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Abstract 

Background:  Chronic infection with hepatitis B virus (HBV) has been proved highly associated with the develop‑
ment of hepatocellular carcinoma (HCC).

Aims:  The purpose of the study is to investigate the association between HBV preS region quasispecies and HCC 
development, as well as to develop HCC diagnosis model using HBV preS region quasispecies.

Methods:  A total of 104 chronic hepatitis B (CHB) patients and 117 HBV-related HCC patients were enrolled. HBV 
preS region was sequenced using next generation sequencing (NGS) and the nucleotide entropy was calculated for 
quasispecies evaluation. Sparse logistic regression (SLR) was used to predict HCC development and prediction perfor‑
mances were evaluated using receiver operating characteristic curves.

Results:  Entropy of HBV preS1, preS2 regions and several nucleotide points showed significant divergence between 
CHB and HCC patients. Using SLR, the classification of HCC/CHB groups achieved a mean area under the receiver 
operating characteristic curve (AUC) of 0.883 in the training data and 0.795 in the test data. The prediction model was 
also validated by a completely independent dataset from Hong Kong. The 10 selected nucleotide positions showed 
significantly different entropy between CHB and HCC patients. The HBV quasispecies also classified three clinical 
parameters, including HBeAg, HBVDNA, and Alkaline phosphatase (ALP) with the AUC value greater than 0.6 in the 
test data.

Conclusions:  Using NGS and SLR, the association between HBV preS region nucleotide entropy and HCC develop‑
ment was validated in our study and this could promote the understanding of HCC progression mechanism.

Keywords:  Hepatocellular carcinoma, HBV quasispecies, Next generation sequencing (NGS), Sparse logistic 
regression (SLR), PreS region
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Introduction
Hepatocellular carcinoma (HCC) is the most common 
type of primary liver cancer. Individuals with chronic 
HBV infection are at increased risk of developing HCC, 
especially among those with chronic liver disease and cir-
rhosis [1–3].

HBV population presents in the form of quasispecies 
consisting of a large number of genetically heterologous 
variants in the host [4]. As the reverse transcriptase in 

Open Access

†Jian-an Jia and Shuqin Zhang have contributed equally to this work

*Correspondence:  fsun@usc.edu; gaocf1115@163.com

1 Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, 
Navy Military Medical University, Shanghai 200438, China
4 Molecular and Computational Program, Department of Biological 
Sciences, University of Southern California, 1050 Childs Way, Los 
Angeles 90089, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4891-2944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12985-022-01836-9&domain=pdf


Page 2 of 15Jia et al. Virology Journal          (2022) 19:114 

HBV replication lacks proofreading activity, the HBV 
replication error rate is much higher than other DNA 
virus. Thus, various mutations can be observed in the 
HBV quasispecies during long-term infection [5]. Some 
mutations can serve as potential viral markers for pre-
dicting the development and progression of HBV-associ-
ated HCC. HBV integration sites, HBV genotypes, basal 
core promoter mutations, precore mutations, and preS 
deletions have all been implicated in the development of 
HCC [5–16].

The double-stranded DNA (dsDNA) genome of HBV 
contains four overlapping open reading frames. The preS 
region (nucleotides 2854-155) consisting of preS1 and 
preS2 fragments overlaps a region of the polymerase 
gene. Selection and emergence of naturally occurring, or 
therapeutically induced, HBV variants with mutations in 
the preS/S genomic region are frequent events in chroni-
cally HBV-infected patients. In particular, specific muta-
tions in the preS/S region may induce an unbalanced 
production of envelope proteins that accumulate in the 
endoplasmic reticulum (ER) of the hepatocytes, poten-
tially activating ER stress-signaling pathways with conse-
quent induction of oxidative DNA damage and genomic 
instability [17]. Thus, the preS region may have more 
clinical implications for the development of HCC.

The development of next-generation sequencing (NGS) 
technologies has greatly accelerated genome studies. 
NGS can simultaneously sequence a large number of viral 
quasispecies with high sensitivity and specificity [18] and 
NGS has been widely implemented in the exploration of 
HBV low-frequency drug resistance [19, 20]. Compara-
tive studies between NGS and the previous sequencing 
techniques in HBV studies have shown the advantages of 
NGS [21, 22]. Several works have been done on the asso-
ciations between preS mutations and HCC using NGS in 
recent years [16, 23–25]. In the researches [16, 23], the 
authors mainly applied statistical test to analyze the asso-
ciations between preS mutations and HCC. Our team 
[25] also studied the associations between preS deletions 
and HCC, and used Support Vector Machine (SVM) to 
check the prediction results of the identified associated 
preS deletions. Our team also applied word patterns 
of HBV genome to define the distance between HCC 
patients, and the heterogeneity of HBV genotypes and the 
associations between word patterns of HBV preS region 
and HCC [25]. Other investigators also have reported 
the predictive effect of preS deletions [6, 7, 11, 26–28] in 
HCC development. While the association between HBV 
preS quasispecies with HCC has been probed in limited 
studies [16, 29], it should be investigated more deeply.

