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Abstract 

Background:  Human papilloma virus (HPV) DNA test was applied in cervical cancer screening as an effective cancer 
prevention strategy. The viral load of HPV generated by different assays attracted increasing attention on its potential 
value in disease diagnosis and progression discovery.

Methods:  In this study, three HPV testing datasets were assessed and compared, including Hybrid Capture 2 
(n = 31,954), Aptima HPV E6E7 (n = 3269) and HPV Cobas 4800 (n = 13,342). Logistic regression models for diagnos-
ing early cervical lesions of the three datasets were established and compared. The best variable factor combination 
(VL + BV) and dataset (HC2) were used for the establishment of six machine learning models. Models were evaluated 
and compared, and the best-performed model was validated.

Results:  Our results show that viral load value was significantly correlated with cervical lesion stages in all three data 
sets. Viral Load and Bacterial Vaginosis were the best variable factor combination for logistic regression model estab-
lishment, and models based on the HC2 dataset performed best compared with the other two datasets. Machine 
learning method Xgboost generated the highest AUC value of models, which were 0.915, 0.9529, 0.9557, 0.9614 for 
diagnosing ASCUS higher, ASC-H higher, LSIL higher, and HSIL higher staged cervical lesions, indicating the accept-
able accuracy of the selected diagnostic model.

Conclusions:  Our study demonstrates that HPV viral load and BV status were significantly associated with the early 
stages of cervical lesions. The best-performed models can serve as a useful tool to help diagnose cervical lesions early.
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Background
Cervical cancer is the second most severe female cancer 
worldwide with 570,000 women diagnosed and 311,365 
women died in the year 2018 despite worldwide applica-
tions of early screening for the disease or for the presence 

of human papillomavirus (HPV) [1]. It was estimated that 
44.4 million cervical cancer cases would be diagnosed 
globally over the period of 2020–2069 [2]. Commonly 
used screening methods include HPV test, thin prep 
cytological test (TCT), and joined tests by HPV and TCT 
[3]. By comparison, TCT has lower false positive and 
higher false-negative rates than HPV test, but HPV test 
may cause higher unnecessary referrals to colposcopy [4]. 
With more and more HPV and TCT joined tests applied 
and compared [5–8], WHO changed cervical cancer 
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screening guideline and listed HPV DNA test as the first 
recommended method for the application.

Currently, the results of HPV testing were generally 
reported as HPV positive or negative qualitatively based 
on the cut-off value of the assay used for the diagnosis. 
However, accumulated HPV screening data showed 
that HPV viral load could add valuable information as 
a screening triage marker. For example, Thomas identi-
fied a significant correlation between HPV viral load and 
integration status with high-grade squamous intraepithe-
lial lesion (HSIL) [9]. Zhao’s study found that the 10-year 
cumulative incidence rate of cervical intraepithelial neo-
plasia (CIN2 +) was associated with cytological lesions 
and viral load and they recommended viral loads as a tri-
age marker for non-16/18 hrHPV (high risk HPV) posi-
tive women [10]. A recent study also indicated that HPV 
viral load was positively correlated with cervical lesion 
grade based on 8556 women’s cervical cancer screening 
results [11]. In addition to being considered as a potential 
triage marker, HPV viral load was also a potential disease 
progression indicator as being showed that cervical can-
cer patients with high HPV viral load had a significantly 
lower 15-year survival rate and an advanced stage based 
on the International Federation of Gynaecology and 
Obstetrics (FIGO) as well as increased recurrence rate 
[12]. However, inconsistent conclusions related to viral 
load triage and prediction value from different studies 
restrain applications of viral load value in clinical settings 
[13]. One of the reasons causing result inconsistency is 
likely due to the different methods used in different diag-
nostic laboratories as being shown by a few small sizes of 
HPV viral load studies based on Hybrid Capture 2 (HC2) 
[14], Aptima E6E7 [15], and Cobas 4800 [16].

In this study, we retrospectively compared our cervi-
cal cancer screening results assayed by the 3 HPV test-
ing platforms (HC2, Aptima E6E7, and HPV Cobas 4800) 
with accompanied TCT test results. A model for predict-
ing different levels of cervical lesions was established by 
integrating potential cervical cancer risk factors, such as 
HPV infection status, HPV viral load, age, bacterial vagi-
nosis, fungus, etc.

