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Abstract 

Background: Viral diseases cause significant damage to crop yield and quality. While fungi- and bacteria-induced 
diseases can be controlled by pesticides, no effective approaches are available to control viruses with chemicals as 
they use the cellular functions of their host for their infection cycle. The conventional method of viral disease control 
is to use the inherent resistance of plants through breeding. However, the genetic sources of viral resistance are often 
limited. Recently, genome editing technology enabled the publication of multiple attempts to artificially induce new 
resistance types by manipulating host factors necessary for viral infection.

Main body: In this review, we first outline the two major (R gene-mediated and RNA silencing) viral resistance mech-
anisms in plants. We also explain the phenomenon of mutations of host factors to function as recessive resistance 
genes, taking the eIF4E genes as examples. We then focus on a new type of virus resistance that has been repeatedly 
reported recently due to the widespread use of genome editing technology in plants, facilitating the specific knock-
down of host factors. Here, we show that (1) an in-frame mutation of host factors necessary to confer viral resistance, 
sometimes resulting in resistance to different viruses and that (2) certain host factors exhibit antiviral resistance and 
viral-supporting (proviral) properties.

Conclusion: A detailed understanding of the host factor functions would enable the development of strategies for 
the induction of a new type of viral resistance, taking into account the provision of a broad resistance spectrum and 
the suppression of the appearance of resistance-breaking strains.
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Background
Plants are sessile organisms that are continuously affected 
by numerous abiotic and biotic factors, directly impeding 
their growth or causing metabolic dysfunction [1–3]. For 
example, plants are often infected by pathogens such as 
fungi, bacteria, nematodes, and viruses. Viruses invade 
all forms of life, and viral infections cause physiological 
changes in the infected plants, leading to symptoms that 

result in significant yield loss. Viruses are undoubtedly 
difficult to control as they use the host cell machineries 
for infection. Viral diseases are major limiting factors for 
sustainable crop production worldwide. Although it is 
complicated to estimate the overall viral disease-related 
crop loss, it is estimated to be more than US$30 billion 
annually [4]. Recently, Akhter et  al. [5] summarized the 
significant plant viral disease-related economic loss in 
important crops in Bangladesh. As obligate intracel-
lular pathogens, viruses are exclusively dependent on 
the host cell machinery for their survival (e.g., multi-
plication and cell-to-cell movement), hence they alter 
host gene expression to suit their needs. Over the past 
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decade, remarkable progress has been made in under-
standing the arms race between plants and viruses at the 
molecular level that could potentially provide new strate-
gies useful for crop improvement programs. Plants with 
pinpointed disruption of host factors necessary for viral 
infection could become highly resistant. In this case, the 
effect of genetic modification on plant growth could be 
minimized. Furthermore, it might be possible to design 
plants that do not allow the emergence of resistance-
breaking strains. In the following sections, we will outline 
the known mechanisms of virus resistance in plants, then 
discuss the newly discovered underlying molecular inter-
actions between the host and viral factors and introduce 
the possibility of virus resistance induction through mod-
ifying plant–virus interaction(s).

Main text
Plant–virus interaction‑related molecular mechanisms
Historical perspective of molecular plant–virus interactions
Recently developed techniques in plant virology on 
RNA silencing, such as virus-induced gene silencing, 
large-scale genomic analysis, and epigenetic analysis, 
have enriched the understanding of viral pathogenicity 
and host responses in antiviral resistance. Plant antivi-
ral activities include R gene-mediated resistance, reces-
sive resistance, and antiviral RNA silencing [6, 7]. R 
gene-mediated resistance, the most intensively studied 
resistance mechanism against bacteria and fungi, gener-
ally accompanying hypersensitive response (HR), is also 
effective in viruses.

The N gene (N), isolated from Nicotiana glutinosa, 
is the first identified virus-related R gene. The aviru-
lence (Avr) protein recognized by the N protein against 
tobacco mosaic virus (TMV) is the viral 126-kDa pro-
tein (126 k). The molecular interaction between N and 
126 kDa induces HR-based resistance and subsequently 
systemic acquired resistance (SAR), supporting the 
gene-for-gene theory [8, 9]. When N-carrier tobacco 
plants are infected with TMV, they accumulate salicylic 
acid (SA), which then induces the expression of the 
defense-related genes and contributes to the develop-
ment of SAR in the non-infected parts of the infected 
plants [10]. Multiple examples for the R genes and 
their corresponding Avr factors and virus-interacting 
proteins have been reported for different plant spe-
cies (Table  1). To explain the sequential interactions 
between hosts and pathogens, Jones and Dangl [11] 
proposed the zig-zag model in 2006. In their model, the 
plant immune system comprises two defense response 
layers: pathogen-associated molecular pattern (PAMP)-
triggered immunity (PTI) and effector-triggered immu-
nity (ETI). PTI represents a basic defense mechanism 
by preventing pathogen invasion in response to specific 