In this work, we investigated the associations between 
HCC and HBV quasispecies based on NGS of the preS 
region. The quasispecies in preS region of chronic 

hepatitis B (CHB) and HCC patients were explored. 
With state-of-the-art statistical learning methods such 
as sparse logistic regression (SLR), we built a prediction 
model of HCC/CHB with HBV quasispecies. The posi-
tions that contribute to the associations were also ana-
lyzed. The associations between the HBV quasispecies 
and the clinical parameters were studied as well.

Materials and methods
Source of data and participants
This study follows the Transparent Reporting of a mul-
tivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) report [30] (Additional file  5: 
Table  S1). HCC patients were enrolled between March 
2011 and May 2012 at the Eastern Hepatobiliary Surgery 
Hospital, Shanghai, China. HBV-related HCC patients 
fulfilled following criteria: (1) serum hepatitis B virus 
surface antigen (HBsAg) positive at least 6  months; (2) 
HBV DNA levels > 1000  IU/ml; (3) HCC characteristic 
confirmed by operative findings and histopathological 
examination. The exclusion criteria included hepatitis 
C virus or human immunodeficiency virus co-infection, 
a history of liver transplantation, autoimmune liver dis-
eases, metastatic liver cancer, other malignancies, drug-
related liver diseases, alcoholic hepatitis and other causes 
of chronic liver diseases diagnosed before enrollment. 
CHB patients included fulfilled criteria including: (1) 
serum HBsAg positive at least 6  months; (2) continu-
ous or repeatedly serum alanine aminotransferase (ALT) 
elevation (two times above the upper reference range 
for no other reason than HBV infection) or chronic viral 
hepatitis characteristic confirmed by liver biopsy; (3) 
HBV DNA levels > 1000  IU/ml. The exclusion criteria 
included HCC, the malignancies or other serious disease. 
This study was approved by The Ethics Committee of the 
Eastern Hepatobiliary Hospital (EHBHKY2015-01–004). 
Serum samples were collected from all patients before 
hepatectomy. Totally, 104 CHB samples and 117 HCC 
samples were amplified and sequenced successfully, with 
63 CHB patients (CHB group) and 46 HBV-related HCC 
patients (HCC group) in the training set (Shanghai data-
set), and 41 CHB and 71 HCC samples in the test set 
(Shanghai dataset). For the HCC patients, we also col-
lected their clinical examination data.

HBV DNA extraction and Illumina sequencing in preS 
region
HBV genomes were extracted from 200 μl of serum sam-
ples using the QIAamp DNA Mini kit (QIAGEN GmbH, 
Hilden, Germany) and eluted in 100 μl of distilled water. 
The preS region was amplified using Phanta Super-
Fidelity DNA Polymerase (Vazyme Biotech, Piscataway, 
New Jersey, USA) with a pair of primers: 5′-CGC​CTC​
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ATTYTKYGG​GTC​A-3′ (forward, nucleotides 2801–
2819), and 5′-TCCKGAA​CTG​GAG​CCA​CC-3′ (reverse, 
nucleotides 62 to 79). PCR amplicons of the preS region 
were purified with Agencourt AMPure XP beads (Beck-
man Coulter, Beverly, Massachusetts) and were quan-
tified with the Qubit dsDNA HS assay kit (Invitrogen, 
Carlsbad, CA, USA). A library of PCR products of the 
preS region was prepared using the TruSeq DNA PCR-
Free sample preparation kit (Illumina, San Diego, CA, 
USA) and was run on a MiSeq sequencer (Illumina, San 
Diego, CA, USA) for paired-end sequencing, accord-
ing to Illumina protocol. Finally, fluorescent signals were 
analyzed using the MiSeq control software and trans-
ferred to sequence data in the FASTQ format.

Sequence read mapping and genotyping
Quality evaluation of raw reads was performed with the 
online tool fastqc (http:// www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/), and the reads having aver-
age base calling quality score under 20 were discarded. 
After quality filtration and adapter removal, paired-end 
reads were joined with FLASH, v1.2.10 [31]. Merged 
preS region sequence was genotyped with HBV STAR 
software as reported previously [32], and correspond-
ing preS regions of 23 reference HBV genomes from the 
GenBank database were used for genotyping (Acces-
sion numbers: X02763, X51970, AF090842, D00329, 
AB073846, AB602818, X04615, AY123041, AB014381, 
X65259, M32138, X85254, X75657, AB032431, X69798, 
AB036910, AF223965, AF160501, AB064310, AF405706, 
AY090454, AY090457, AY090460). The genotype of each 
sample was defined as the most frequent one among all 8 
types from A to H.

External validation
This dataset includes 32 HBV-related HCC patients and 
32 CHB patients without HCC (Hong Kong dataset) and 
patients were enrolled between July 2007 and December 
2012 in the Hepatitis and Liver Clinic, Queen Mary Hos-
pital, University of Hong Kong, Hong Kong [16]. Serum 
samples were collected and sequenced. More details 
about patients enrollment and HBV sequencing can be 
found in [16]. Except the Illumina MiSeq platform used 
in deep sequencing, all the other platforms and tools are 
different from what we used when generating our data. 
We got the data from the researchers [16], and used 
BLAST to map merged reads (fasta format) into HBV ref-
erence genome. According to the mapping results, reads 
with insertions, deletions and turnovers were filtered out. 
If the normal reads percentage of a sample is less than 20, 
we removed the sample. Finally, we obtained the data for 
26 HCC and 23 CHB patients. The sequence includes 589 
nucleotide acids, of which 457 ones are overlapped with 

the fragment sequenced in our study. We only considered 
the same 457 positions as those in our dataset for this 
dataset.

