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BRIEF REPORT

Identification and application of a pair 
of noncompeting monoclonal antibodies 
broadly binding to the nucleocapsid proteins 
of SARS‑CoV‑2 variants including Omicron
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Abstract 

The SARS-CoV-2 nucleocapsid protein (NP) is an important indicator for the virus infection, highlighting the crucial 
role of NP-specific monoclonal antibodies (mAbs) used in multiple biochemical assays and clinical diagnosis for 
detecting the NP antigen. Here, we reported a pair of noncompeting human NP-specific mAbs, named P301-F7 and 
P301-H5, targeting two distinct linear epitopes on SARS-CoV-2 or SARS-CoV. We evaluated the application of P301-F7 
in the analysis of enzyme linked immunosorbent assay, western blot, flow cytometry, immunofluorescence, and focus 
reduction neutralization test. We for the first time report a broad mAb effectively recognizing various live viruses of 
SARS-CoV-2 variants including Alpha, Beta, Delta, and Omicron, indicating a wide range of application prospects.
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Introduction
The coronavirus disease 2019 (COVID-19) caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was first reported in late 2019 and early 2020 [1]. 
It was the third coronavirus disease in the twenty-first 
century after SARS-CoV in 2002 [2] and Middle East res-
piratory syndrome coronavirus (MERS-CoV) in 2012 [3]. 
So far, there has been over 480 million confirmed cases, 
resulting in more than 6 million deaths worldwide. Since 
the beginning of 2021, various SARS-CoV-2 variants have 

been emerging one after another, such as Alpha, Beta, 
Gamma, Delta, and especially current Omicron, which 
carried a lot of mutations compared with the Wuhan ref-
erence strain (wild-type, WT).

SARS-CoV-2 is a member of the sarbecovirus sub-
genus. It contains 14 main open reading frames and 
encodes 4 structural proteins including surface spike 
protein, envelope protein, integral membrane protein, 
and nucleocapsid protein (NP) [4]. Among them, spike 
protein mediates the interaction of virus with cellular 
receptor (angiotensin-converting enzyme 2, ACE2) and 
triggers subsequent cell membrane fusion for the viral 
entry [5]. Several studies have shown that mutations 
located in spike protein contributed to the escape from 
the neutralizing antibodies (nAbs), making the SARS-
CoV-2 variants a problem to be concerned worldwide 
[6–9]. All along, researchers have also been paying close 
attention to the mutations in the NP [10, 11]. The SARS-
CoV-2 NP is a highly immunogenic and abundantly 
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expressed protein during the viral infection, making it 
as a suitable target for antigen detection [12, 13]. As we 
all know, the NP-specific antibodies play a crucial role 
in developing test reagents. Currently, several monoclo-
nal antibodies (mAbs) have been identified from both 
immunized mice and rabbits and convalescent COVID-
19 patients, and some of the mAbs are also able to rec-
ognize the mutated NP of SARS-CoV-2 variants [14–17]. 
However, compared with a large number of spike-specific 
mAbs, the quantity of anti-NP mAbs is generally lim-
ited, whose functions and features have not been clearly 
characterized. More importantly, it is still unknown that 
whether these applied mAbs could bind to the live virus 
of variants, especially for the detection of SARS-CoV-2 
Delta and Omicron variants dominating the current wave 
of the COVID-19 pandemic around the world.

In this study, we isolated a pair of noncompeting NP-
specific mAbs from a convalescent COVID-19 individ-
ual. P301-F7 and P301-H5 bound well to the WT and 
mutated NPs, as well as SARS-CoV NP, which recognized 
two distinct linear epitopes. We also validated P301-F7 
in the analyses of enzyme linked immunosorbent assay 
(ELISA), western blot (WB), flow cytometry, immuno-
fluorescence, and focus reduction neutralization test 
(FRNT). Most of all, to our knowledge, we first provided 
a NP-specific mAb for the detection of SARS-CoV-2 
variant live viruses including Alpha, Beta, Delta, and 
Omicron variants, which could be suitable for various 
applications in the future.

Materials and methods
Blood samples
The donor P301 was infected with WT SARS-CoV-2. 
She had been running a fever for 6 days and then admit-
ted to Shenzhen Third People’s Hospital at January 31, 
2020. She was discharged from the hospital at February 
14, 2020. Blood samples were collected at February 12, 
2020 in the convalescent period. Plasma samples were 
stored at − 80 °C and PBMCs were maintained in freez-
ing medium and stored in liquid nitrogen in the Biobank 
of Shenzhen Third People’s Hospital.