Materials and methods
Patients and data collection
In total, 48,565 individuals were tested by both TCT 
and one of the 3 HPV testing methods (31,954 individu-
als tested by HC2, 3269 individuals tested by Aptima 
E6E7, and 13,342 individuals tested by Cobas 4800) from 
the years of 2016 to 2019 in our laboratory, a CAP- and 
ISO15189-accredited reference laboratory in Guangzhou, 
China. (Fig.  1). The cases were collected in three data-
sets, named Dataset HC2, Dataset E6E7, Dataset Cobas, 

respectively. The institutional review board of KingMed 
Diagnostics approved the study with code 022.

HPV testing
HC2 assay detects 13 hrHPV subtypes, including HPV 
16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68 using 
hybrid Capture 2 high-Risk HPV DNA Test from Digene 
Corporation (Gaithersburg, MD, USA), providing an 
HPV positive or negative result based on the reading 
value compared with the cutoff value, RLU/CO > 1.0. 
Aptima HPV assay targets E6E7 mRNA expression of 14 
hrHPV subtypes, including HPV 16, 18, 31, 33, 35, 39, 
45, 51, 52, 56, 58, 59, 66 and 68 using TMA (transcrip-
tion mediated amplification) based methodology from 
Hologic Company (Marlborough, MA, USA). Roche 
Cobas 4800 HPV DNA assay (Pleasanton, CA, USA) is a 
real-time PCR-based assay used for HPV16, HPV18, and 
other 12 hrHPV subtypes, including HPV31, 33, 35, 39, 
45, 51, 52, 56, 58, 59, 66, and 68.

TCT testing‑liquid‑based cytology
Collected specimens were automatically treated and 
converted to cytological specimens by using ThinPrep 
method from Hologic (Bedford, MA, USA) [17]. Pre-
pared specimens were evaluated independently by at least 
2 certified cyto-pathologists. Results were classified as: 
negative for intraepithelial lesion or malignancy (NILM); 
atypical squamous cells of undetermined significance 
(ASCUS); atypical squamous cell cannot exclude high-
grade squamous intraepithelial lesion (ASC-H); low-
grade squamous intraepithelial lesion (LSIL); high-grade 
squamous intraepithelial lesion (HSIL) [18]. Patients with 
a diagnosis of AGUS or cervical cancer were excluded 
from the study due to the limited number of individu-
als identified. Meanwhile, BV and fungal infections are 
determined by pathologists through the result of TCT.

Data processing
Each of the 3 HPV platform datasets was divided into 
two datasets, all cases dataset (ACD), and dataset with 
only HPV positive cases (POS). HPV viral load values 
were calculated based on the reported value from each 
method, RLU/CO from HC2, S/CO from Aptima E6E7, 
and PCR cycle number from Cobas 4800.

Risk factors selection and model establishment
The original datasets were divided into 2 datasets, the 
training dataset contained 80% of the cases while the 
validation dataset had 20%. Synthetic minority over-
sampling technique (SMOTE) analysis using the DMwR 
package was applied to balance data before model estab-
lishment. Pearson’s correlation coefficient was applied to 
determine the association between viral load, age, HPV 
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infection status, BV, and fungus infection with cytol-
ogy diagnostic stages (ASCUShigher, ASC-Hhigher, 
LSILhigher, HSILhigher). Different combinations of the 
significantly correlated variable factors were used for 
further logistic regression model analysis, and compari-
son was applied by using the area under curve (AUC) 
value of each receiver operating characteristic (ROC) 
curve. Besides logistic regression model analysis, five 
more machine learning methods, including Decision 
tree, Xgboost, Random forest, support vector machines 
(SVM), and Neural net, were applied to build models 
using the Rattle package with default parameters.

Results
Data sets characteristics and comparisons
All diagnostic results and related information were 
summarized in Table  1. In total, the average positive 
detection rate for HPV was 46.64% (22,654/48,565), 
including 59.10% (18,878/31,954) identified by HC2, 
25.52% (3406/13,342) identified by Cobas 4800, and 
11.31% (370/3269) identified by Aptima E6E7. Of the 
TCT results, NILM represented about 80% of the cases 

assayed, followed by LSIL (14%), ASCUS (7%), HSIL (3%), 
and ASC-H (2.6%). The proportions of cases with differ-
ent TCT stages were similarly distributed among all 3 
platform datasets (Additional file 1: Supplemental Fig. 1).

