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Abstract 

Despite the five decades having passed since discovery of the hepatitis B virus (HBV), together with development of 
an effective anti-HBV vaccine, infection with the virus remains a serious public health problem and results in nearly 
900,000 annual deaths worldwide. Current therapies do not eliminate the virus and viral replication typically reacti-
vates after treatment withdrawal. Hence, current endeavours are aimed at developing novel therapies to achieve a 
functional cure. Nucleic acid-based therapeutic approaches are promising, with several candidates showing excellent 
potencies in preclinical and early stages of clinical development. However, this class of therapeutics is yet to become 
part of standard anti-HBV treatment regimens. Obstacles delaying development of gene-based therapies include lack 
of clinically relevant delivery methods and a paucity of good animal models for preclinical characterisation. Recent 
studies have demonstrated safety and efficiency of Adeno-associated viral vectors (AAVs) in gene therapy. However, 
AAVs do have flaws and this has prompted research aimed at improving design of novel and artificially synthesised 
AAVs. Main goals are to improve liver transduction efficiencies and avoiding immune clearance. Application of AAVs 
to model HBV replication in vivo is also useful for characterising anti-HBV gene therapeutics. This review summarises 
recent advances in AAV engineering and their contributions to progress with anti-HBV gene therapy development.
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Background
Hepatitis B virus (HBV) infection is a major public health 
burden. Approximately 257 million individuals world-
wide are chronically infected with the virus and there-
fore predisposed to cirrhosis, hepatocellular carcinoma 
(HCC) and liver failure [1]. HBV has a partially double-
stranded relaxed circular DNA (rcDNA) genome of 
approximately 3.2 kilobases (kb) in length. The genome 
has four overlapping open reading frames (ORFs), namely 
the polymerase (P), core (C), surface (S) and the X ORFs. 
Expression of HBV genes is controlled by four separate 

promoters: the basic core, preS1, preS2 and X promot-
ers. The cis enhancer elements are enhancer I, located 
upstream of the X promoter, and enhancer II which is 
located upstream of the basic core promoter. These reg-
ulatory elements are responsible for liver-specific viral 
gene expression. The P ORF encodes a DNA polymerase 
with priming, reverse transcriptase and RNase H activ-
ity. The C ORF comprises precore and core regions, col-
lectively termed precore/core. The core region encodes 
HBV core antigen (HBcAg) which forms the viral capsid, 
whereas the precore region encodes the HBV e antigen 
(HBeAg), an immune suppressor and an indicator of 
active viral replication. The S ORF has three initiation 
codons: preS1, preS2 and S, which respectively initiate 
translation of large, middle, and small surface proteins. 
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The X ORF encodes the regulatory HBx protein, which is 
essential for viral replication [2].

HBV infection is initiated by low affinity interaction 
of the infectious Dane particle with glycosaminogly-
cans located on the hepatocyte surface [3]. Enhanced 
by the presence of epidermal growth factor, the high 
affinity binding of myristalyted large surface antigen 
to the sodium taurocholate co-transporting polypep-
tide (NTCP) receptor facilitates entry of the nucleocap-
sid. Mediated by endocytosis, the nucleocapsid is then 
transferred to the nucleus via the microtubules [4–7]. 
This is followed by nuclear release of rcDNA, which is 
then repaired to form covalently closed circular DNA 
(cccDNA). The cccDNA then serves as the template for 
transcription of pregenomic RNA (pgRNA) and viral 
protein-encoding mRNAs (reviewed in [8]). HBx binds 
the DDB domain of ubquitin ligase 1 to render struc-
tural maintenance of chromosomes protein 5/6 unsta-
ble and thereby facilitates HBV gene expression [9–11]. 
Translation of the precore/core RNA produces HBcAg. 
Encapsidation of the pgRNA is followed by its reverse 
transcription. The mature nucleocapsid is then trans-
ported to the nucleus to maintain cccDNA pools or 
acquires a surface antigen-containing envelope to form 
intact virions (Dane particles) following secretion via the 
endoplasmic reticulum.