Flow cytometry
PBMCs from the COVID-19 patient were collected and 
incubated with the LIVE/DEAD™ Fixable Dead Cell 
Stain reagent (Thermo Scientific) to exclude dead cells. 
Cells were then stained with His-tagged WT SARS-
CoV-2 NP (Sino Biological) and the fluorescent-labeled 
antibodies including CD19-PE/Cy7, CD3-Pacific Blue, 
CD8-Pacific Blue, CD14-Pacific Blue, CD27-APC/
Cy7, IgG-FITC (BD Biosciences), followed by incu-
bated with APC- and PE- labeled His-specific antibod-
ies (Abcam). NP-specific single B cells were gated as 

CD19 + CD3-CD8-CD14-CD27 + IgG + NP + and sorted 
into 96-well PCR plates containing lysis buffer (Invit-
rogen) using a FACSAriaII Flow Cytometer (BD Bio-
sciences). Plates were then snap-frozen on dry ice and 
stored at − 80 °C until RT reaction.

For intracellular staining, 293 T cells transfected by NP 
expression vectors were fixed and permeabilized using 
Fixation/Permeabilization Solution Kit (BD Biosciences), 
stained with NP-specific mAbs (P301-F7 or P301-H5) or 
the polyclonal antibody (pAb) (Sino Biological), followed 
by staining with APC-conjugated secondary antibody 
(Life Technologies). After washing, cells were resus-
pended and subjected to acquisition with a FACSCalibur 
Flow Cytometer (BD Biosciences). Data were analyzed 
with FlowJo software V10.6 (BD Biosciences).

Single B cell PCR, cloning, and expression of mAbs
To amplify IgG variable genes, we first carried out the RT 
reaction in the 96-well PCR plate. Then heavy chain and 
light chain genes were separately amplified, sequenced, 
synthesized, and cloned into the backbone of antibody 
expression vectors containing the constant regions of 
human IgG1 (Sangon Biotech). MAbs were produced 
by transient transfection of 293 F cells (Life Technolo-
gies) with equal amounts of paired heavy and light chain 
plasmids, and purified by affinity chromatography using 
Protein A beads columns (Senhui Microsphere Tech) 
according to the manufacturer’s protocol.

Enzyme‑linked immunosorbent assay (ELISA)
The native recombinant nucleocapsid proteins (NPs) of 
SARS-CoV, SARS-CoV-2 or variants, MERS-CoV, HKU1, 
OC43, NL63, and 229E (Sino Biological) (2  μg/mL) or 
denatured by treatment with the denaturing buffer con-
taining 0.5% SDS and 40  mM DTT [18] (New England 
Biolabs) at 95  °C for 10  min were coated into 96-well 
half-area plates overnight at 4  °C. The plates were then 
blocked with blocking buffer (PBS containing 4% skim 
milk) at 37  °C for 1  h. Five-fold or three-fold serial-
diluted NP-specific mAbs or Rabbit pAb against NP of 
SARS-CoV-2 (Sino Biological) were added to the plates in 
duplicate and incubated for 1 h at 37 °C. And then HRP-
conjugated Goat anti-Human IgG (ZSGB-BIO) or Goat 
anti-Rabbit IgG (TransGen Biotech) secondary antibody 
was added to the plates and incubated at 37  °C for 1 h. 
For competitive ELISA, after blocking, serially diluted 
P301-F7, P301-H5, and human IgG1 were mixed with 
HRP-conjugated P301-F7, and then added to the plates 
and incubated at 37  °C for 1  h. The enzymatic reaction 
was developed with TMB substrate (BD Biosciences) and 
stopped by 2 M H2SO4. The optical density was measured 
at 450 nm (OD. 450 nm) with a Varioskan™ LUX Multi-
mode Microplate Reader (Thermo Scientific).
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Binding analysis by surface plasmon resonance (SPR)
The binding assays of mAbs to NPs of SARS-CoV-2 and 
SARS-CoV were performed using the Biacore 8 K system 
(GE Healthcare). Specifically, one flow cell of the CM5 
sensor chips were covalently coated with the NPs (Sino 
Biological) in 10 mM sodium acetate buffer (pH 5.0) for 
a final RU (response units) around 250, whereas the other 
flow cell was left uncoated and blocked as a control. All 
the assays were run at a flow rate of 30 µL/min in HBS-
EP buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM 
EDTA and 0.05% Tween-20). Serially diluted antibod-
ies were injected for 60  s respectively and the resulting 
data were fit in a 1:1 binding model with Biacore Evalu-
ation software (GE Healthcare). Every measurement was 
performed three times and the individual values were 
used to produce the mean affinity constant and standard 
deviation.