The viral loads showed an increasing trend along with 
the advancing cytology stages in each of the 3 HPV data-
sets (Fig.  2 and Additional file  1: Supplemental Fig.  2). 
Viral load values of each two stages were found signifi-
cantly different in HC2 ACD except that between stage 
ASCUS and ASC-H. Compared with the other two plat-
form datasets, more significant differences between TCT 
stages in the HC2 dataset were observed, no matter in 
ACD or positive dataset. Ct value of Cobas assay was 
used as viral load value and three types of HPV positive 
cases of Cobas were shown separately, other type HPV 
(HPV OT), HPV16, and HPV18.

Correlations between variable factors
Correlation analysis was carried out to analyse the rela-
tionship among any 2 of the following factors (Additional 
file 1: Supplemental Table 2). In detail, we observed the 
following relations: (1) A significant correlation between 

Fig. 1  Flow chart diagram of study design and data analysis procedures
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viral load with cervical lesion stages in all the 3 datasets; 
(2) A significant correlation between age with cervical 
lesion stages in HC2 and Cobas datasets; (3) A significant 
correlation between viral load with BV infection in HC2 

ACD, and E6E7 ACD but not in the POS of E6E7 and 
Cobas; (4) Fungus infection was observed significantly 
correlated with age but not with viral load and BV in all 
the three platform datasets; (5) There was no significant 

Table 1  Demographic data of patients collected in the three datasets

ACD all cases dataset result, POS positive dataset result, Cobas-OT results of other 12 high risk HPV types in Cobas dataset, Cobas-all all the HPV types in Cobas dataset, 
Cobas-HPV16 HPV16 result in Cobas dataset, Cobas-HPV18 HPV18 result in Cobas dataset

Patient status HC2 E6E7 Cobas-all Cobas-OT Cobas-HPV16 Cobas-HPV18

No. of women (percentage)

Total patient number 31,954 3269 13,342 13,342 13,342 13,342

HPV positive number 18,878 (59.1%) 370 (11.31%) 3406 (25.5%) 3229 (24.2%) 166 (1.24%) 95 (0.71%)

HPV negative number 13,076 (40.9%) 2899 (88.69%) 9936 (74.4%) 10,113 (75.8%) 13,176 (98.76%) 13,247 (99.29%)

NILM-ACD 25,876 (81%) 2955 (90.40%) 11,760 (88.1%)

ASCUS-ACD 2871 (9.0%) 163 (4.98%) 824 (6.1%)

ASC-H-ACD 492 (1.5%) 17 (0.52%) 88 (0.6%)

LSIL-ACD 2039 (6.4%) 119 (3.64%) 572 (4.2%)

HSIL-ACD 676 (2.1%) 15 (0.46%) 98 (0.7%)

NILM-POS 13,319 (70.6%) 230 (62.16%) 2233 (65.4%) 2120 (65.6%) 88 (53.0%) 61 (64.2%)

ASCUS-POS 2416 (12.8%) 55 (14.86%) 481 (14.1%) 454 (14.1%) 19 (11.4%) 15 (15.8%)

ASC-H-POS 486 (2.6%) 11 (2.97%) 83 (2.4%) 74 (2.3%) 11 (6.6%) 4 (4.2%)

LSIL-POS 1981 (10.5%) 64 (17.3%) 517 (15.1%) 497 (15.4%) 25 (15.1%) 14 (14.7%)

HSIL-POS 676 (3.6%) 10 (2.7%) 97 (2.8%) 84 (2.6%) 23 (13.9%) 1 (1.1%)

ACD-BV 1095 (3.42%) 102 (3.12%) 450 (3.37%) 198 (1.48%) 9 (0.07%) 6 (0.04%)

ACD-Fungus 645 (2.01%) 129 (3.95%) 309 (2.32%) 82 (0.61%) 10 (0.07%) 4 (0.03%)

 < 30 years (ACD) 1921 (6.01%) 634 (18.39%) 1230 (9.22%)

 ≥ 30 years (ACD) 30,033 (93.99%) 2635 (80.61%) 12,112 (90.78%)

 < 30 years (POS) 234 (1.24%) 81 (21.9%) 149 (4.61%) 26 (15.7%) 23 (24.2%)

 ≥ 30 years (POS) 18,644 (98.8%) 289 (78.1%) 3080 (95.4%) 140 (84.3%) 72 (75.8%)

Mean (SD) of HPV assay result values

Total patient number 142.159 (± 2.56) 1.188 (± 0.06)

HPV positive number 240.494 (± 4.19) 10.424 (± 0.27) 33.117 (± 0.091) 30.143 (± 0.425) 32.045 (± 0.595)