Current treatment of HBV infection requires long-
term therapy and reduces severe complications and 
death, but rarely eliminates the virus. This is as a result 
of inability to clear the stable cccDNA episome from 
infected hepatocytes and antigenemia-mediated exhaus-
tion of HBV-specific CD8+ T cells and B cells [12, 13]. 
Hence developing a cure for HBV infection is a priority. 
Recently, gene-based and combinatorial strategies tar-
geting multiple steps in the HBV replication cycle have 
shown promise. The potential of gene-based strategies 
for eliminating cccDNA and reducing antigenemia has 
been demonstrated in preclinical studies (reviewed in 
[14]). These gene-based approaches include gene edit-
ing and gene silencing. Strategies have applied technol-
ogy based on clustered regulatory interspaced short 
palindromic repeats (CRISPR)/CRISPR associated (Cas) 
systems, transcription activator-like effector nucleases 
(TALENS) and RNA interference (RNAi) to inhibit HBV 
gene expression (reviewed in [15]). The current chal-
lenges of anti-HBV gene therapeutics include difficul-
ties with obtaining a clinically relevant vector for hepatic 
transgene delivery and the paucity of suitable animal 
models that simulate natural HBV infection.

Recent US Food and Drug Administration (FDA) 
approval of AAV-based therapies Zolgesma and Luxturna 
reinforces a well-established biosafety profile and efficacy 
of AAVs for human application [16–18]. AAV mediation 

of hepatic transgene expression is also now well estab-
lished [19–21]. Moreover, HBV infection enhances AAV 
transduction of hepatocytes [22]. Despite these appealing 
features, use of AAVs has not been without its challenges. 
These include low packaging capacity, reduced transduc-
tion efficiencies in specific tissues, induction of CD8+ T 
cell responses and clearance by pre-existing immunity. 
This review focuses on recent progress with modifying 
AAVs and their contribution to advancing anti-HBV gene 
therapy.

Biology of Adeno‑associated viruses
AAVs are small viruses that cannot replicate on their 
own, but depend on co-infection with other viruses such 
as adenoviruses or herpes simplex virus or vaccina virus 
or human papilloma virus (reviewed in [23]). Twelve 
AAV serotypes have been identified to date. The non-
enveloped viral capsid, comprising VP1, VP2 and VP3, 
has conserved eight-stranded β-barrel motifs, an α-helix 
and nine variable regions that confer AAV tropism diver-
sity [24]. Multiple viral surface sites have been mapped 
and characterised as T-cell epitopes, immunogenic 
motifs and monoclonal antibody docking sites [25–27].

The AAV capsid encases the genome that comprises 
linear single-stranded DNA (ssDNA) of about 4.7 kb. The 
genome consists of Cap and Rep open reading frames 
(ORFs) flanked by 145  bp  T-shaped hairpin inverted 
terminal repeats (ITRs). The ITRs are made up of three 
complementary palindromes (A–A′, B–B′ & C–C′), a sin-
gle non palindromic region (D) and cis-acting elements, 
which are the Rep protein binding element (RBE) and 
terminal resolution site (trs). Upon host cell entry, AAVs 
enter latency. In the presence of a helper virus  AAVs 
express their genes from a trio of promoters (p40, p5 and 
p15) and becomes lytic (reviewed in [23]). Transcription 
from all the three promoters is terminated by a com-
mon poly-adenylation signal. Expression from the p40 
promoter produces the three capsid proteins (VP1, VP2 
and VP3) and an assembly activating protein (AAP). The 
capsid proteins assemble in 1:1:10 ratio of VP1:VP2:VP3 
to form an icosahedral capsid while AAP mediates capsid 
assembly. Rep gene expression is driven from p5 & p19 
promoters to produce two large (Rep78 and Rep68) and 
two small (Rep52 and Rep40) Rep proteins (reviewed in 
[28, 29]).

