fol-
lows: initial denaturation at 98 °C for 3 min, 40 cycles of 
denaturation at 98 °C for 30 s, annealing at 51 °C for 30 s 
and extension at 72 °C for 30 s, and a final 5 min exten-
sion at 72 °C. Amplification products with the expected 
size, ~ 700 base pairs (bp), were purified and sequenced 
on an automatic sequencer (3500xL Genetic Analyzer, 
Applied Biosystems) using the amplification primers. 
Sequences herein found were compared with those avail-
able in the GenBank database using standard nucleotide 
BLAST searches.

RHDV GI.2 detection in flies
Due to the expected low viral loads in flies, a sensitive 
RT-qPCR method was employed for GI.2 detection (see 
[41] for primers and probe sequences). Amplification was 
performed in reactions with a final volume of 20 µL using 
the iTaq Universal Probes One-Step Kit (Biorad), with 1 
µM and 0.2 µM of each primer and probe, respectively, 
10 µL of enzyme mix and 1 µL of RNA. Cycling condi-
tions consisted of one cycle at 10 min for 50 °C, one cycle 
at 95 °C for 3 min and 40 cycles of 95 °C for 15 s and 60 °C 
for 30 s. This system amplifies a 127 bp fragment located 
within the VP60 gene.

Positive RHDV GI.2 fly samples were further screened 
by conventional PCR. Extracted RNAs were reverse tran-
scribed using oligo(dT) as primers and SuperScript™ 
III Reverse Transcriptase (Invitrogen). The primer pair 
RHDV6186F 5′-CAT TGA CCA CGA CAG AGG TAA 
C-3′ and RHDV6335R 5′-AAG GGC ACG AAC GAC 
ATG TCA-3′, which amplifies a fragment of 150 bp of the 
gene encoding the RHDV capsid protein VP60 [42–44], 
was used for the amplification. Reaction was performed 
with 1.5 µL of the cDNA reaction in a final volume of 10 
µL containing 5 µL of Phusion Flash High-Fidelity PCR 
Master Mix (Thermo Scientific) and 2 pmol of each oli-
gonucleotide. Cycling conditions were 3  min at 98  °C, 
followed by 40 cycles of 30 s at 98 °C, 30 s at 50 °C and 
extension at 72  °C for 10  s. Final extension was carried 
out for 5 min at 72 °C. Positive samples were identified by 
gel electrophoresis and sequenced with the amplification 
primers as described above.
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RHDV GI.2 detection in rabbits
RNA was extracted from the liver and lung of a single 
rabbit found dead in January 2019 (rabbit #118), follow-
ing the protocol available from Thermo Fisher Scien-
tific (GeneJet RNA Purification kit). In this case, RHDV 
detection followed a standard procedure previously 
developed in our lab. The use of these primer pairs allows 
a rapid and cost-effective detection and identification 
of the type of RHDV recombinant [14]. cDNA was syn-
thesized with the NZY First-Strand cDNA Synthesis kit 
(NZYtech). For p16/p23, the PCR primers used were 
RHDV0001F 5′-GTG AAA GTT ATG GCG GCT ATG 
TCG-3′ and RHDV0847R 5′-CCA AGA GGA TTG ATG 
CAA GTG-3′ (847  bp) with the following cycling con-
ditions: 3 min at 98  °C, followed by 40 cycles of 30  s at 
98 °C, 30 s at 50 °C and extension at 72 °C for 90 s, and 
final extension of 5  min at 72 °C. For VP60, the PCR 
primers used were RHDV6186F 5′-CAT TGA CCA CGA 
CAG AGG TAA C-3′ and RHDV6748R 5′-CGT TAG 
TTG AAC CGG CCT CAG-3′ (563 bp) and the cycling 
conditions consisted of 3  min at 98  °C, followed by 40 
cycles of 30 s at 98 °C, 30 s at 67 °C and extension at 72 °C 
for 30  s, and final extension of 5  min at 72 °C. In both 
PCRs, we used 5 µL of Phusion Flash High-Fidelity PCR 
Master Mix (Thermo Scientific), 2 pmol of each oligonu-
cleotide, 1 µL of the cDNA reaction and water to a final 
volume of 10 µL.