HPV negative number 0.192 (± 0.001) 0.009 (± 0.0009)

NILM-ACD 40.390 (± 1.22) 0.724 (± 0.05)

ASCUS-ACD 273.412 (± 10.22) 3.985 (± 0.52)

ASC-H-ACD 364.209 (± 23.34) 7.786 (± 1.67)

LSIL-ACD 984.328 (± 23.21) 7.038 (± 0.70)

HSIL-ACD 778.465 (± 29.84) 8.273 (± 1.66)

NILM-POS 78.288 (± 2.32) 9.225 (± 0.30) 34.354 (± 0.10) 32.656 (± 0.54) 33.543 (± 0.61)

ASCUS-POS 324.864 (± 11.85) 11.767 (± 0.84) 32.762 (± 0.24) 30.253 (± 1.11) 31.2 (± 1.42)

ASC-H-POS 368.702 (± 23.56) 11.950 (± 1.42) 31.55 (± 0.56) 27.145 (± 0.66) 36.225 (± 1.96)

LSIL-POS 1013.138 (± 23.58) 13.003 (± 0.69) 28.876 (± 0.26) 26.368 (± 1.05) 25.429 (± 1.61)

HSIL-POS 778.465 (± 29.84) 12.409 (± 0.92) 30.281 (± 0.65) 25.974 (± 0.63) 29.3 (± NA)

ACD-BV 196.805 (± 15.59) 2.047 (± 0.44)

ACD-Fungus 138.861 (± 18.14) 1.026 (± 0.28)

 < 30 years (ACD) 33.934 (± 5.9273) 1.379 (± 0.1648)

 ≥ 30 years (ACD) 149.082 (± 2.6922) 1.142 (± 0.0708)

 < 30 years (POS) 277.189 (± 45.689) 10.717 (± 0.6574) 31.554 (± 0.4467) 30.612 (± 1.0022) 31.117 (± 1.352)

 ≥ 30 years (POS) 240.034 (± 4.200) 10.341 (± 0.2959) 33.192 (± 0.0935) 30.056 (± 0.4699) 32.342 (± 0.657)

Mean (SD) of age

Total patient 44.901 (± 0.0561) 37.597 (± 0.1633) 42.793 (± 0.0840) 45.808 (± 0.1686) 39.012 (± 0.7513) 38.284 (± 1.0675)
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correlation between BV and age in most datasets, except 
HC2 POS. The detailed results were shown in Additional 
file 1: Supplemental Tables 2 and 3.

Logistic regression models build on different factor 
combinations
The logistic regression model of each test dataset was 
established with every precancerous stage and higher as a 
diagnostic endpoint. Different risk factor combinations of 
viral load, BV, and age were used for building the regres-
sion equation. The AUC value of each model and com-
parison results of each two-variable combinations were 
summarized in Additional file 1: Supplemental Table. To 
avoid data imbalance, SMOTE was applied to balance the 
data of each cervical lesion stages. The results, elucidated 
that: (1) models of HC2 ACD and POS all performed best 
compared with the models established by the other two 
platform data sets with significant difference (Additional 
file  1: Supplemental Table  5); (2) models of HC2 POS 
and ACD with HPV viral load and bacterial vaginosis as 
variables performed best with significant difference com-
pared with models established by viral load (VL) only and 
VL with Age variables (Additional file  1: Supplemental 
Table 6). ROC curves of each platform ACD models were 
shown in Fig. 3. It showed that models performed differ-
ently by using different cervical lesion stages and higher 
as a diagnostic endpoint. Models of HC2 performed best 
(AUC = 0.9467) with LSIL higher stage as a diagnostic 
endpoint. E6E7 (AUC = 0.9341) and Cobas OT models 
(AUC = 0.9038) performed best with ASC-H higher stage 
as a diagnostic endpoint. However, Cobas 16 models per-
formed best (AUC = 0.9915) with HSIL higher stage as a 
diagnostic endpoint. In summary, the models generated 
by the HC2 platform with BV and VL as variables had 

the best performance compared with models of the other 
two platform data sets.