structures or proteins associated with the pathogen, 
defined as the so-called PAMPs or microbe-associated 
molecular patterns. Plants show susceptibility only 
when a pathogen successfully achieves both the sup-
pression of the PTI response and the production of 
its pathogenic effectors. ETI, the second level of the 
defense response, is triggered when the R gene prod-
ucts directly or indirectly detect the presence of spe-
cific effectors. Consequently, an effective ETI would 
keep plants resistant but insufficient ETI could lead 
to disease establishment (susceptibility). To explain 
host–pathogen interactions in R gene-mediated resist-
ance, the guard hypothesis and the decoy model have 
been proposed in multiple pathosystems [11–13]. Due 
to the intracellular parasitic viral nature, which abso-
lutely requires a live host cell machinery, any common 
fungal and bacterial resistance model would not fit viral 
resistance. Pattern recognition receptors (PRR), which 
serve as a major defense element by triggering the first 
layer of resistance [14], cannot play a role in fighting 
against plant viruses as viruses do not express extracel-
lular PAMPs. However, in the modified zig-zag model 
[15], RNA silencing is regarded as a major antiviral 
mechanism for PTI and viral RNA silencing suppres-
sors (RSSs) are regarded as effectors to overcome host 
RNA silencing. RSSs are then recognized by ETI as a 
virulence proteins [15].

Recessive resistance is often due to modifications in 
a certain gene, encoding a host factor critical for viral 
infection [36]. Recessive resistance might sometimes 
be provided by a deficiency in a negative regulator for 
plant defense. For example, several deficient genes of 
the eukaryotic translation initiation factor (eIF) 4E, 
eIF4G, and their isoforms are the most widely exploited 
recessive resistance genes in various plant species and 
are indeed effective against a subset of viral species 
[37]. High throughput sequence and genome editing 
technologies greatly contributed to enhancing plant 
genetic resources for breeding in various crop species. 
Multiple recessive resistance genes have been identified 
in various plant–virus interactions (Table 2).

As viruses are intracellular parasites containing either 
RNA or DNA genomes in a virion, RNA silencing is 
considered a major antiviral mechanism [15, 66]. Suc-
cessful antiviral RNA silencing results in the degra-
dation of the viral genome at the initial infection site 
[67]. In addition, several other viral resistance mecha-
nisms have also been reported. These include mecha-
nisms related to the ubiquitin–proteasome machinery, 
autophagy, and DNA methylation [29, 68, 69]. One 
interesting example is a tobacco calmodulin-like pro-
tein, rgs-CaM, leading to the autophagy-mediated deg-
radation of viral RSSs [70–72].
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Resistance conferred by the interactions between R genes 
and plant viruses
Host R genes typically induce race-specific resistance in 
response to the Avr genes of pathogens [73, 74]. When 
plant–virus interactions occur in a single cell, an R gene 
triggers an HR response, a form of programmed cell 
death that rapidly kills infected cells and restricts the viral 
invasion. HR is generally associated with various molecu-
lar events: the activation and expression of salicylic (SA), 
jasmonic acid (JA), mitogen-activated protein kinase 
signaling, calcium ion influx, callose deposition at the 
plasmodesmata, membrane permeability modification, 
pathogenesis-related (PR) protein expression, and imme-
diate accumulation of reactive oxygen species (ROS) and 
nitric oxide (NO) [75, 76]. The majority of the R genes 
encode nucleotide-binding (NB) and leucine-rich-repeat 
(LRR) domains but the Avr proteins do not share any 
common structure [11]. For the NB-LRR proteins, three 

domains consist of the center nucleotide-binding site 
(NBS), an LRR at the C terminal end, and a coiled-coil 
or Toll and human interleukin receptor (TIR) domain at 
the N-terminus [77]. The NBS domain also contains the 
Apaf-1/R protein/CED4 (ARC) domain, thought to be a 
molecular switch regulating R protein activation through 
ATP hydrolysis-related signal transduction [78–81]. The 
N-terminus displays an important role in the specific 
interaction with an Avr factor [78]. The NB-LRR-medi-
ated Avr effector recognition, initiating the downstream 
defense responses, could occur both directly, and indi-
rectly mediated by cellular cofactors.