Structure model prediction
The complete SARS-CoV-2 NP contains 419 amino acids, 
but a complete structure has not been resolved as it con-
tains many flexible domains. To predict the model of the 
full-length SARS-CoV-2 NP, Coot was used to connect 
existing crystal structures of N-terminal domain (NTD, 
aa44-174, PDB code: 7CDZ) and C-terminal domain 
(CTD, aa255-364, PDB code: 7CE0), and the remaining 
parts were labeled with loops. Then the model was served 
as a template to predict the complete structure of SARS-
CoV-2 NP using AlphaFold2 (https://​alpha​fold.​ebi.​ac.​uk). 
The image was depicted using PyMOL visualization soft-
ware (http://​www.​pymol.​org).

Western blot analysis
For recombinant protein, 2 μg His-tagged NPs of SARS-
2-CoV, SARS-CoV, and MERS-CoV (Sino Biological) 
were loaded onto 10% sodium dodecyl sulphate poly-
acrylamide gel electrophoresis (SDS-PAGE), transferred 
to polyvinylidene difluoride (PVDF) membrane using 
the Mini-PROTEAN® Tetra System (Bio-Rad). After 
blocking with 5% skim milk for 1 h at room temperature, 
membranes were incubated with HRP-conjugated mouse 
anti-His mAb (Sangon Biotech) or P301-F7, P301-H5 
overnight at 4  °C, followed by incubation with HRP-
conjugated Goat anti-Human IgG (ZSGB-BIO) for 1  h 
at room temperature. The proteins were visualized with 
Chemiluminescent Substrate (Thermo) and a Chemi-
Doc™ MP Imaging System (Bio-Rad).

Immunofluorescence
Vero E6 cells were infected with SARS-CoV-2 at a MOI 
of 0.01 in the treatment of different doses of Remde-
sivir. At 48  h post-infection, cells were fixed with 4% 

paraformaldehyde for 30 min at RT, permeabilized with 
Perm/Wash (BD Biosciences) containing 0.1% Triton 
X-100 for 10 min at RT. After washing, cells were stained 
with 2 μg/mL NP-specific mAb (P301-F7) or pAb (Sino 
Biological) for 1 h at RT, followed by staining with Alexa 
Fluor® 488-conjugated secondary antibody (Invitrogen) 
for 1  h at RT. After washing, cells were incubated with 
Hoechst 33258 (Life Technologies). Microscopic images 
were obtained under a digital inverted microscope EVOS 
(Life technologies).

Focus reduction neutralization test
SARS-CoV-2 focus reduction neutralization test (FRNT) 
was performed in a certified Biosafety level 3 lab. Anti-
bodies were three-fold serial diluted, mixed with equal 
volume of SARS-CoV-2 or variants in U-bottom 96-well 
plates and incubated for 60  min at 37  °C. The mix-
ture (containing 200 focus forming unit of live virus) 
were then transferred to 96-well plate seeded with Vero 
E6 cells and allowed absorption for 1  h at 37  °C before 
removed. After washing, the overlay media (MEM con-
taining 1.6% Carboxymethylcellulose, 2% fetal bovine 
serum) was added and then cells were incubated at 37 °C 
for 24  h. After removing the overlay media, cells were 
fixed with 4% paraformaldehyde solution, permeabilized 
with Perm/Wash buffer (BD Biosciences) containing 0.1% 
Triton X-100, incubated with HRP-conjugated P301-F7. 
The reactions were developed with KPL TrueBlue Per-
oxidase substrates (Seracare Life Sciences). The numbers 
of SARS-CoV-2 or variants foci were calculated using an 
EliSpot reader (Cellular Technology Ltd).