Data preprocessing and predictors
After sequencing the quasispecies, we collected the point 
mutation data for 457 positions including the positions 
from 1 to 61 and 2820 to 3215 in and close to the preS 
region. We counted the frequencies of the nucleotides 
in each position. To describe the mutation complexity 
in each position, we transformed the frequency data to 
Shannon entropy, which is defined as H = − i pi log pi , 
∑

i pi = 1 where i ∈ {A,C ,G,T } and pi is its frequency, 
x log(x) = 0 when x = 0. Entropy of all the 457 nucleotide 
positions of preS region were used as predictors for HCC 
diagnosis.

Model development and validation
We applied Sparse Logistic Regression (SLR) to model the 
associations between HCC/CHB groups and quasispe-
cies. SLR is to add the term �‖β1‖ to the original logistic 
regression model, where β is the coefficient vector of the 
variables. This model can simultaneously conduct classi-
fication and variable selection. By tuning the parameter 
� , we can obtain the sparse form of β with the nonzero 
entries corresponding to the selected variables. The inde-
pendent variables in our study include the entropy data 
of the 457 positions, and the response variables denote 
patients belonging to the CHB or HCC group. We aim 
to model the associations between the 457 positions and 
the CHB/HCC group. We applied K-fold cross-validation 
(CV) to select the parameter � such that β is the spars-
est among those achieving accuracy within one SD of the 
highest accuracy. Then we applied the fitted model using 
all training data with selected � to the test set to see the 
prediction performance. We directly implemented the 
function: glmnet() in the R package ‘glmnet’ [16] by set-
ting alpha = 1, which is a parameter to balance the con-
tributions between ‖β1‖ and ‖β2‖ . With alpha being 1, the 
‖β2‖ term will not contribute to the model, and less varia-
bles will be selected with the same classification accuracy. 
We used four criteria to evaluate the performance of the 
model in our experiments: accuracy, area under the ROC 
curve (AUC), sensitivity, and specificity.

Association between the clinical parameters of HCC 
patients and quasispecies
For the categorical clinical parameters and those quan-
titative parameters following non-normal distributions, 
we applied SLR, as above described. For the parameters 
following normal distribution, we applied Sparse Partial 
Least Square regression (SPLS), a method designed to 
find the combination of all independent variables so as to 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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be most correlated with the response variable. Here, we 
also imposed l1 penalty to obtain a sparse solution of the 
coefficients. We adopted the method proposed in [34] 
and directly used the R package ‘spls’ [34]. To choose the 
number of latent components (combinations) κ and the 
soft threshold η to determine the zero entries of the coef-
ficients, we also used CV to tune the parameters. We first 
fixed η and varied κ to choose the best κ and then fixed κ 
to choose the best η.

Results
In this section, we presented our main findings on the 
relations between nucleotide point entropy in preS region 
and HCC development. Our main aim is to classify the 
CHB/HCC patients or build the prediction model for 
HCC using nucleotide point entropy in the preS region, 
at the same time, to find some important point muta-
tions that contribute to HCC development. Since clinical 
indexes are more easily obtained, we also explored the 
associations between point mutations in preS region and 
clinical indexes.

Participants and nucleotide acid entropy of the preS region
The baseline information of the CHB and HCC patients 
(Shanghai dataset) was summarized in Table  1. In both 
training and test cohort, the HCC patients showed more 
inferior liver function, older age and lower serum HBV 

DNA levels.
The nucleotide acid entropy of preS region was calcu-

lated and the entropy distribution was shown in Fig. 1A. 
The median entropy of preS region in CHB patients was 
0.0087 (0.0074–0.0092), which is lower than counterpart 
in HCC patients 0.0090 (0.0076–0.01001). No significant 
difference was found between entropy of all nucleotide 
points in preS region (Fig. 1B). When nucleotide points 
entropy of the preS1 and preS2 were compared respec-
tively, nucleotide points entropy in preS1 region of HCC 
patients were significantly higher than those in CHB 
patients. While in preS2 region, the opposite trend was 
presented between HCC and CHB patients (Fig. 1B). Fur-
thermore, entropy of individual nucleotide positions was 
compared and the p-value and fold-changes were pre-
sented in Fig.  1C. A lot of positions showed significant 
divergence in entropy between CHB and HCC patients.