Resistance conferred by antiviral RNA silencing
RNA silencing, also known as RNA interference (RNAi) 
or post-transcriptional gene silencing, is a host plant 
counter-defense against virus-derived double-stranded 

Table 1 Dominant plant virus resistance genes in different host plant species and Avr/viral proteins inducing resistance

a TCV, turnip crinkle virus; CMV, cucumber mosaic virus; PIAMV, plantago asiatica mosaic virus; PVX, potato virus X; TEV, tobacco etch virus; CaMV, cauliflower mosaic 
virus; TuMV, turnip mosaic virus; TMV, tobacco mosaic virus; PRSV, papaya ringspot virus; PepMMoV, pepper mild mottle virus; PepSMV, pepper severe mosaic virus; 
PVY, potato virus Y; CLRDV, cotton leaf roll dwarf virus; CABMV, cucurbit aphid borne mosaic virus; PLRV, potato leaf roll virus; ToYLCV, tomato yellow leaf curl virus; 
TSWV, tomato spotted wilt virus; MYMV, mungbean yellow mosaic virus; BCMV, bean common mosaic virus
b Proteins that can bind to R proteins either directly or indirectly. CP, coat protein; RdRP, RNA-dependent RNA polymerase; Po, suppressor of RNA silencing; V1, coat 
protein of ToYLCV; C1, replication associated protein; C3, replication enhancer protein; Nsm, Non-structural movement protein; (–), Not reported
c HR, hypersensitive response

Virusa Avr or viral 
protein inducing 
 resistanceb

Host Plant Resistant gene Resistant protein Type of  resistancec References

TCV CP Arabidopsis thaliana HRT CC-NB-LRR HR [16]

CMV CP A. thaliana RCY1 CC-NB-LRR HR [17]

PIAMV (–) A. thaliana JAX1 Jacalin-like lectin Blocking RNA accu-
mulation

[18]

PVX RdRP A. thaliana JAX1 Jacalin Family Blocking systemic 
movement

[19]

TEV (–) A. thaliana RTM3 MATH-containing 
protein

Systemic resistance [20]

CaMV P1 A. thaliana CAR1 Not identified HR [21]

TuMV UN Brassica compestris BcTUR3 TIR-NB-LRR Systemic resistance [22]

TuMV UN B. compestris TuRB07 CC-NB-LRR Extreme resistance [23]

TMV CP Capsicum annuum L locus CC-NB-LRR HR [24]

PRSV (–) Cucumis melo Prv (Muti alleles) TIR-NB-LRR HR [25]

PepMMoV, PepSMV, 
PVY

RdRp C. annuum Prv4 CC-NB-LRR HR [26]

CLRDV Po Gossypium hirsutum cbd TIR-NB-LRR HR [27]

CABMV, TuYV, PLRV Po Nicotiana glutinosa RPO1 NB-LRR HR [28]

ToYLCV V1 and C3 Solanum chilense Ty1/Ty3 (Multi allelle) RDR RNA silencing [29]

ToYLCV Rep/C1 S. habrochites Ty2 CC-NB-LRR HR [30]

TSWV NSm S. lycopersicum 5w5b NB-ARC-LRR HR [31]

TSWV NSm N. alata RTSW CC-NB-LRR HR [32]

PVX CP S. tuberosum Rx1 CC-NB-LRR Translation arrest [33]

PVY CP S. stoloniferum Rysto TIR-NB-LRR HR [34]

MYMV, BCMV (–) Vigna mungo CYR1 CC-NB-LRR HR [35]
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(ds) RNA [82–84]. In the plant–virus interactions, the 
most common host defense against viruses is considered 
to be RNA silencing. Antiviral RNA silencing is triggered 
by viral dsRNA generated either by replication inter-
mediates or by secondary intramolecular RNA folding 
(hairpin) in the host cells [85, 86]. In these cells, the viral 
dsRNAs are cleaved by Dicer-like (DCL) enzymes into 
virus-induced small RNAs (vsRNAs) [87]. vsRNAs are 
then incorporated into the RNA-induced silencing com-
plex and guide Argonaute (AGO) proteins to the targeted 
RNA for degradation or translational arrest [88]. vsRNA, 