Results and discussion
Overall, 3027 fly specimens were collected between June 
2018 and February 2019 and morphologically identified. 
Morphological identification of each specimen was per-
formed to the species (n = 2301), genus (n = 20), or family 
level (n = 706) (Table 1). The average daily number of flies 
collected peaked in October, with a second smaller peak 
in January and February (Fig. 1). The most abundant Dip-
tera collected in every session were Muscidae and Calli-
phoridae specimens, as was also shown by other authors 
in studies carried out in the Iberian Peninsula with pig 
[36, 45, 46], dog [47] and cat (unpublished observations), 
except in January, when Drosophilidae was the second 
most collected family. In Portugal, Calliphora vicina and 
C. vomitoria can be found all year round, especially dur-
ing the winter and spring seasons, while other species 
inside the Calliphoridae family are captured from late 
spring until autumn (e.g., Chrysomya albiceps, Lucilia 
sericata, L. ampullacea and L. caesar) [47–49]. Flies from 
the  genus Fannia are also present all year round, being 
especially abundant during all spring season [46].

Molecular identification by sequencing of a frag-
ment of the COI gene (GenBank accession numbers 
OQ860783-OQ860806) and comparison by BLAST 
analysis with publicly available sequences in GenBank 

allowed the assignment of the insects into four fami-
lies, split into 8 genera, in a total of 11 different spe-
cies (Table 2). In general, there was a good agreement 
between morphological and molecular identification, 
with some instances with further assignment to the 
genus/species level based on the sequences obtained; 
yet, species identification was not possible for insects 
of the families Phoridae and Drosophilidae. All the 
detected species have been previously reported as 
occurring in Portugal, associated with carrion and 
organic matter decomposition [e.g. 36, 46, 47].

By RT-qPCR, GI.2 was detected in seven pools of 
insects, with Cq values ranging between 23 and 30 
(Table 3). The RT-qPCR system employed in this study 
was previously shown to detect as few as nine copies of 
viral RNA, which corresponded to a mean Cq value of 
37.56 [41]. Since the Cq values observed in the present 
study are below that value, these flies were considered 
as positives for the presence of GI.2. Positive insects 
were identified as belonging to four families, Muscidae, 
Calliphoridae, Fanniidae and Drosophilidae, and were 
collected in January and February 2019. These samples 
were further screened by conventional RT-PCR. Only 
one insect pool collected in January 2019 and identified 
as Hydrotaea armipes was positive (sample 12; Table 2). 
From this, we were able to sequence a 107 bp fragment 
within the capsid gene (GenBank accession number: 
OQ859633). BLAST analysis with sequences available 
in the GenBank database revealed the highest score 
with the GI.2 strain AUS/VIC/MLD-6/2017 (98.6% 
nucleotide identity; accession number MW460206), 
confirming its identity as GI.2.

The apparent seroprevalence of RHDV in the rab-
bit population was 30.0%  (CI95 20.5–41.5%; data not 
shown). No seroconversions were detected among the 
50 individual rabbits trapped between May and Decem-
ber 2018 (117 captures), and no dead rabbits were 
found, supporting that RHDV was not circulating in 
the local population during that time. No rabbits were 
captured during the January-February 2019 trapping 
session, but the fresh carcass of an adult female, ini-
tially live-captured in August 2018 and seronegative for 
RHDV, was found. At necropsy, lesions suggestive of 
RHD were found (data not shown) and RHDV RNA was 
amplified from liver and lung samples. Two fragments 
of 762 bp and 503 bp, covering p16 and part of p23, and 
a partial fragment of VP60, were sequenced (GenBank 
accession numbers OQ859632 and OQ859631). Stand-
ard nucleotide BLAST searches revealed 97.3% and 
97.6% identity with GI.2 sequences (GenBank accession 
numbers KM115683 and KM115716) for the p16/p23 
and VP60 fragments, respectively. The GI.2 sequence 
obtained from the fly sample 12 (also collected in 
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January 2019) has 100% nucleotide identity with the 
sequence obtained from the rabbit samples, confirming 
it originated from the recorded RHDV GI.2 outbreak. 
While identical, the samples were handled indepen-
dently at different periods of time, with no possibil-
ity of cross-contamination. Moreover, the sequences 
obtained were not identical to any of the sequences pre-
viously obtained in our laboratory, further discarding 

the possibility of contamination  from other tested 
samples.