AAV2 infection is initiated by binding to the heparin 
sulphate proteoglycan receptor and a co-receptor fibro-
blast growth factor receptor. Endocytosis through clath-
rin-coated vesicles then mediates viral entry [30, 31]. 
In the absence of a helper virus, AAV gene expression 
is limited and the genome mainly persists episomally. 
Less frequently, while various integration sites exist for 
AAV such as AAVS2 or AAVS3, AAV DNA integrates 
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preferentially into the AAVS1 site of the host genome [32, 
33]. In the presence of a helper virus, expression from the 
Rep ORF is activated and enables AAV genome rescue. 
DNA polymerase mediates second strand synthesis using 
one ITR as a primer to produce a double stranded DNA 
(dsDNA). Together with Rep78/68 and several host fac-
tors, DNA polymerase uses the dsDNA as a template for 
re-initiation and polymerisation from one end to gener-
ate a double stranded full-length genome and displace a 
single stranded full-length genome. The double stranded 
genome serves as a template for further rounds of rep-
lication, while the rep proteins mediate ssDNA loading 
into the capsid. An active release pathway of AAV par-
ticles following viral assembly remains to be described 
(reviewed in [34, 35]).

Engineering AAV genome for delivery of anti‑HBV 
sequences
For AAV vector production, the ITR sequences are 
retained but the promoter sequences, rep and cap 
genes are removed to accommodate transgene cassettes 
(Fig. 1A). This generally allows insertion of a maximum 
of about 5  kb sequences into the vectors. Although 
this is enough for smaller anti-HBV effectors, such as 
RNAi activators, it precludes delivery of larger anti-
HBV CRISPR/Cas and TALEN sequences. Early studies 
described successful production of oversized AAV vec-
tors and packaging of genomes larger than 5 kb (Fig. 1B) 
[36–40]. However, during viral production AAVs with 
heterogeneous genome sizes with truncations are often 
produced from these oversized genomes. Upon transduc-
tion, large AAV genomes may be reconstituted by con-
catemerisation, but reconstitution using the truncated 
genomes is highly inefficient and not desirable for clinical 
application.

Based on ability of AAV genomes to concatemerise 
and serve as substrates for homologous recombination, 
another strategy to increase tansgene capacity entails use 
of dual AAV vectors [40, 41]. The most commonly used 
are dual overlapping vectors, dual trans-splicing vectors 
and dual hybrid vectors (Fig. 1C–E). The design is to split 
the expression cassette into two parts, each contained 
in an AAV, and the intact transgene is reconstituted in a 

cell after transduction by homologous recombination or 
concatamerisation. As with oversized vectors, reconsti-
tution of dual vectors is inefficient. This results in poor 
transduction efficacies and a requirement for high vec-
tor doses to achieve therapeutically relevant effects [37, 
42–44].

Recent studies have taken advantage of CRISPR/
Cas systems being made up of two components, i.e. the 
nuclease and the single guide RNA (sgRNA) (Fig.  1F). 
These may be expressed on separate AAVs and in com-
bination effect DNA cleavage upon transduction of a cell 
by the two vectors [45]. With recent availability of smaller 
nucleases, a single AAV can now be used to deliver both 
the nuclease- and sgRNA-encoding sequences to effect 
cccDNA cleavage [46–49]. TALEN activity requires two 
subunits, each encoded by DNA of at least 3 kb, to effect 
dsDNA cleavage. Although the evidence is scant, two 
component vector systems should be applicable to deliv-
ering sequences that together constitute complete anti-
HBV TALENS.

A requirement to convert an ssDNA AAV genome to a 
dsDNA before transgene expression is a limiting step of 
AAV-based gene transfer. For quicker transgene expres-
sion, the trs site may be mutated to inhibit terminal reso-
lution. This results in AAVs bearing a long hairpin loop 
molecule with complementary duplex strands referred to 
as self-complementary AAVs (scAAVs, Fig. 1G). Although 
this reduces packaging capacity by half, scAAVs bypass 
the requirement for second strand synthesis with conse-
quent faster and higher transgene expression [35, 50].

AAVs are known to infect a diverse range of tissues, 
which might lead to undesirable off-target transgene 
expression [51]. Hepatic tissue-specific expression 
of anti-HBV gene therapies can be achieved by plac-
ing transgene expression under control of liver-spe-
cific promoters, such as Transthyterin (TTR) or mouse 
Transthyretin (mTTR) (Fig.  1) [19, 20]. Liver-specific 
regulatory elements derived from core domains of 
human apolipoprotein hepatic control region, human 
α-1-antitrypsin and hybrid liver promoters successfully 
drive factor IX expression in the liver [52, 53] and may 
be applicable to anti-HBV gene therapy. When in silico 
identified evolutionary conserved hepatocyte-specific 