as the antiviral RNA silencing signal, is subjected to the 
secondary amplification of sRNAs by RNA-dependent 
RNA polymerase (RDR) 6 and transferred through the 
plasmodesmata and phloem, inducing systemic viral 
defense [67]. DNA viruses are also subjected to antiviral 
RNA silencing [89]. In the co-evolutionary plant–virus 
interaction context, viruses might have acquired coun-
ter-defense mechanisms by suppressing host antiviral 
silencing [87]. To date, a considerable number of viral 
RSSs have been already reported [90]. Increasing evi-
dence shows that plants have actually evolved certain 

Table 2 Recessive reistance genes against plant viruses and viral proteins involved in resistance in different host plant species

a  Abbriviations are explained in Table 1
b Viral proteins, which are involved in the resistance associated with eIF4E family proteins, are shown

Virusa Viral protein 
involved in 
 resisanceb

Host plant Gene/ Locus Remarks References

BCMV VPg Phaseolus vulgaris bc3 eIF 4E (mutagenesis) [38]

CIYVV Vpg Pisium sativum cyv1/cyv2 eIF4E ( mutagenesis) [39]

TEV &PVY VPg Capsicum spp. pvr1/pvr2 eIF4E ( mutagenesis) [40]

RYMoV Unknown Oryza sativa rymv2 CPR5 homolog [41]

BCMV Unknown P. vulgaris bc3 eIF4E [42]

BaMMV VPg Hordeum vulgare rym7 eIF(iso)4E [43]

TuMV Unknown Brasssica juncea retr03 Mutation of eIF2Bβ [44]

PIAMV TGB2, TGB3 Arabidopsis thaliana ? Mutation of nCBP [45]

CBSV and UCBSV VPg Manihot esculenta ? Mutation of 4E (eIF4E) and nCBP [46]

PVY VPg Nicotina tabacum va eIF4E (iso) [47]

YoMV, ToMV, TMV, 
TMGMV, PMMoV

Nicotiana spp., Solanum lycopersi-
cum, C. annuum, O. sativa

TOM1; TOM3 EMS mutagenesis [37, 48]

PepLCIV, PepLCAV C. annuum pepy1 Silencing of CaPelota [49]

ToMV, YoMV A. thaliana, N. tabacum ARL8 Simultaneous mutation of ARL8a 
and ARL8b by T-DNA insertion

[37, 50]

TuMV, PPV A. thaliana, N. tabacum, Zea mays, 
O. sativa, Mesembryanthemum 
crystallinum

DBP1 T-DNA mutant [51]

WMV, PPV, BaMV S. lycopersicum, S. tuerosum, Populus 
trichocarpa, Sorghum bicolor, O. 
sativa, Tritichum aestivum, Z. mays

cPGK Natural resistance gene, rwm1 
in Arabibopsis thaliana CVI-0 
ecotype

[37, 52, 53]

PIAMV, PVX, AltMV A. thaliana, O. sativa, S. lycopersicum EXA1 EMS mutagenesis [54]

TuMV A. thaliana, P. sativum, N. bentha-
miana

PVIP1, PVIP2 Knockdown mutant of each PVIP [55]

GFPV, CaMV A. thaliana PDLP1, PDLP2,PDLP3 Triple mutant of PDLP1, PDLP2 and 
PDLP3 by T-DNA insertion

[56]

TuMV A. thaliana PCaP1 T-DNA mutant [57]

CaLCuV, TVCV, TuMV A. thaliana SYTA T-DNA mutant [58, 59]

TuMV A. thaliana Sec24a EMS-induced mutant [60]

TSWV A. thaliana RHD3 T-DNA mutant [61]

BaYMV, BaMMV All plant species PDIL5-1 Natural resistance gene, rwm11 
in barley

[62]

TuMV All plant species IRE1 Double mutation of IRE1a and 
IRE1b by T-DNA insertion

[63]

TuMV, PVX All plant species bZIP60 T-DNA mutant [37, 64]

CMV A. thaliana HAT1, HAT2, HAT3 Triple mutant by the HAT genes [65]
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mechanisms to fight viral RSSs, regarded as counter-
counter-defense responses in the molecular arms race 
[88]. Based on the understanding of the RNA silencing 
mechanisms, we can practically make exogenous appli-
cations of viral dsRNA and siRNA for disease protection 
[91]. Even virus resistance in a transgenic plant express-
ing a viral sequence is operated by RNA silencing. For 
example, the coat protein (CP)-mediated transgenic 
papaya resistance against papaya ringspot virus through 
RNA silencing is one of the success stories in commer-
cial application [92]. Exogenous tomato spotted wilt virus 
(TSWV)-derived dsRNA application for virus resistance 
induction in tobacco indicates a promising prospect of 
spray-induced gene silencing for plant–virus interactions 
[93].