Model development and performance
Since too many nucleotide positions with divergent 
entropy exist between CHB and HCC patients, more 
sophisticated methods should be applied to investigate 
the associations between nucleotide entropy and HCC 
development. Thus, we studied the classification of HCC/
CHB groups with quasispecies data using SLR [33]. The 
model was fitted with the training dataset (46 HCC/63 
CHB, Shanghai dataset), and was applied to do the pre-
diction in the test sets (71 HCC/41 CHB, Shanghai data-
set). To tune the parameter λ that controls the selection 
of the variables (nucleotide positions), we ran fivefold CV 
50 times in the training set. The value of λ started from 
0.52 with a proportion of 0.5 to decrease, and the length 
of λ was set as 15. Figure 2 shows the prediction results 
for all λ’s. In the training data, when λ is less than 0.53 (the 
2nd point), the four evaluation criteria are all stable, with 
sensitivity having the greatest SD. In the test set, both 
accuracy and AUC were stable starting from λ = 0.53. 
Here, λ was chosen as 0.53, and Table 2 shows the classi-
fication results. The accuracy and AUC achieved a mean 
value of 0.861 (SD = 0.032) and 0.883 (SD = 0.043) in the 
training set and 0.794 and 0.795, respectively, in the test 
set. The SLR model performed more superior than clas-
sic logistic regression model in Table  2. This shows the 
high associations between HBV quasispecies and HCC 
development.

The final obtained prediction model using SLR is:

where the subscript of each variable means the point 
mutation positions that were selected. For each sample, 
after the entropy of each position is calculated, the sam-
ple is centralized by subtracting the mean entropy. Then 
the above formula is applied to compute the probability 
of being CHB or HCC, with a smaller probability leading 
to CHB.

Other machine learning methods were also inves-
tigated. We compared the above results with those 
obtained using Support Vector Machine (SVM) [35, 36] 
and Sparse Support Vector Machine (SSVM) [37]. SVM 
is a popular classification method in machine learn-
ing, which classifies the samples using all the considered 
variables. Similar to SLR, SSVM is formulated as a hinge 
loss function with an l1 penalty term to select the associ-
ated variables when doing classification [37]. We imple-
mented SVM using the R package ‘e1071’, and SSVM 

log

(

p

1− p

)

=− 0.793− 0.670x10 − 0.224x45

+ 1.169x2858 + 0.157x2861 + 0.046x2992 + 1.381x3046

+ 1.125x3090 + 0.824x3093 + 1.487x3098 + 0.235x3207
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Table 1  Demographics and baseline laboratory markers of training cohort and test cohort

AFP Alpha-fetoprotein, ALB Albumin, ALP Alkaline phosphatase, ALT Alanine aminotransferase AST Aspartate aminotransferase CHB Chronic hepatitis B, DBIL Direct 
bilirubin, GGT​ γ-glutamyltransferase; HBV Hepatitis B virus, HBeAg Hepatitis B e antigen, HBeAb Hepatitis B e antibody, HBsAb Hepatitis B antibody, HCC Hepatocellular 

Training cohort Test cohort

CHB (n = 63) HCC (n = 46) CHB (n = 41) HCC (n = 71)

Gender

Female 21 (33.3%) 6 (13.6%) 18 (43.9%) 13 (18.3%)

Male 42 (66.7%) 38 (86.4%) 22 (53.7%) 58 (81.7%)

Age 36.6 ± 13.8 52.4 ± 8.3 40.1 ± 11.9 51.1 ± 10.2

Serum HBV DNA 7.48 5.02 6.24 5.32

(log10 IU/ml) (6.50–7.83) (4.43–6.25) (4.89–7.65) (4.80–5.85)

TBIL (μmol/L) 13 14.2 11 14.5

(10.0–17.0) (11.1–19.8) (8.7–15.7) (11.5–19.4)

DBIL (μmol/L) 3 5.5 4 5.7

(3.0–5.0) (4.0–7.7) (3.0–6.0) (4.4–7.5)

TP (g/L) 74 68.8 75 67.8

(71.5–79.0) (64.4–71.1) (70.0–78.0) (64.1–72.7)

ALB (g/L) 45.5 39.8 45 40.9

(41.0–49.7) (37.0–42.5) (43.0–48.5) (38.0–43.9)

ALT (U/L) 38 43.4 51 40.5

(19.0–66.0) (24.7–78.4) (29.5–77.0) (33.0–71.0)

AST (U/L) 30 46 33 40

(21.0–45.0) (25.0–84.5) (26.5–54.2) (31.0–64.0)

GGT (U/L) 22 81 24 78

(15.0–51.0) (41.3–156.0) (18.0–43.2) (50.0–121.5)

ALP (U/L) 71.5 92 72 92

(59.299.7) (69.25–131.5) (56.0–82.5) (73.5–112.0)

HBsAb

Negative 17 (40.5%) 36 (85.7%) 38 (97.4%) 64 (95.5%)

Postive 25 (59.5%) 6 (14.3%) 1 (2.6%) 3 (4.5%)

HBeAg

Negative 31 (73.8%) 25 (59.5%) 8 (20.5%) 41 (61.2%)

Postive 11 (26.2%) 17 (40.5%) 31 (79.5%) 26 (38.8%)

HBeAb

Negative 33 (78.6%) 10 (23.8%) 31 (79.5%) 18 (26.9%)

Postive 9 (21.4%) 32 (76.2%) 8 (20.5%) 49 (73.1%)

HBV genotype

B 26(41.2%) 8(17.4%) 15(36.6%) 12(16.9%)

C 37(58.7%) 36(78.3%) 26(63.4%) 59(83.1%)

Tumor size(cm) 5.6(3.32–9.40) 11(7.8–14.5)