Establishment and comparison of machine learning 
models
To establish the best model for diagnosing early cervical 
lesion stages, six machine learning methods were further 
applied in HC2 ACD and POS with VL and BV as vari-
able factors. AUC values, PPV, NPV, accuracy, sensitiv-
ity, and specificity of the models were analysed for model 
performance evaluation, shown in Table 2, and compari-
sons were carried out between different methods, Addi-
tional file 1: Supplemental Table 7. The results indicated 
that the AUC value of Xgboost models in both ACD and 
POS was the highest compared with the other five meth-
ods, with an AUC value of ASCUS higher, ASC-H higher, 
LSIL higher, and HISL higher were 0.915, 0.953, 0.956, 
and 0.961 in ACD and 0.860, 0.910, 0.924 and 0.929 in 
POS, respectively. The ROC curve of Xgboost models 
of each diagnostic endpoint were shown in Fig.  4. And 
a significant difference was observed between ACD and 
POS AUC values. The Xgboost models were evaluated 
with a sensitivity of 0.826 (ASCUS higher), 0.914 (ASC-H 
higher), 0.925 (LSIL higher) and 0.952 (HSIL higher) 
and specificity of 0.838 (ASCUS higher), 0.845 (ASC-H 
higher), 0.849 (LSIL higher) and 0.838 (HSIL higher) in 
HC2 ACD, respectively. The sensitivity and specificity 
of Xgboost models of HC2 POS were significantly lower 
(sensitivity, P = 0.007; specificity, P = 0.05) than them in 
ACD.

Validation of the best HC2 models
To further validate the model established by Xgboost, 
we collected a new batch of HC2 HPV testing data, 

Fig. 2  Distribution of viral load value with cervical lesion stages of the three platform ACDs. a HC2. b E6E7. c Cobas
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which consisted of 3932 NILM, 148 ASCUS, 28 ASC-
H, 62 LISL, and 15 HSIL patients and evaluated the 
performance of the models in all and positive datasets. 
The results were summarized in Table 3. It showed that 
by using a new set of HC2 results, diagnostic models of 
Xgboost could predict the cytologic stage of the patient 
with acceptable AUC values, 0.8200 for ASCUS higher, 
0.9385 for ASC-H higher, 0.9413 for LSIL higher, and 
0.9293 for HSIL higher stage of test ACD model and 
0.7176 for ASCUS higher, 0.7285 for ASC-H higher, 

0.7210 for LSIL higher, and 0.7336 for HSIL higher stage 
of test positive data set. The ACD model performed bet-
ter than the positive dataset with specificity ranging from 
0.9547 to 0.9577 and sensitivity ranging from 0.5020 to 
0.6484.

Discussion
The mean values of HPV VL in each cytology stage 
increased with the severity of cervical lesion grade, con-
sistent with previous findings, indicating the reliability 

Table 3  AUC value of the best two models established by Xgboost with test dataset analysis

Data sets Accuracy ASCUShigher ASC-Hhigher LSILhigher HSILhigher P value 
(ACD vs. 
POS)

ACD xgboost-AUC​ 0.8200 0.9385 0.9413 0.9293 0.00050

Sensitivity 0.5020 0.6476 0.6484 0.6000

Specificity 0.9547 0.9561 0.9577 0.9568

Accuracy 0.9274 0.9484 0.951 0.9556

POS xgboost-AUC​ 0.7176 0.7285 0.7210 0.7336

Sensitivity 0.5747 0.6596 0.5750 0.6429

Specificity 0.7466 0.6907 0.7199 0.7228

Accuracy 0.6909 0.6853 0.6983 0.7207

Fig. 3  ROC curve of logistic regression model established by VL and BV variables using all data sets of the three platforms. a HC2. b E6E7. c Cobas_
OT. d Cobas_16
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of our conclusion [10, 19]. However, the associations of 
HPV subtypes VL with cervical lesions were inconsist-
ent across studies. Luo Hongxue reported that the viral 
load of HPV16/18 could be used as a triage marker for 
HPV-positive women while Dong Li’s research found it 
cannot [10, 14]. The disagreement of studies might be 
caused by methods limitations in the studies or the real-
ity of different viral load distribution characteristics of 
each HPV subtype in different populations. Based on our 
comparison results of platforms, which was seldom to 
be seen in one study, although the VL value trend seems 
similar among platforms, there was still a difference that 
could be observed in the distribution of viral load in each 
specific disease stage and coefficient among factors. It 
indicated that different methods could provide differ-
ent detection ranges, which further differently reflected 
the real viral load situation of the sample. Therefore, the 
method with more broad detection range and lower limit 
of detection should be recommended for viral load study.