Resistance conferred by natural variants and manipulation 
of host susceptible factors for virus infection
Due to their intracellular parasitic nature, viruses are 
dependent on the host cellular mechanisms for their sur-
vival. After the viral entry into the plant cells, the viral 
genome is released from the capsid, then viral proteins 
are translated. Due to a limited number of viral-encoded 
genes, viruses require numerous host factors to pur-
sue a successful infection cycle consisting of replication, 
transcription, and translation, as well as cell-to-cell and 
long-distance movement [94]. The absence or modifi-
cation of a host factor necessary for the virus infection 
cycle is regarded as an efficient defense approach and 
is considered a form of passive resistance. Such passive 
resistance generally exhibits recessive inheritance. For 
example, eIF4E is a key player in the translation initiation 
by recruiting messenger RNAs to the ribosomal complex 
and has been repeatedly identified as an essential host 
factor for viral infection [94]. Natural variation of eIF4E 
can confer resistance to crops against potyviruses; the 
modification of host factors could thus be a common 
target to develop resistant varieties [95–97]. The known 
recessive resistance genes are summarized in Table 2.

Manipulation of host factors confer viral resistance
How to manipulate host factors: lessons 
from the manipulation of eIF4E family genes
Until the development of genome editing techniques, 
site-directed mutagenesis had not been available in 
plants. T-DNA insertion lines and chemical mutagen-
based, such as ethyl methanesulfonate (EMS), random 
mutagenesis had been an alternative. We present an 
example of how eIF4E family gene mutations lead to virus 
resistance. Among five eIF4E family members (eIF4E, 
eIF4E1b, eIF4E1c, eIF (iso) 4E, and the novel cap-binding 
protein [nCBP]) in Arabidopsis thaliana, eIF4E, and eIF 
(iso) 4E are reportedly involved in potyvirus infection 

[98]. In the inoculation tests using the homozygotes of 
the null alleles, clover yellow vein virus (ClYVV) was 
found to use eIF4E while turnip mosaic virus (TuMV) 
uses eIF(iso)4E [99]. Resistance-breaking isolates of 
TuMV could infect the plant with a single null allele of 
eIF4E or eIF (iso) 4E as these isolates could use both eIF4E 
and eIF (iso) 4E [100]. Although eIF4E and eIF(iso)4E 
double mutants are not produced due to their fatality, 
Bastet et al. [100] produced an alternative resistant plant 
to the resistance-breaking TuMV strains by pyramiding 
the null allele of eIF(iso)4E and the base-edited allele of 
eIF4E, mimicking the eIF4E resistance allele in pea.

Until recently, nCBP, another eIF4E isoform that is 
genetically distant to eIF4E and eIF(iso)4E, was not a 
susceptible factor for viral infection. However, viruses 
distinct from potyviruses reportedly use nCBP [45, 46]. 
T-DNA insertion lines for the nCBP of A. thaliana were 
impaired in the cell-to-cell movement of plantago asiat-
ica mosaic virus, a member of the genus Potexvirus, by 
inhibiting the expression of the viral movement protein 
[100]. In cassava plants, the eIF4E family consists of five 
members (eIF4E, two eIF(iso)4Es, and two nCBPs). Cas-
sava brown streak virus and Ugandan cassava brown 
streak virus, members of the genus Ipomovirus, are the 
causal agents of the cassava brown streak disease. The 
viral genome-linked proteins (VPg) of these viruses have 
a higher affinity to nCBPs than eIF4E and eIF(iso)4E. 
Simultaneous CRISPR/Cas9-mediated genome editing 
of two nCBPs genes reduced the susceptibility to these 
viruses in cassava and the severity of symptoms caused 
by these viruses [46].