The RT-qPCR method used in this study is a highly 
sensitive method that detects minimum amounts of GI.2 
viral RNA [41]. Previously, Gehrmann and Kretzschmar 
[22] found that 10–100 virus particles were the minimum 
dose required to induce disease in rabbits; a more recent 
study showed that the minimum infective dose for GI.1 

Table 1 Summary of the morphological identification of the collected flies by trapping session

Family Subfamily Genus Species 2018 2019 Total

Jun Aug Sep Oct Dec Jan Feb

Calliphoridae Chrysomyinae Chrysomya albiceps 42 28 76 16 1 0 0 163

Luciliinae Lucilia sericata 8 4 7 2 0 0 0 21

cuprina 0 1 0 0 0 0 0 1

Calliphorinae Calliphora vicina 2 1 0 145 101 68 128 445

vomitoria 0 0 0 37 22 45 79 183

Sarcophagidae Sarcophaginae Ravinia pernix 0 9 4 7 0 0 0 20

Sarcophaga argyrostoma 0 1 0 0 0 0 0 1

africa 0 2 0 0 0 0 0 2

tibialis 0 1 0 3 0 0 0 4

portschinskyi 0 1 1 0 0 0 0 2

lehmanni 0 0 2 3 0 0 0 5

melanura 0 0 0 1 0 0 0 1

Paramacronychiinae Sarcophila latifrons 2 3 6 0 0 0 0 11

meridionalis 0 0 2 0 0 0 0 2

Muscidae Reinwardtiinae Muscina prolapsa 18 15 9 6 2 0 11 61

pascuorum 7 0 0 11 0 0 4 22

levida 27 49 27 506 25 7 168 809

stabulans 0 1 0 0 0 0 0 1

Muscinae Musca domestica 5 47 63 11 0 0 0 126

Eudasyphora sp. 0 1 0 0 1 0 0 2

Phaoniinae Helina sp. 0 1 0 1 0 1 0 3

Phaonia sp. 0 0 1 0 1 0 3 5

Mydaeinae Graphomya sp. 0 0 0 1 0 0 0 1

Azeliinae Hydrotaea ignava 30 3 10 4 0 0 0 47

capensis 0 3 8 0 0 0 0 11

armipes 0 0 1 45 71 37 209 363

Atherigoninae Atherigona sp. 0 0 0 1 0 0 0 1

Polleniidae Pollenia sp. 0 3 0 3 2 0 0 8

Fanniidae 1 4 45 132 44 13 167 406

Anthomyiidae 0 2 1 15 10 3 3 34

Scatophagidae 0 0 0 0 1 0 1 2

Lauxaniidae 1 6 2 0 0 0 0 9

Heleomyzidae 0 0 0 0 4 2 0 6

Drosophilidae 0 0 0 4 24 53 27 108

Phoridae 0 0 1 7 33 7 12 60

Sciaridae 0 0 0 0 2 0 0 2

Total 159 216 286 974 344 236 812 3027
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is ≤  104 gRNA copies [50]. However, this has not been 
fully assessed for GI.2. Thus, despite the detection of 
GI.2 RNA in these flies, showing their ability to carry the 
virus, it remains to be determined if the amount of viral 
particles present was sufficient to induce disease in sus-
ceptible rabbits. The detection of RHDV in the abdomi-
nal content of the flies after dissection makes it unlikely 
that it was the result of cross-specimen contamination in 
the traps or in the subsequent insect pools [24]. Thus, the 
virus detected would likely later be excreted in flyspots. 
A single flyspot (faecal and regurgitation spots) has been 
shown to contain enough RHDV particles to infect sus-
ceptible rabbits [20, 27].

Fig. 1 Average daily number of flies collected per trapping session. 
Results from the morphological identification. The Y‑axis is in square 
root scale to improve readability

Table 2 Morphological and molecular identification of the insects collected, and percentage of identity with publicly available 
sequences

n.a. not available

Month of 
collection

Sample ID Morphological ID Molecular ID Consensus ID % ID Accession number

Jun‑18 14 Chrysomya albiceps Chrysomya albiceps Chrysomya albiceps 100 MF536035

21 Lucilia sericata Lucilia sericata Lucilia sericata 99.69 MF059331

30 Muscina prolapsa Muscina prolapsa Muscina prolapsa 99.81 MF887459

31 Muscina levida Muscina levida Muscina levida 98.99 MK249071

Aug‑18 16 Ravinia pernix Ravinia pernix Ravinia pernix 99.69 KF038005

18 Muscina levida n.a. Muscina levida n.a. n.a.

20 Muscina prolapsa Muscina prolapsa Muscina prolapsa 100 KF919033

22 Musca domestica Musca domestica Musca domestica 100 KX161463

23 Chrysomya albiceps n.a. Chrysomya albiceps n.a. n.a.

Sep‑18 25 Muscina levida n.a. Muscina levida n.a. n.a.