Fig. 1  AAV genome modifications. A A native single stranded AAV (ssAAV) genome, about 4.7 kb in size, customised for hepatic-specific transgene 
expression with use of liver-specific promoters such as mouse Transthyretin (TTR) or human TTR promoters. The cis-regulatory modules (CRM) to 
enhance expression and polyadenylation signal (pA) are also indicated. B Oversized AAV vector genome (bigger than 4.7.kb). C Dual overlapping 
AAV genomes with 5′ and 3′ transgene splits are indicated by yellow or grey boxes respectively. Pink boxes and a cross indicate homologous 
regions (HR) and a homologous recombination site respectively. D Dual trans-splicing AAV genomes. Splicing donor (SD) and splicing acceptor (SA) 
sequence indicated downstream or upstream of the transgene splits. The cross indicate the site for concatemerisation. E Dual hybrid AAV genomes. 
Highly homologous recombineering (HHR) region is indicated by pink boxes. F Two component vectors, each expressing Cas 9 or sgRNA. G A 
self-complementary AAV (scAAV) genome with half the size (about 2.35 kbp)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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cis-regulatory modules (CRMs) were incorporated into 
scAAVs, up to 100-fold higher transgene expression was 
achieved when compared to scAAVs cassettes containing 
the TTR promoter (Fig. 1) [54].

AAV capsid engineering for improved transduction 
and evasion of pre‑existing immunity
The requirement for a high AAV dose to achieve thera-
peutic effects in non-human primates has been reported 
to result in death [55]. Hence, production of AAV capsids 
that achieve high transduction efficiencies at low dose 
is an important goal of the field. AAV capsid structural 
properties determine vector tropism, immune detec-
tion and transduction efficiency. Hence, manipulation 
of capsid architecture is central to enhancing the vec-
tors’ therapeutic efficacy. High prevalence of pre-exist-
ing AAV-specific antibodies in humans, which limits 
AAV-mediated gene transfer, is another major reason 
for investigating utility of AAV capsid modification [56, 
57]. In addition, proteasomal degradation, breakdown of 
capsids following endosomal escape and MHC1 presen-
tation of AAV peptides with cell-mediated elimination 
of infected hepatocytes result in poor transgene expres-
sion [58–61]. Approaches have mainly involved rational 
design or directed evolution to modify AAV capsids. 
The former relies on prior knowledge of capsid architec-
ture and intracellular trafficking of AAVs. By contrast, 
directed evolution utilises stringent selection methods to 
concentrate and confer advantageous and beneficial traits 
on a vector.

Rational designs of capsids
Several AAV variants with desirable features have been 
developed by using different rational design strate-
gies. Some of the AAV strategies discussed below were 
used to develop variants for transduction of non-liver-
derived cells. However, these approaches can be applied 
to improve efficiency of liver-targeting vectors. Docking 
sites of monoclonal antibodies (mAbs) or capsid anti-
genic motifs (CAMs) located in capsid variable regions 
(VR) serve as targets of capsid modification to avoid neu-
tralising antibody (NAb) recognition. When these CAMs 
were mutated to produce libraries of novel AAV capsid 
variants (AAV-CAMs) followed by iterative rounds of 
selection in endothelial cells, antigenically advanced cap-
sids were identified [62, 63] (Fig. 2).

Using a method called barcoded rational AAV vec-
tor evolution (BRAVE), rational design and screening 
for AAV variants that ably transduce cells of the cen-
tral nervous system (CNS) were identified. To build an 
AAV library, proteins with synaptic affinity were identi-
fied using bioinformatics, and their peptide fragments 

inserted at a specific position to produce mutant cap-
sids. AAV genomes bearing unique nucleotide barcode 
sequences were packaged into the mutant capsids to 
enable identification of individual capsid structures [64, 
65]. Another method designated Cre-recombination-
based AAV targeted evolution (CREATE) was used to 
generate vectors capable of transducing the CNS. The 
7-mer random PCR-generated fragments were inserted 
between sequences encoding amino acid residues 588 
and 589 of the capsid gene. The downstream poly A sig-
nal was flanked by lox P sites. AAV library administration 
in a cell type specific cre transgenic mice allowed inver-
sion of the poly A signal, creating a sequence that could 
be amplified using pre-designed PCR primers. This led to 
the isolation of capsids that were capable of infecting cre-
expressing cells (Fig. 2) [66].