Natural variation and in‑frame deletion of eIF4E1 outstrip 
the null allele for viral resistance in tomato
Creating a null allele of a susceptible factor to a virus 
represents the risk of a potentially detrimental effect 
on plant growth if the given factor is also essential for 
the plant. However, for functionally redundant factors, 
emerging resistance-breaking viruses represent another 
risk, potentially switching the factor in use from a null to 
a redundant allele. Moreover, in terms of conferring anti-
viral resistance, the functional alleles of eIF4E1 carrying 
non-synonymous base substitutions or a small in-frame 
deletion reportedly outstripped the null allele in tomato 
plants [101, 102]. Tomato exhibits two eIF4Es, eIF4E1 
and eIF4E2, eIF(iso)4E, and nCBP. The natural eIF4E1 
allele, pot1, isolated from a wild tomato relative (Sola-
num habrochaites), reportedly exhibits a wider resist-
ance spectrum against potato virus Y and tobacco etch 
virus strains than the corresponding null allele. The null 
allele was obtained by the TILLING approach with EMS-
mediated randomly mutated tomato plants [103]. Further 
analysis demonstrated that the wider resistance spectrum 
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by pot1 was comparable to that by an eIF4E1 and eIF4E2 
double mutant, suggesting that pot1 lacks the function 
to support viral infection but can compete with eIF4E2 
or inhibit its interaction with viruses [102]. The growth 
defect observed in the double mutant demonstrates the 
additional usefulness of pot1 in tomato production.

Recently, we edited eIF4E1 by CRISPR/Cas9 and 
obtained three alleles, including a nucleotide inser-
tion (1INS) and nine nucleotide deletion (9DEL) within 
the eIF4E1 protein coding region [101]. 1INS, contain-
ing a frameshift, is considered to be a null allele, and 
its homozygote showed resistance to the N strain of 
potato virus  (PVYN). 9DEL would be a functional allele 
though it lacks three amino acids. The fact that no sig-
nificant resistance to  PVYN was observed in the 9DEL 
homozygotes indicates that 9DEL retains some function 
at least partially in  PVYN infection. Unexpectedly, the 
9DEL homozygote but not 1INS showed partial resist-
ance to cucumber mosaic virus (CMV), suggesting that 
the modified function of 9DEL could interfere with CMV 
infection. Considering the above observations, func-
tional alleles with base-editing or in-frame indels could 
be occasionally very effective for crop production against 
viruses.

Modified plant–virus interactions (MPVI)‑mediated antiviral 
resistance
Genome editing, silencing in transgenic plants, and ran-
dom mutagenesis mostly result in (partial) loss of func-
tion of a particular gene. The primary target genes to 
confer antiviral resistance would be host susceptible 
factors, which contribute to viral infection, multiplica-
tion, and spread. We list a number of these susceptible 
factors in Table 2. Host susceptible factors were exhaus-
tively identified using yeast as a host for a plant virus. 
Two plant viruses, brome mosaic virus and tomato bushy 
stunt virus, were studied by two research groups [104, 
105]. Both studies identified more than a hundred genes 
affecting virus accumulation, but few were shared in the 
identified genes between the two studies, indicating that 
each virus distinctly uses host factors.

In conferring virus resistance by manipulating host 
factors necessary for the virus, we must understand the 
viral infection cycle in detail, because some viruses use 
unusual host factors. There may be inconsistencies in the 
newly found functions of host factors, given their origi-
nal functions. For example, as described in the former 
section, AGO1 is reportedly a core component of RNA 
silencing as a slicer of its target RNA and involved in 
antiviral defense. However, AGO1 was recently reported 
to interact with HC-Pro of potato virus A [106]. This 
interaction facilitates systemic infection of potato virus A 
by stabilizing the viral coat protein to form viral particles 

[107]. Similarly, a receptor-like kinase, BAM1 was shown 
to be located at plasmodesmata to facilitate the systemic 
spread of RNA silencing in A. thaliana while it is also a 
target protein of C4, an RNA silencing suppressor of 
tomato yellow leaf curl virus [108]. In addition, BAM1 
was shown to bind to the movement protein of TMV and 
promote the cell-to-cell movement of TMV at an early 
stage of infection in N. benthamiana [109]. rgs-CaM 
is reportedly an endogenous RNA silencing suppres-
sor [110], but it works for the defense against CMV by 
binding to and directing degradation of the viral RNA 
silencing suppressor 2b under activation of SA signaling 
[70–72, 111].