SARS‑CoV‑2 WT and variant strains
The SARS-CoV-2 original strain (WT) and Alpha, Delta, 
Omicron variant strains were separated in our biosafety 
level 3 lab, and the Beta strain was kindly gifted from 
Guangdong Provincial Center for Disease Control and 
Prevention, Guangdong Center for Human Patho-
gen Culture Collection (GDPCC). The whole genome 
sequences of WT and Alpha, Delta variant strains have 
been deposited in the Genome Warehouse in National 
Genomics Data Center, Beijing Institute of Genomics, 
Chinese Academy of Sciences/China National Center for 
Bioinformation, whose accession numbers were showed 
below and had been publicly accessible at https://​ngdc.​
cncb.​ac.​cn/​gwh. The clade of the isolated Omicron vari-
ant was determined using the Nextclade web application 
(https://​clades.​nexts​train.​org/) and the sequence infor-
mation has not been uploaded yet.

WT strain:

https://alphafold.ebi.ac.uk
http://www.pymol.org
https://ngdc.cncb.ac.cn/gwh
https://ngdc.cncb.ac.cn/gwh
https://clades.nextstrain.org/
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Beta/Shenzhen/SZTH-003/2020, EPI_ISL_406594 at 
GISAID;

Alpha strain:

SZTH008, Accession No. GWHBFWX01000000;

Beta strain:

GDPCC-nCoV84, Accession No. GWHBDSE01000000;

Delta strain:

SZTH012, Accession No. GWHBFWZ01000000.

Animo acid sequences of antibodies

P301-F7 heavy chain:

QLQLQESGPGLVKPSETLSLTCTVSGGSISSTSYYW-
GWIRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTIS-
VDTSKNQFSLKLSSVTAADTAVYYCARFSLYCSSTS-
CYENWFDPWGQGTLVTVSS

P301-F7 light chain:

Q S V LTQ P P S V S A A P G Q K V T I S C S G S S S N I G N -
N Y V S W Y Q Q L P G TA P K L L I Y D N N K R P S G I P -
DRFSGSKSGTSATLGITGLQTGDEADYYC​GT W​
DSSLSAGQVVFGGGTKLTVL

P301-H5 heavy chain:

EVQLVESGGGLVQPGGSLKLSCAASGFTFSGSAM-
H W V R Q A S G K G L E W V G R I R S K A N S YAT​AYA​
ASVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCN-
FRGAFDYWGQGTLVTVSS

P301-H5 light chain:

SYELTQPPSVSVSPGQTARITCSGDALPKQYAYW-
YQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTT-
VTLTISGVQAEDEADYYCQSADSSGTYVVFGGGT-
KLTVL

Results
Our group had established a systemic Biobank of 
COVID-19 patients, so we performed the isolation of 
human-derived mAbs against SARS-CoV-2 NP. We first 
measured the binding activity of plasma from a conva-
lescent individual, P301, which displayed a high titer of 
NP-specific IgG (Additional file 1: Figure S1a). Then we 

used the SARS-CoV-2 NP as a bait to sort specific sin-
gle memory B cells by flow cytometry (Additional file 1: 
Figure S1b). Subsequently, single cell PCR, sequencing, 
and protein expression were performed to isolate mAbs 
as previous studies [5, 18]. Five mAbs were found to be 
able to bind to SARS-CoV-2 NP in different degrees, 
and P301-F7 and P301-H5 also recognized SARS-CoV 
NP well, yet none of which crossly targeted MERS-
CoV NP (Additional file  1: Figure S1c). By the surface 
plasmon resonance (SPR), we measured the binding 
affinities of P301-F7 and P301-H5, whose dissociation 
constants (KDs) to SARS-CoV-2 NP and SARS-CoV NP 
were 13.3 nM, 14.9 nM, 33.4 nM, and 52.0 nM, respec-
tively (Fig. 1a). The heavy chains of P301-F7 and P301-H5 
were derived from IGHV4-39 and 3-73, and light chains 
belonged to IGLV1-51 and 3-25, respectively, with dif-
ferent loop lengths of complementarity determining 
region 3 (CDR3) and low degrees of somatic hypermu-
tation (SHM) (Fig.  1b). Using the competition SPR and 
ELISA, we predicted their binding epitopes (Fig. 1c and 
Additional file 1: Figure S1d). P301-F7 and P301-H5 were 
a pair of noncompeting mAbs crossly targeting both 
SARS-CoV-2 and SARS-CoV NPs.