Capsule

Intact 5 (11.4%) 10 (15.6%)

None 5 (11.4%) 11 (17.2%)

Partial 34 (77.3%) 43 (67.2%)

Tumor number

1 32 (72.7%) 58 (90.6%)

2 0 (0.0%) 3 (4.7%)

3 12 (27.3%) 3 (4.7%)

PVTT

None 23 (52.3%) 45(63.3%)

Yes 21 (47.7%) 19 (29.7%)

AFP(ng/ml) 565 (29.1–15,375.0) 187 (7.83–1210.0)



Page 6 of 15Jia et al. Virology Journal          (2022) 19:114 

using R package ‘sparseSVM’ [37], respectively. Using 
similar procedure as SLR, we trained the model using the 
training set and applied it to the test set. The prediction 
results in the test dataset are also shown in Table 2. For 
SSVM, we also did model calibration using the R pack-
age ‘platt’ [38], which implements Platt calibration. Platt 
calibration is to transform the classification outputs into 
a probability distribution over classes by fitting a logis-
tic regression model to a classifier’s scores. The perfor-
mance of SSVM can be improved after calibration. Since 
SLR outputs the probability for each sample being HCC 
patient, we directly gave its calibration plot. The predic-
tion results and the reliability diagrams of both SLR and 
calibrated SSVM were put in Additional file  1: Figure 
S1 and Additional file  6: Table  S2, which shows similar 
performance. Though the AUC for SVM is higher than 
that of SLR, it cannot identify the associated variables. 
The performance of both SSVM and calibrated SSVM is 
much worse than SLR. Thus, our following analysis for 
CHB/HCC classification is based on SLR.

Independent validation in the Hong Kong dataset
We first applied SLR to the entropy data of the Hong 
Kong dataset as the training set. Owing to the small 
sample size, we used tenfold CV 50 times to conduct the 
experiments within this dataset and record the results. 
The value of λ was finally chosen to be 0.56. Table  3 
shows the results in ‘Training results’ (Hong Kong data-
set). Within the Hong Kong data, mean accuracy and 
AUC achieved a value of 0.822 (SD = 0.031) and 0.724 
(SD = 0.054), respectively. We then used the model 
trained by Shanghai dataset to predict the HCC/CHB 
patients in the Hong Kong dataset as the test set. The 
results are shown in ‘Test results’ in Table 3. The predic-
tion has accuracy 0.694 and AUC 0.607, respectively. The 
independent sequencing experiments further confirmed 
HCC development is associated with HBV quasispecies.

Nucleotide position quasispecies associated with HCC 
development
We checked the coefficientsin the model trained with our 
whole training data when λ = 0.53. Ten positions were 
selected to be associated with HCC: 10, 45, 2858, 2861, 
2992, 3046, 3090, 3093, 3098, and 3207. When λ became 
less than 0.53, except position 45, the remaining 9 posi-
tions were kept in the model. This shows the high asso-
ciations between HCC and the 9 nucleotide positions. 
In Fig.  3, the entropy of these nucleotide points were 

significantly different between HCC and CHB patients. 
We carried out t-test for the entropy data of these 10 
positions. All of them were significantly different between 
HCC and CHB patients with a minimum p-value in posi-
tion 45 and a maximum p-value in position 3207. The 
base frequencies of these 10 positions in HCC and CHB 
patients were also presented in Additional file  2: Figure 
S2, respectively and it is clear that the base distributions 
are also different in HCC and CHB samples.

Effect of training sample size on the prediction accuracy 
of HCC/CHB patients
Since with limited samples, the models developed may 
have potential to perform worse when applied to new 
patients, we further did experiments to evaluate the 
predictive models and to see how the performance of 
SLR depends on the sample size [39]. We randomly 
selected a given percentage of samples from the origi-
nal training set with λ = 0.53 to train the model, and 
then applied it to the test data. The percentage varied 
from 30 to 100 percent, with 100 percent correspond-
ing to all the training samples. We repeated samplings 
for each percentage 50 times. The mean for all four 
evaluation criteria and the SD were plotted in Fig.  4. 
When the sample size increased, the accuracy, AUC 
and specificity all correspondingly increased, while 
SD decreased. Sensitivity was relatively stable and had 
a value around 0.80. Even with only 30 percent of the 
data, that is, only 33 training samples, the mean accu-
racy and AUC were around 0.70 and 0.67, which are 
higher than that obtained using ordinary LR and com-
parable to that using SSVM. When using 70 percent of 
the training samples, the number of which is less than 
80, the results were much better than that of LR and 
SSVM, and became stable. These show the efficiency of 
the SLR model in our experimental settings.