Phosphorylation of AAV tyrosine or lysine residues 
by host cellular machinery leads to AAV capsid degra-
dation by the ubiquitin–proteasome pathway [61, 67]. 
Other post-translational modifications such as glyco-
sylation, SUMOylation, and neddylation also impact 
on viral transduction. Glycosylation facilitates viral cell 
entry, trafficking to the nucleus, virulence and immune 
evasion (reviewed in [68]). As with ubiquitination, ned-
dylation and SUMOylation form reversible covalent 
attachments at lysine residues. These modifications affect 
protein stability, subcellular localisation, structure and 
function to inhibit AAV transduction of cells [69, 70]. 
Mutation or chemical modification of lysine residues in 
AAV2 or AAV8 capsids where glycosylation, neddyla-
tion or SUMOylation occurs resulted in higher transgene 
expression and decreased interaction of the AAV with 
NAbs (Fig. 2) [71–74].

Directed evolution designs of novel capsids
DNA shuffling of capsid-encoding sequences from multi-
ple AAV serotypes has also been used to generate librar-
ies. This approach has been used to identify capsids with 
improved hepatocyte transduction capabilities (Fig.  3) 
[75–77]. Libraries of AAVs may also be generated by ran-
dom capsid sequence mutagenesis. Stringent selection 
of these mutant libraries in vitro and in chimeric murine 
livers identified variants with improved transduction 
efficiencies (Fig.  3) [78, 79]. Another strategy employed 
phylogenetic techniques to predict ancestral AAV cap-
sid sequences that mediated higher transgene expression 
than natural AAV serotypes [80] (Fig. 3). Studies carried 
out in vivo on small and large animals identified another 
antigenically distinct and antibody-evading ancestral 
AAV vector that efficiently transduced a variety of cells 
including the liver [81–86].
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How has anti‑HBV gene therapy designs benefited 
from the advances in AAV vector developments?
Application of improved AAVs to deliver anti‑HBV gene 
therapeutics
The higher liver transgene expression from AAV8-
pseudotyped scAAVs enables use of low vector doses. 
Also, the dsDNA nature of the scAAV genome makes 
it more stable [52, 87–89]. These properties are favour-
able for targeting chronic viral infections such as are 
caused by HBV. The feasibility of delivering anti-HBV 
RNAi activators using scAAVs is well documented [90, 
91]. In mice, following a single dose of AAV8-pseudo-
typed scAAVs a reduction of HBV replication markers 
was observed over 10 months [19]. Targeting both HBV 
and the host factors that mediate fibrosis with scAAVs 

improves therapeutic efficacy [92]. Supporting this 
combinatorial approach is the observation that scAAVs 
used to co-deliver an RNAi effector against HBV and 
Argonaut2, the rate limiting host factor in the RNAi 
pathway or a RNAi activator sense strand targeted 
decoy, improves safety, specificity, and efficacy [20, 93, 
94].

Because of the limiting packaging capacity of scAAVs, 
several studies have used ssAAVs for delivery of a 
smaller Staphylococcus aureus Cas9 (SaCas9) with sin-
gle or combination of guides targeting several coordi-
nates in the cccDNA. These studies showed significant 
decline in markers of HBV replication in cultures and 
in nice [46–48]. A recent study has illustrated that using 
ssAAVs engineered to express saCas9 from a chimeric 