To further identify the epitopes recognized by P301-F7 
and P301-H5, we first measured their binding activities 
to native and denatured SARS-CoV-2 NPs. As shown 
in Additional file  1: Figure S2a, though the denatured 
buffer strongly unfolded the conformation of NP, both 
mAbs could bind to it as well as what they did to native 
NP, indicating that P301-F7 and P301-H5 recognized the 
linear epitopes. To further narrow the scope of possible 
epitopes, we constructed full-length and two C-terminal 
truncated SARS-CoV-2 NPs and expressed them in 293 T 
cells by the transient transfection, respectively (Addi-
tional file 1: Figure S2b and Additional file 1: Figure S2c). 
P301-F7 recognized the N-terminal domain of NP (M1-
M210) and P301-H5 bound to the C-terminal domain 
(E280-A419) by the flow cytometry analysis. Finally, by 
the screening of single peptide in ELISA, we identified 
that the P99 peptide (393-TLLPAADLDDFSKQL-407) 
was the key epitope recognized by P301-H5. However, 
none of tested single peptides (P1 to P51, covering M1 
to G215 of NP) could strongly react with P301-F7 (Addi-
tional file  1: Figure S2d), which may be caused by the 
truncation of linear epitopes. Molecular modeling of the 
SARS-CoV-2 NP revealed that the binding epitope of 
P301-H5 was located on the surface of NP and spatially 
separated from the target region of P301-F7 in the struc-
ture model (Fig. 1d), suggesting the possibility to use this 
pair of noncompeting mAbs to develop assays for sand-
wich detection of antibodies. To investigate that, we per-
formed the sandwich ELISA to detect SARS-CoV and 
SARS-CoV-2 NPs using P301-F7 and HRP conjugated 
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P301-H5. The results showed that this pair of mAbs could 
effectively detect SARS-CoV and SARS-CoV-2 NPs in an 
antigen dose-dependent manner, respectively (Additional 
file 1: Figure S3).

To explore the more potential applications of P301-F7 
and P301-H5, we performed immunoblot analysis with 
NPs of different coronaviruses. Both mAbs could detect 
the main 46-kDa protein band consistent with the molec-
ular mass of SARS-CoV-2 and SARS-CoV NPs, yet did 
not crossly react with MERS-CoV NP (Fig.  2a). Similar 
to the commercial polyclonal antibodies, P301-F7 and 
P301-H5 showed excellent binding activities to SARS-
CoV-2 and SARS-CoV NPs in the flow cytometry analysis 

(Fig.  2b). To test the application of P301-F7 in the cel-
lular localization of NP in SARS-CoV-2 infected cells, 
we performed the immunofluorescence assay (IFA) to 
evaluate the inhibition effect of Remdesivir in live virus 
infected Vero E6 cells (Fig.  2c). The results showed suf-
ficient fluorescence intensity and a good dose response 
pattern, indicating that P301-F7 could be considered as a 
kind of NP-specific detection antibody in various immu-
nofluorescence assays. SARS-CoV-2 spike-specific nAbs 
are good candidates for preventing and treating COVID-
19. Antibody neutralization capacity against live virus is 
the most important evaluation index of nAbs. Currently, 
the ability of nAbs to inhibit the infection of SARS-CoV-2 

Fig. 1  A pair of noncompeting mAbs binding to the SARS-CoV-2 and SARS-CoV NPs. a Binding affinities of P301-F7 and P301-H5 to NPs of 
SARS-CoV-2 (upper) and SARS-CoV (lower) by SPR. The data are means of three independent experiments. b Gene family analysis of P301-F7 and 
P301-H5. c P301-F7 and P301-H5 bound to two distinct epitopes on the SARS-CoV-2 NP (upper) and SARS-CoV NP (lower) by competition SPR. 
The experiment was performed twice and one representative result was shown. d Predicted model of the SARS-CoV-2 NP recognized by P301-F7 
(brown) and P301-H5 (purple). The model was predicted using Alphafold 2.0 based on the N-terminal and C-terminal molecular structures (PDB 
codes: 7CDZ and 7CE0)
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live virus has been evaluated by the FRNT [5, 19], in 
which some commercial polyclonal antibodies or mAbs 
against NP are used to detect the target cells infected by 
live virus. Therefore, we labeled P301-F7 with HRP and 
then tested its ability to recognize the infected Vero E6 
cells. The results showed that the nonspecific background 
of P301-F7-HRP was very low, yet the positive signal 
was particularly clear and similar to our previous assay 
[5] and possessed a good virus-dosage effect (Fig.  2d). 
Finally, as shown in Fig. 2e and Additional file 1: Figure 
S4, we successfully applied the P301-F7-HRP to evaluate 
the neutralization of a nAb, P2C-1F11, whose 50% inhi-
bition concentration (IC50) was calculated as 0.03 μg/mL 
and similar to that previously reported [5].