The cervical microbiome has been found to be affected 
by HPV infection [20] and the presence of BV was 
reported to be associated with HPV infection and persis-
tence [21, 22]. BV and other factor, multiple sexual part-
ners, were combined to predict of CIN/CC status [23]. A 
significant association between BV with HSIL cytologic 

stage in our HC2 dataset was observed, consistent with 
a previous report [24, 25]. These results provided strong 
support for our model comparison results which indi-
cated that BV and VL are the two factors that provide the 
best accuracy for the effect of models. Although the BV 
status of our results was retrieved from cytologic diag-
nosis results, it also indicated the potential of DNA test 
assays or tools of detecting the two factors at the same 
time and collected information that could be used for 
cervical lesion prediction. The simultaneous detection 
method of HPV infection and microbiome of cervical 
samples have been developed by another study [26], pro-
viding the value of detecting both factors in the preven-
tion of cervical cancer development. Since there were 
many factors that could affect cervical cancer develop-
ment and their correlation relationship was not fully 
understood. Therefore, more exploration between them 
is necessary. The correlation analysis of risk factors in our 
study discovered a more significant correlation between 
them in specific population groups, which indicated dif-
ferent models with specific different factors might be 
established in the future to get more accurate results for 
clinical application.

Of the 3 HPV test platforms, Cobas 4800 is the only 
platform that could differentiate HPV16, HPV18, and 

Fig. 4  ROC curve of six machine learning methods model by using HC2 dataset. a ASCUS higher. b ASC-H higher. c LSIL higher. d HSIL higher
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HPV OT, enabling us to analyse the correlations between 
viral loads of the HPV subtypes and the severity of the 
cervical lesions caused by HPV. Our results showed that 
viral load in the cases with HPV16 infection increased 
more obviously with advanced cervical lesion stages 
compared with HPV18 and HPV OT, like a previous 
report [27]. If actual correlations between viral loads 
of HPV subtypes and cervical lesions caused by these 
viruses could be demonstrated, it might be possible to 
accurately diagnose people with similar conditions, using 
viral load and other variable factors without being neces-
sarily referred to pathologists in the future [28].

This study indicated that: (1) HPV viral load values 
generated by the HC2 platform fit more for the diagnos-
tic model establishment than the other two platforms, 
Aptima E6E7 and Cobas; (2) Sample balance treatment 
(SMOTE) improved our model performance in the 
unbalanced dataset since our datasets were from cervi-
cal cancer screening with a significantly higher percent-
age of normal status samples than abnormal samples. 
Similar results were reported showing that datasets pre-
processed by SMOTE could improve model accuracy by 
avoiding bias caused by imbalance of the datasets used 
[29]. The AUC values of other diagnostic models had 
been reported as 0.895 and 0.64 in diagnosing CIN2 + by 
Tuerxun’s study and Xiao’s study, respectively [30, 31]. 
However, the AUC value of our model for HSIL predic-
tion is 0.9293.

In summary, our results provided valuable information 
for the evaluation of viral load of HPV in clinical diagnos-
tic applications. We also proved it is feasible to predict 
the cytological stage by using a diagnostic model based 
on viral load and other factors, especially in areas lacking 
enough pathological resources. As we all know that cer-
vical cancer mainly occurs in low-level income countries, 
which often lack high-quality clinical resources, includ-
ing clinicians and equipment. Therefore, our model with 
accurate diagnostic prediction function provides strong 
evidence for its clinical application with reliable results. 
However, due to the significant difference between HPV 
test methods, more studies need to be carried out to 
standardize the best way of diagnosing by models. Based 
on our study, the PCR-free method might be a bet-
ter choice in this scenario. What’s more, further study 
combing patients’ information, cervical cancer screening 
results, colposcopy diagnose results, and management 
information should be carried out in the future to evalu-
ate the application value of our model.

Conclusions
Using clinical laboratory cervical cancer screening data-
sets, after evaluating optimal datasets, machine learning 
method, and variable factors, early diagnostic models 

of four cervical lesion stages were defined. It is the first 
study by using BV and HPV VL for cervical lesion cyto-
logical diagnosis prediction and the accuracy of the 
prediction was shown to be superior to other clinical 
characteristics. Furthermore, machine learning models 
built based on HPV VL and BV demonstrated excellent 
performance in determining cervical cancer precancer-
ous lesions at different stages, especially the Xgboost 
model. These promising findings warrant the early diag-
nosis for cervical lesions in clinical applications, espe-
cially in scenarios with limited pathological resources.
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