Genotype analysis of all patients
To see the differences between the samples of differ-
ent genotypes, we studied the samples of genotype C 
and genotype B separately. With the same model train-
ing method, we chose λ = 0.58 and λ = 0.53 for patients of 
genotype B and genotype C, respectively. The results for 
different λ’s are shown in Additional file 3: Figure S3, and 
the results for the chosen λ are listed in Table  4. Com-
pared to results that using all the patients, the specific-
ity increased and the sensitivity decreased for patients of 
genotype B. Meanwhile, the specificity decreased and the 

carcinoma, TBIL Total bilirubin, TP Total protein, PVTT Portal veint umor thrombus

Table 1  (continued)
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Fig. 1  HBV preS region nucleotide entropy of CHB and HCC patients. A. Heat map show the nucleotide entropy in preS region of CHB and HCC 
patients. B. Comparison of nucleotide entropy in preS, preS1 and preS2 region between in CHB and HCC patients. C. Nucleotide points in preS 
region with different entropy between in CHB and HCC patients were described by volcano plot filtering. Entropy of all the nucleotide points in 
preS region were compared between in CHB and HCC patients. After logarithm, the p-values were presented in the y-lab direction. In the x-lab 
direction, the relative entropy ratios of CHB and HCC patients were also log-transformed and presented. Red spots represented nucleotide points 
with higher entropy in CHB patients, of which p-values and fold changes were upon specific threshhold. The green spots mean nucleotide points 
with opposite conditions
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sensitivity increased by several fold for patients of geno-
type C.

We also performed cross-prediction as a check on pre-
diction performance. We trained the model with geno-
type C or B patients in the training set and predicted the 
other genotype patients in the test set. The results were 
added in Table 4. Accuracy and AUC were both compa-
rable to those within the same genotype, while sensitivity 

and specificity showed more changes. Thus, for predic-
tion purposes, this finding implies that we might com-
bine all individuals together to produce a larger sample 
size, as demonstrated by our experiments.

Association between HBV quasispecies and clinical 
parameters in HCC patients
For the HCC patients, we investigated the associations 
between HBV quasispecies and clinical parameters. For 
the categorical clinical parameters and those quantita-
tive parameters following non-normal distributions, 
we applied SLR. For the parameters following normal 
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Fig. 2  Classification results for HCC/CHB patients using SLR with different parameters. Classification results (accuracy, AUC, sensitivity and 
specificity) for all HCC/CHB patients as a function of penalization parameter λ in sparse logistic regression. The vertical lines show one SD in the CV 
studies

Table 2  Classification results for HCC/CHB using LR, SLR, SVM 
and SSVM

LR: We applied the trained model in training set to the test set (Test set). SLR: We 
did cross validation within the training set (Training set), and applied the trained 
model to the test set (Test set). SVM: We applied the trained model in training 
set to the test set (Test set). SSVM: We did cross validation within the training set, 
and applied the trained model to the test set (Test set)

AUC​ Area under the receiver operating characteristic curve; CHB Chronic 
hepatitis B; HCC Hepatocellular carcinoma; LR Logistic regression; SLR Sparse 
logistic regression; SVM Support vector machine; SSVM Sparse support vector 
machine

LR SLR (λ = 0.53) SVM SSVM (λ = 0.55)

Test set Training set Test set Test set Test set

Accuracy 0.688 0.861 (0.032) 0.794 0.777 0.679

Sensitivity 0.718 0.809 (0.051) 0.803 0.775 0.662

Specificity 0.634 0.898 (0.019) 0.780 0.780 0.707

AUC​ 0.644 0.883 (0.043) 0.795 0.836 0.685

Table 3  Classification results for HCC/CHB from Hong Kong 
dataset using SLR

Training results: we did cross validation within the Hong Kong dataset using 
SLR with λ = 0.56. Test results: we applied the model trained in Shanghai dataset 
using sparse logistic regression and took Hong Kong dataset as the test set

AUC​ Area under the receiver operating characteristic curve; CHB Chronic 
hepatitis B; HCC Hepatocellular carcinoma; SLR Sparse logistic regression

Training results Test results

Accuracy 0.822 (0.031) 0.694

Sensitivity 0.717 (0.071) 0.500

Specificity 0.931 (0.053) 0.913

AUC​ 0.724 (0.054) 0.607
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distribution, we applied SPLS [39]. Owing to the small 
sample size, we ran tenfold CV 50 times to choose the 
parameters λ, η, and κ. When we applied the SPLS model, 
η was set between 0.1 and 0.9 with a step size of 0.1, and 
κ varied between 2 and 10. If the AUC for the independ-
ent test was greater than 0.60, we took the clinical param-
eter as being associated with HBV quasispecies. Finally, 
we found that the serum indexes: hepatits B e antigen 
(HBeAg), HBVDNA, and alkaline phosphatase (ALP) 
were associated with HBV quasispecies. The classifica-
tion results for different values of λ and η were showed in 

Additional file 4: Figure S4. Table 5 shows the classifica-
tion results for the selected λ and η.