In addition, we tested the binding activities of P301-F7 
and P301-H5 to the SARS-CoV-2 Omicron and other 
mutated NPs carrying D3L/S235F, P13L, S194L, R203K/
G204R, and I292T mutations, respectively (Fig.  3a, b). 
Both mAbs still bound well to these mutated proteins 
with similar activities to the WT NP, indicating that 
P301-F7 and P301-H5 might be broadly binding anti-
bodies. Of note, we further tested the ability of P301-F7-
HRP in recognizing variant live viruses of SARS-CoV-2 
including Alpha, Beta, Delta, and Omicron, and the 
comparison between their mutated amino acids with the 
WT was listed in Fig. 3c and Additional file 1: Figure S5. 
Vero E6 cells infected by WT live viruses and variants 
were clearly displayed by the immune spot assay medi-
ated by P301-F7-HRP (Fig.  3d), whose broadly binding 
activity to SARS-CoV-2 variants would contribute its 
potentially wider application in the antigen detection. We 
also investigated whether P301-F7 and P301-H5 recog-
nize NPs of other existing human coronaviruses includ-
ing HKU1, OC43, NL63, and 229E. The results showed 
that these two mAbs did not react with the NPs of these 
viruses (Additional file 1: Figure S6), which would reduce 
the false positive rate in the detection of SARS-CoV-2 
variants.

Discussion
Compared with spike protein, NP is normally conserved 
and highly immunogenic in many coronavirus members. 
It has been reported that antibodies to the NP of SARS-
CoV-2 are more sensitive than the spike protein specific 

antibodies for early infection detection [20]. In addition, 
immunoglobulin M (IgM) and IgG against SARS-CoV-2 
NP have been successfully detected in serological testing 
and epidemiological monitoring [21–23]. In the COVID-
19 patients, viral antigen detection was also a convenient 
method to directly demonstrate the infection of SARS-
CoV-2 as compared with nucleic acid amplification 
tests (NATs), which could provide test results in a much 
shorter time span under 30 minutes [15]. The key agents 
of exploring detection assay are antibodies specifically 
binding to NP antigen. However, the uneven composi-
tion of polyclonal antibodies may affect the accuracy of 
experimental results. At present, a number of NP-specific 
mAbs with different epitopes, cross-reactivity and affinity 
have been isolated from mice, rabbits, alpacas and con-
valescence patients, indicating that they can be applied 
to different detection scenarios of SARS-CoV-2 [14–16, 
21, 24]. Terry et  al. developed a series of mouse mAbs 
against the SARS-CoV-2 NP. Similar to our results, most 
of mAbs could also recognize the SARS-CoV NP, except 
mBG86, which was a SARS-CoV-2 specific mAb. The 
epitope of mBG17 was located in the region of aa381-419 
at the C-terminal of NP close to the epitope of P301-H5 
(aa393-407). This pair of noncompeting mAbs, mBG17 
and mBG86, recognizing distinct epitopes could be used 
in the sandwich ELISA. The pity of it was that the bind-
ing kinetics and affinities of these mouse mAbs were not 
analyzed. Gransagne et al. reported seven single variable 
domain on heavy chain (VHH) antibodies isolated from 
alpaca that mainly targeted conformational epitopes in 
either the C-terminal or the N-terminal domains. Just 
like P301-F7 and P301-H5, these VHHs did not react 
with NPs of another four common human coronavi-
ruses. Their binding affinities to SARS-CoV-2 NP ranged 
from 0.206 to 46.5  nM. However, it’s better to make a 
head-to-head comparison with other mAbs, because the 
affinity analysis might exist differences in separate labora-
tories. And for those commercial mAbs, they are not only 
expensive, but also limited in the development of product 
reagents due to the unknown characteristic information 
and lack of independent intellectual property rights. In 
this study, we provided two human mAbs crossly rec-
ognizing NPs of SARS-CoV-2 variants including Omi-
cron and even SARS-CoV. More notably, P301-F7 and 