28 Musca domestica Musca domestica Musca domestica 100 MN609619

29 Chrysomya albiceps Chrysomya albiceps Chrysomya albiceps 100 MH765365

33 Fannidae Fannia canicularis Fannia canicularis 99.85 MW687126

Oct‑18 3 Calliphora vomitoria Calliphora vomitoria Calliphora vomitoria 100 MG969488

4 Calliphora vicina Calliphora vicina Calliphora vicina 99.55 MT106220

5 Muscina levida n.a. Muscina levida n.a. n.a.

13 Fannidae Fannia lepida Fannia lepida 98.41 MT483682

27 Hydrotaea armipes Hydrotaea armipes Hydrotaea armipes 100 MT920422

Dec‑18 1 Calliphora vicina Calliphora vicina Calliphora vicina 99.85 JN014900

2 Calliphora vomitoria Calliphora vomitoria Calliphora vomitoria 100 MF536037

17 Hydrotaea armipes Hydrotaea armipes Hydrotaea armipes 99.83 KX161512

32 Muscina levida Muscina levida Muscina levida 99.81 MK249071

35 Phoridae n.a. Phoridae n.a. n.a.

Jan‑19 6 Calliphora vomitoria Calliphora vomitoria Calliphora vomitoria 99.69 KJ394710

11 Calliphora vicina Calliphora vicina Calliphora vicina 99.61 MG121789

12 Hydrotaea armipes Hydrotaea armipes Hydrotaea armipes 99.65 KT082158

34 Drosophilidae n.a. Drosophilidae n.a. n.a.

Feb‑19 8 Muscina levida n.a. Muscina levida n.a. n.a.

9 Calliphora vomitoria Calliphora vomitoria Calliphora vomitoria 99.20 MF536037

10 Calliphora vicina Calliphora vicina Calliphora vicina 99.85 OK560160

15 Fannidae Fannia lepida Fannia lepida 98.19 MT483682
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Previous observational and experimental stud-
ies showed that muscid and calliphorid flies, includ-
ing Calliphora, Hydrotaea, and Musca, can transmit 
RHD between susceptible rabbits and might have an 
essential role in the epidemiology [20–29]. Our results 
are in line with these studies as RHDV positive flies 
found in this study also belong to these families. We 
further detected GI.2 RNA in Drosophilidae and Fan-
nidae flies, which had never been reported. The role 
of these flies in RHDV transmission remains to be 
determined; however, their life cycles and feeding 
habits lend support to their role as mechanical vec-
tors for GI.2. Indeed, several RNA viruses belonging to 
families Rhabdoviridae, Dicistroviridae, Birnaviridae, 
Reoviridae, and Errantiviridae have been reported in 

Drosophila melanogaster [51], while Fannia canicula-
ris is a known vector of Newcastle disease virus and 
Aleutian mink disease virus [52]. Furthermore, Fan-
niidae flies have a necrophagous life cycle [53], with 
females being attracted to decaying material, carrion 
and feces, as well as sweat and mucus from animals. 
Their larvae can also be found in vertebrate carrion 
and burrows, causing myasis in animals with unhealed 
hounds [54]. Drosophilid flies usually feed on sub-
strates rich in bacteria, yeasts, and other fungi, but 
some feed on animal tissues or secretions, especially 
those of Amiota, Apsiphortica and Phortica genera 
[reviewed by 55]. Previous results reported the pres-
ence of GI.2 RNA in insects belonging to families 
Ceratopogonidae (genus Culicoides and subfami-
ily Forcipomyiinae), Staphylinidae, Simuliidae [31] 
and Mycetophilidae [32]. While their feeding habits 
and dispersal behaviour are compatible with a role as 
mechanical vectors for GI.2, their life cycles reduce the 
likelihood of acting as virus reservoirs [56]. However, 
since these insects were not detected in the present 
study, we could not further assess their role.

In conclusion, our results appear to indicate 
that  scavenging flies C. vomitoria, C. vicina, Hydrotea 
armipes, Muscina levida, Fannia lepida and those from 
the Drosophilidae family may have a role as mechanical 
vectors of RHDV in the native range of the southwest-
ern Iberian subspecies of European rabbit (Oryctolagus 
cuniculus algirus), as shown in Oceania [24, 27]. Fur-
thermore, our observations suggest that the detection 
of GI.2 in scavenging flies might be used as a tool to 
monitor viral circulation [24]. Indeed, we were able to 
detect GI.2 in scavenging flies during a GI.2 outbreak, 
but not when there was no   evidence of viral circula-
tion in the local rabbit population. Future studies are 
warranted to fully determine the potential of scaveng-
ing flies in the epidemiology of RHD and as monitoring 
tools for surveillance of RHDV outbreaks in the field.
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