When classifying the HBeAg-positive and -negative 
patients in the training set, both accuracy and AUC were 
around 0.9. While the accuracy and AUC in the test set 
were 0.672 and 0.607, respectively. For the parameter 
HBVDNA, the accuracy and AUC were around 0.7 for 
all η’s in the training set. In the test set, the accuracy and 
AUC decreased to 0.676 and 0.675, respectively. Simi-
larly, for ALP, both accuracy and AUC were stable with 
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Fig. 3  Comparison of entropy of the ten nucleotide points of HBV preS region selected by SLR model. Ten nucleotide points of HBV preS region 
were selected by SLR model for CHB/HCC classification and entropy between in CHB and HCC patients were compared. All of the ten nucleotide 
points showed significant divergence between in CHB and HCC patients
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Fig. 4  Classification results for HCC/CHB patients using SLR with different sample size. The vertical lines show one SD in the cross validation studies

Table 4  Classification results for HCC/CHB patients of different HBV genotypes using SLR

*Test results were produced using SLR model trained by patients with the same genotype of HBV
# Test results were produced using SLR model trained by patients with the other genotype of HBV

AUC​ Area under the receiver operating characteristic curve; CHB Chronic hepatitis B; HCC Hepatocellular carcinoma; SLR Sparse logistic regression

Genotype B (λ = 0.58) Genotype C Genotype C (λ = 0.53) Genotype B

Training set Test set* Test set# Training set Test set* Test set#

Accuracy 0.924(0.028) 0.778 0.741 0.870 (0.023) 0.776 0.741

Sensitivity 0.678(0.122) 0.583 0.915 0.840 (0.064) 0.864 0.500

Specificity 0.999(0.006) 0.933 0.346 0.890 (0.036) 0.577 0.933

AUC​ 0.861(0.061) 0.706 0.754 0.843 (0.027) 0.767 0.722

Table 5  Classification results for clinical parameters using SLR in HCC patients

AUC​ Area under the receiver operating characteristic curve; HCC Hepatocellular carcinoma; SLR Sparse logistic regression; ALP Alkaline phosphatase; HBV Hepatitis B 
virus; HBeAg Hepatitis B e antigen

HBeAg HBV DNA ALP

λ = 0.57 κ = 4, η = 0.8 κ = 2, η = 0.7

Training set Test set Training set Test set Training set Test set

Accuracy 0.882 (0.026) 0.672 0.791(0.038) 0.676 0.782 (0.037) 0.634

Sensitivity 0.929 (0.042) 0.805 0.757(0.084) 0.667 0.712 (0.082) 0.703

Specificity 0.920 (0.056) 0.462 0.833(0.074) 0.690 0.868 (0.058) 0.559

AUC​ 0.882 (0.051) 0.602 0.697(0.052) 0.675 0.688 (0.048) 0.648
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all η’s around 0.8 and 0.7 in the training set. While the 
accuracy and AUC were 0.634 and 0.648 in the test set.

Discussion
In this work, we investigated the quasispecies of HBV 
preS region in CHB and HCC patients using NGS 
method. No significant divergence was found in nucleo-
tide entropy level of preS region between in CHB and 
HCC patients, which is not consistent with the previ-
ous study in [16]. Even so, nucleotide points’ entropy of 
preS region in HCC patient in higher in this study, which 
showed the same tendency as previous study [16]. Fur-
thermore, obvious entropy divergence was observed in 
nucleotide entropy level of preS1 and preS2 respectively 
between the two patient groups. The patient group com-
position may contribute to the different results between 
the former study and ours. On the other hand, differ-
ent fragments in genome may show unique nucleotide 
entropy and present special function.

Then we studied the associations between HCC and 
HBV quasispecies by applying SLR to the deep sequenc-
ing data of the preS region. The classification of HCC and 
CHB patients using entropy of the nucleotide frequency 
achieved a prediction accuracy of 0.794 and AUC of 
0.795 in the independent test set, which are superior to 
the classic HCC marker: AFP [40, 41]. In another inde-
pendent dataset from Hong Kong, the prediction accu-
racy and AUC were 0.695 and 0.607, respectively. These 
results demonstrate the high associations between HCC 
and HBV quasispecies. The decreasing of the accuracy 
and AUC in the Hong Kong dataset could be attributed 
to the different sequencing protocols, especially the dif-
ferent sequencing start and end points of the preS region. 
Since the target sequence was analyzed using large-scale 
parallel sequencing, even the minor divergence would be 
amplified thousands of times. Other reasons may include 
different sequencing process, different patients’ consti-
tution, different intervention for the patients, and so on. 
The reason for this is worth further studying.

Fig. 5  Nucleotide and amino acid mapping for the identified mutation points. Functions of ten nucleotide points of HBV preS region selected by 
SLR model for CHB/HCC classification are also denoted
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One of the advantages of SLR is that significant vari-
ables could be selected accompanying the process of pre-
diction model fitting. The 10 positions selected by SLR 
associated with HCC were significantly different in both 
entropy and nucleotide frequency data. We mapped the 
nucleotide of the selected positions to amino acid and 
checked the functional domains of these positions [6]. 
Figure  5 shows the nucleotide positions, corresponding 
amino acid and the functions. Except the position 2858 
and 2861, all the remaining positions have related func-
tions. Positions 3090, 3093, 3098, 3207, 10, 45 belong to 
the B cell epitope. Position 2892 belongs to the T cell 
epitope. Mutations in these epitopes may contribute to 
immune escape and affect virus-host immune interac-
tion. Position 3046, 3090, 3093, 3098, 3207, 10, 45 are in 
the transactivator domain. Positions 3046, 3090, 3093, 
and 3098 locate in S-promoters region. These mutations 
may play roles in the process of virus gene transcrip-
tion and expression. Position 10 belongs to the polymer-
ized human serum albumin (pHSA) binding site which 
is involved in the process of virus binding and entry to 
hepatocyte and mutations in this region may have influ-
ence on virus-cell interaction [42]. Positions 3090, 3093 
and 3098 all belong to the heat shock cognate 70 (Hsc70) 
binding site.