(See figure on next page.)
Fig. 2  The application of P301-F7 and P301-H5 in the detection of NPs in multiple biochemical assays. a Western blot analysis of the binding 
activities of P301-F7 and P301-H5 to NPs of SARS-CoV-2, SARS-CoV, and MERS-CoV, respectively. The His-tag at C-terminus of each NP detected by 
the His-specific antibody is used here as a positive control in the assay. b Flow cytometry analysis of the binding activities of P301-F7 and P301-H5 
to the SARS-CoV-2 and SARS-CoV NPs. Commercial polyclonal antibodies of one kind are used here as a positive control. c Immunofluorescence 
analysis of the inhibition effect of SARS-CoV-2 live virus by Remdesivir. Intracellular expression of NP was detected by staining Vero E6 cells infected 
with SARS-CoV-2 by P301-F7. The nuclei is stained with Hoechst. d The immune spot assay analysis of P301-F7 for recognizing the Vero E6 cells 
infected with SARS-CoV-2 live virus represented by blue spots. e The immune spot assay analysis of the inhibition efficiency of SARS-CoV-2 live virus 
in Vero E6 cells by P2C-1F11. IgG1 is a negative control of irrelevant antibody. VC: virus control without antibody. CC: cell control without virus and 
antibody. Each experiment was performed twice and one representative result was shown



Page 7 of 10Zhou et al. Virology Journal           (2022) 19:96 	

Fig. 2  (See legend on previous page.)
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P301-H5 bound to two distinct epitopes and could be 
used in multiple biochemical assays for the detection of 
NP antigen. These two novel noncompeting mAbs could 
be used alone or in combination, which would promote 
the development of diagnosis of SARS-CoV-2.

In the past two years, SARS-CoV-2 was still spreading 
worldwide, especially with the continuous appearance 

of variants. For example, the Delta variant was first 
identified in October 2020 in India and has since 
become a long-term dominant in the global COVID-19 
pandemic [8, 25]. Nonetheless, a novel variant, Omi-
cron, carried an unprecedented number of mutations 
and had spread more rapidly to over 60 countries due 
to the enhanced transmissibility [26]. The mutations 

Fig. 3  The abilities of P301-F7 and P301-H5 in recognizing the mutated NPs and live viruses of SARS-CoV-2 variants. ELISA analysis of the binding 
activities of P301-F7 and P301-H5 to the SARS-CoV-2 Omicron NP (a) and the mutated NPs (b) carrying D3L/S235F, P13L, S194L, R203K/G204R, 
and I292T substitutions, respectively. The pAb is used here as a positive control. c Key mutations appear in the NP of isolated SARS-CoV-2 live 
viruses used in this study. d The immune spot assay analysis of the recognition abilities of P301-F7 to the WT SARS-CoV-2 and variants (Alpha, Beta, 
Delta, and Omicron). The Vero E6 cells were infected with SARS-CoV-2 live virus, respectively, and then stained by the HRP-labeled P301-F7. The 
experiment in a, b, d was performed twice and one representative result was shown



Page 9 of 10Zhou et al. Virology Journal           (2022) 19:96 	

appeared in the region of NP may affect the availability 
of the existing antigen detection agents for testing these 
SARS-CoV-2 variants. So far as we know, P301-F7 is the 
first NP-specific mAb which has been proved to be able 
to recognize Vero E6 cells infected with the live viruses 
of variants including Alpha, Beta, Delta, and Omicron. 
Due to the limited resource of the biosafety level 3 
lab, we first evaluated the ability of P301-F7 to recog-
nize SARS-CoV-2 WT live viruses and variants. ELISA 
results showed that P301-H5 could also effectively bind 
to the WT and mutated NPs including Omicron, and 
that the P99 peptide (393-TLLPAADLDDFSKQL-407) 
was the key epitope of P301-H5. In this study, We 
tested the application of P301-F7 and P301-H5 in bio-
logical experiments such as ELISA, WB, and flow 
cytometry in parallel. These data suggest that P301-H5 
may also be used in the detection of SARS-CoV-2 live 
virus. Overall, P301-F7 and P301-H5 reported here can 
serve as good candidates for developing the precise 
antigen detection kits for reliable diagnosis of SARS-
CoV-2 variants and even SARS-CoV-like viruses.
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was measured by the FRNT. The IgG1 is a negative control. P301-F7-HRP is 
used as a detection antibody. Figure S5. Key mutations appear in the NP 
of SARS-CoV-2 variant viruses. Amino acid mutations of NPs in SARS-CoV-2 
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hcov19-​mutat​ionda​shboa​rd/) and outbreak.info. Figure S6. ELISA binding 
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