Fig. 2  Rational strategies of AAV capsid modification. Monoclonal antibody docking sites, capsid antigenic motifs (CAM) and lysine residues 
associated with ubiquitination, neddylation, SUMOylation or glycosylation in the capsid are mutated by site directed mutagenesis. Mutated capsid 
sequences are cloned in to a Rep-encoding plasmid to create a plasmid library that is then used to package a reporter encoding AAV genome. The 
AAV library is then put through several rounds of selection in vivo or in cell culture to enrich for AAV variants with desirable traits such as hepatocyte 
transduction and immune evasion. Chemical modification with compounds with hepatocyte affinity e.g. GalNAc, are attached to the AAV capsid 
to generate AAVs with enhanced hepatocyte transduction. Barcoded rational AAV vector evolution (BRAVE) involves bioinformatics identification 
of proteins with hepatocyte affinity. A DNA library encoding peptide fragments is generated and inserted in the specific positions of the capsid 
sequence within the Rep-encoding plasmid to produce a mutant capsid plasmid library. This is followed by packaging of the reporter encoding 
AAV genome bearing a unique nucleotide barcode sequence. Cre-recombination-based AAV targeted evolution (CREATE) involves insertion of 
random PCR generated fragments between specific capsid gene positions within the Rep-encoding plasmid to produce mutant capsid plasmid 
library. A reporter-encoding AAV genome with the poly A signal flanked by lox P sites is then packaged. The AAV library is selected in hepatocytes 
specific Cre expressing mice
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liver-specific promoter resulted in preferential liver 
expression and superior suppression of HBV replication 
in mice [95]. One study that used scAAVs to deliver anti-
HBV gene editors co-transduced cells with two scAAVs, 
each carrying one ZFN monomer against HBV Pol, C or 
X genes. scAAVs against Pol resulted in near undetect-
able levels of HBV replication makers [96].

The anti-HBV gene therapy field has not yet fully capi-
talised on the availability of modified or synthetic AAV 
capsids described above. However, these developments, 
especially the genetically modified and synthetic AAV 
capsids that shows high liver transduction efficiencies, 
are alluring and promise to bring positive outcomes to 
HBV treatment.

Application of AAVs to model chronic HBV infection
The plethora of AAV serotypes, either extant or artifi-
cially synthesized and recent discovery of various recep-
tors and co-receptors that facilitate AAV binding, are 
valuable tools to model HBV replication [97, 98]. These 
models are key to evaluating novel anti-HBV therapeu-
tic interventions before clinical translation. Despite 

impressive progress with understanding the molecu-
lar biology of HBV, an easily accessible model that can 
recapitulate all stages of HBV remains elusive. Although 
chimpanzees are susceptible to HBV infection, and 
their immune responses are similar to those observed in 
humans, high cost and ethical concerns limit use of these 
animals in research (reviewed in [99]). Models using 
species-specific hepatitis strains such as duck hepatitis B 
virus and woodchuck hepatitis virus are limited by infec-
tion mechanisms and disease manifestations in these 
models that differ from natural HBV infection (Table 1) 
[100, 101].

Mouse models to simulate HBV replication remain 
the most accessible and commonly used. Chimeric mice 
with livers engrafted with human hepatocytes are valu-
able, but use of these animals is limited by their extreme 
immuno-deficiency and difficulties with maintaining 
hepatocyte function over long periods of time [102–
105]. Transgenic mice with integrated DNA compris-
ing greater-than-genome-length HBV sequences mimic 
chronic HBV replication [106–108]. However, transgenic 
mice show inter-individual variability, variation of HBV 

Fig. 3  Directed evolution strategies of AAV capsid modification. DNA shuffling of various serotypes’ cap sequences is achieved by fragmenting the 
capsid sequences and assembly to create hybrid capsid sequences, which can be cloned in the a Rep-encoding plasmid to create an AAV capsid 
plasmid library. The plasmid is then used to package a reporter-expressing AAV genome followed by selection in vitro or in vivo. Capsid sequence 
random mutagenesis can be performed to create a mutant capsid library, which is cloned in to a Rep-encoding plasmid to create an AAV library 
that can be selected. Ancestral capsid sequences, predicted using bioinformatic tools, can be synthesized in vitro and used to produce an ancestral 
capsid plasmid library and an AAV library before selection
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replication markers over time and high markers of HBV 
replication that often exceed those of natural HBV infec-
tion (Table 1) [19, 109].