Among all 10 positions, three, including 10, 2858, and 
3098, have been reported as being associated with HCC 
in the literature [16, 40–42]. The mutation C10A was 
reported as a risk factor for HCC patients compared to 
HCC-free HBsAg-positive patients [43]. Our study shows 
that the mutation in position 10 is significantly differ-
ent between the HCC and CHB groups with p-value of 
6.61 × 10–8. Besides the high mutation to ‘A’ reported in 
[43], we also found a high mutation to ‘T’. The mutation 
to ‘A’ is higher in the HCC group, while the mutation to 
‘T’ is higher in the CHB group. Position 2858 was recently 
found to be associated with HCC development [16]. In 
this study, three codons, including 4, 27, and 167, were 
found to be associated with HCC development. Position 
2858 belongs to codon 4. The mutation to ‘C’ of this posi-
tion is much higher in HCC compared to CHB, as shown 
in Additional file 2: Figure S2. The mutation of T3098C is 
also showed association with HCC progress [43, 44] and 
the mutation ‘T’ to ‘C’ is much higher in HCC patients 
than in CHB patients. This is consistent with our study, 
as clearly shown in Additional file  2: Figure S2. Besides 
the mutation to ‘C’, we also found that the mutation to ‘G’ 
in HCC is higher than that in CHB in position 3098.

In the experiments for patients of genotypes B and C 
separately, the prediction performance was a little worse 
than that for all patients, but it still achieved accuracy 
and AUC greater than 0.7 in the independent test set. 
The prediction AUC decrease may be due to two reasons. 

Firstly, each genotype of virus may own its special clas-
sification features of disease status and these features 
may take effect in single genotype infection or mixed 
genotype infection. When patients infected with virus 
genotype mixture were separated by major infection 
genotype, features of the minor infection genotype could 
not take effect in disease status classification. Previous 
studies have shown the co-infection of different HBV 
genotypes is not unusual.[45, 46] So the classification 
efficiency decreased when patients were first grouped 
by infection genotype. Secondly, HCC progression was 
related with genotype C HBV infection [46, 47] and most 
HCC patients were infected with genotype C virus com-
pared with CHB patients in our study (Chi-square test, 
p-value = 0.02). So some features that determine the 
infection genotype may also determine disease status. 
When the population was separated by infection geno-
type beforehead, these features could not further be used 
for disease classification, which also contributed to the 
decline of prediction effect.

The associations between the clinical examination 
parameters and the quasispecies for HCC patients 
were also studied. Three parameters, including HBeAg, 
HBVDNA and ALP, were found to be associated with 
HBV quasispecies. Previous studies have shown HBeAg 
and HBVDNA to be associated with HBV quasispecies 
[9, 49]. Our study further shows their associations in the 
preS region. ALP has not been reported by others and is, 
therefore, worth further study. All of the 3 parameters 
showed decreased AUC and accuracy in the test set com-
pared to those in the training set. This could be attrib-
uted to the unbalanced data size of the training and test 
sets. We applied permutation test to check whether the 
associations between these three parameters and HBV 
quasispecies are artifactual. We permuted the response 
labels, and used the same method to see the predic-
tion AUC. Then the AUCs from permuted data are sig-
nificantly smaller than the AUC obtained from the real 
data (p-value < 0.05). This validates the existence of these 
associations. The selected positions associated with these 
three parameters are listed in Additional file 7: Table S3.

In our study, the main statistical methods are SLR 
and SPLS. With sparsity constraints, we can simultane-
ously find the associated variables and fit the prediction 
model. These methods have been applied to the study 
of disease-related biomarkers and classifications [34, 50, 
51]. Though our team also used other machine learning 
methods and achieved better prediction efficiency based 
on HBV reverse transcriptase quasispecies [41], the SLR 
still has advantages, especially in variables selection, 
which could promote the understanding of prediction 
model as well as HCC progression mechanism.
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In this study, we only focused on the point mutations 
though high associations between HCC and HBV qua-
sispecies was showed. Other variations such as deletions, 
insertions also exist in the HBV genomes, and these 
nucleotide changes may have some linkages in the qua-
sispecies variants. We did not take into account these 
issues in our current study. If these factors can be taken 
into account, better results should be expected. This is 
left as one of our future works. Furthermore, the lim-
ited sample size is a weakness of this study. It is better to 
estimate the sample size in advance according to criteria 
described in previous studies [52, 53], and use sufficient 
samples for predictive model development and valida-
tion. Finally, the degradation in performance of the exter-
nal validation also implied that application of prediction 
model based on NGS should be strictly limited with pre-
set conditions consisting of same sequencing strategy 
and bioinformatics analysis process.

Conclusions
In this paper, using SLR, we proved the associations 
between HCC and HBV quasispecies of the preS regions 
probed by NGS. We also found ten point mutations in 
the preS region are associated with HCC development. 
Using these point mutations, the prediction of HCC/
CHB patients shows promising results. These results help 
understanding the molecular mechanism driving the 
progression from HBV to HCC.
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