Use of recombinant adenoviruses and AAVs to deliver 
greater-than-genome-length HBV sequences has also 
been explored to simulate HBV replication in vivo. Ade-
noviral vectors efficiently induce HBV replication in mice 
[110–112]. However, transduction results in a strong 
immune response to the adenoviral vectors and early 
clearance of transduced hepatocytes. Three studies using 
an AAV8-carrying replication-competent greater-than-
genome-length HBV genotype D (AAV-HBV model) 
demonstrated the potential of these vectors for simula-
tion of chronic HBV infection [113–115]. HBsAg, HBeAg 
and HBcAg expression, accompanied by hepatitis B 
virion production over a period of up to 16 months, were 
observed. Production of anti-HBcAg antibodies, but not 
anti-HBsAg and HBeAg antibodies which is a phenom-
enon observed in HBV chronic carriers, was also demon-
strated. Interestingly, between 12 and 16  months, mice 
developed features of HCC and elevated makers of liver 
injury. Liver fibrosis, chronic liver injury and minimal or 
no acute inflammatory responses were observed in these 
mice. Given that T cell exhaustion is a well-documented 
feature of chronic HBV infection, the lack of a significant 
immune response in these mice is perhaps not surprising 
(Table  1) [116, 117]. Although the mechanism of HCC, 
fibrosis and chronic liver damage in AAV-HBV murine 
models remains to be established, expression of HBV 
antigens such as HBx and HBsAg, together with AAV-
mediated HBV DNA integration may be the contribut-
ing factors. Interestingly, recent studies showed that the 
AAV-HBV model based on either HBV serotype A, B, C 
or D may result in formation of cccDNA in murine hepat-
ocytes [118, 119]. Although the replication intermedi-
ate was lost over time in transduced livers, the sequence 
and functionality was not distinguishable from cccDNA 
derived from natural HBV infection. The mechanism of 

its formation is not clear, however the cccDNA is HBV 
replication-independent and originates from intramolec-
ular recombination of the HBV genome ends [119].

Another model recently established in non-human 
primates used AAV8 vectors expressing human NTCP 
(AAV8-hNTCP) [120, 121]. The study also employed 
helper-dependent adenoviral vectors (HDAds) to 
deliver sequences encoding hNTCP. Rhesus macaques, 
naturally not infectable by HBV, were injected with 
hNTCP-expressing vectors and then infected with 
HBV. HBV gene expression and HBV replication inter-
mediates were detected over a period of 42  weeks. 
Moreover, markers of liver injury and T cell responses 
to HBV antigens were reported. Importantly the essen-
tial replication intermediate comprising cccDNA could 
also be detected in these macaques. Although a higher 
AAV vector dose was required and HDAd vectors pro-
moted superior hNTCP expression and HBV infection, 
adenoviral vectors are limited by their high immune 
stimulation and the resultant short-term transgene 
expression. Hence, administration of immunosuppres-
sants before injecting HDAds was required to prolong 
HBV gene expression. This makes HDAd-based models 
less favourable for mimicking chronic HBV infection.

Conclusion
Studies described here show that progress with the 
design of improved AAV vectors will assist with 
addressing challenges facing development of anti-HBV 
gene therapy. Improved liver transduction will make 
it possible to administer lower vector doses to achieve 
clinically relevant therapeutic outcomes. Engineering 
AAVs to produce vectors that can evade systemic and 
cellular trafficking hurdles to deliver anti-HBV payloads 
to target cells expands the toolbox of gene therapy for 
the viral infection. Harnessing AAVs’ liver tropism to 
model HBV replication also shows potential. Although 

Table 1  Animal models of HBV chronic infection

Key: – not known

Cell culture/animal model Immune response HBV 
antigen 
expression

Infection/replication cccDNA 
formation

Fibrosis Liver injury References

Chimpanzee Immuno-competent Yes Infection Yes Yes Yes [99]

Woodchuck Immuno-competent Yes Infection Yes Yes Yes [100, 101]

Duck HBV Immuno-competent Yes Infection Yes Yes Yes [101]

Human liver Chimeric mouse model Immuno-deficient Yes Infection Yes Yes Yes [103–105]

HBV Transgenic mouse model Immuno-competent Yes Replication No No No [19, 122]

AAV-HBV mouse model Immuno- competent Yes Replication No Yes Yes [113–115]

hNTCP expressing Rhesus macaques Immuno-competent Yes Infection Yes – Yes [121, 123]
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murine models remain the most accessible and sim-
ple, demonstration that AAVs may be used to make 
non-human primates susceptible to HBV infection is 
significant. Collectively these developments will facili-
tate clinical translation of AAV-based, as well as other 
potentially curative therapies, to eliminate chronic 
HBV infection.
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