Although RDR1 and DCL4 are reportedly involved 
in small RNA biogenesis in antiviral RNA silencing, 
the loss of function mutation of RDR1 and silencing of 
DCL4 reduced susceptibility to viruses and potato spin-
dle tuber viroid in N. benthamiana [112, 113]. RDR1 and 
DCL4 are not visibly susceptible host factors necessary 
for viruses and viroids but their absence may enhance the 
RDR6- and DCL2,3-mediated anti-virus and anti-viroid 
defenses, respectively. In other words, competitive inter-
actions among the redundant RDRs and DCLs may result 
in these inconsistent host reactions. Another inconsist-
ent host reaction with a susceptible factor was reported 
recently; hiper-susceptibility to TuMV was observed in 
the eIF4E null mutant of A. thaliana though the eIF4E 
mutant is resistant to ClYVV [114]. Recently autophagy 
has been reported to be involved in both antiviral and 
proviral mechanisms [115–117], suggesting that plants 
use their gene products flexibly.

Even the defense-related genes can become an effective 
target to induce antiviral resistance; the genetic resources 
for antiviral resistance might exceed our expectations. To 
explore promising host factors and to find how to edit 
them for the modified-plant–virus interaction (MPVI)-
mediated antiviral resistance, more knowledge, and 
research is necessary.

Molecular mechanisms for antiviral resistance induced 
by plant activators
Induction of plant resistance, which is achieved either 
by chemicals (SAR) or by microbes (induced systemic 
resistance, ISR), is an alternative to manage viral dis-
eases in crops [118]. Phytohormones such as SA, JAs, 
ethylene (Et), and abscisic acid (ABA) reportedly regu-
late plant responses against pathogens [119]. A com-
prehensive list of chemicals to plant viruses has been 
listed in Table  3. Auxins (Auxs), brassinosteroids (BRs), 
cytokinins (CKs), and ABA are known for their roles in 
plant growth and development but have been recently 
documented to also play a role in plants-virus interac-
tions [120–122]. Interestingly, SA, JA, and Et, which 
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regulate the defense pathways, exhibit antagonistic inter-
actions with each other. For example, the activation of 
the SA signaling pathway can repress the JA/Et pathway 
mainly through the two genes, NPR1  (NONEXPRESSER 
OF PATHOGENESIS RELATED GENE 1) and WRKY70, 
and the ABA pathway through NPR1 or its downstream 
elements [123–126].  Conversely, the activation of the 
JA/Et pathway represses the expression of certain genes 
downstream of the SA signaling via  MAPK4  (MITO-
GEN‐ACTIVATED PROTEIN KINASE 4) and  JIN2 [124, 
127].  However, the SA biosynthesis and its signaling 
are triggered after viral effectors are recognized by  the 
R  proteins that lead to the incompatible interaction. 
The activation of the incompatible interaction results in 
host responses to restrict virus spread from the infec-
tion site by inducing HR and the accumulation of ROS 
and PR proteins [128, 129]. SA is also responsible for 

the activation of SAR in distal tissues, which minimizes 
the damage of secondary attacks by the pathogen. In 
tomato plants, the exogenous application of SA triggers 
the expression of the SlPR1 gene, inducing resistance to 
TYLCV [130].

Conclusion
Modifying the host factors necessary for the virus is 
interesting to potentially confer viral resistance in plants 
but no such simple solution is available in reality. For 
example, if the function of the target host factor is not 
well understood, the knockout of the corresponding gene 
might also negatively affect the growth and development 
of the plant. Until recently, it was impossible to specifi-
cally eliminate a target host factor. However, with the 

Table 3 Plant activators and microbes that induce host resistance against plant viruses

a ASM, acibenzolar-S-methyl; BABA, β- aminobutyric acid; SHAM, salicylhydroxamic acid; PABA, para-aminobenzoic acid
b Abbreviations are explained in Table 1
c BR, brassinosteroid; SA, salisylic acid; JA, jasmonic acid; ET, ethylene

Plant activator and  microbea Virusb Host Resistance Hormonesc Reference

ASM PIAMV, PVX, TuMV, CCYV Nicotiana benthamiana,Cucumis melo Systemic SA [131, 132]

BABA TMV N. tabacum HR SA [133]

Probenazol TMV N. tabacum HR SA [134]

TMV N. benthamiana Systemic BR [135]

Brassinosteroid RSV Oyaza sativa Systemic JA/BR [136]

CMV Cucurbita pepo Systemic BR [137]

Chitosan TBSV Phaseolus vulgaris HR SA [138]

Quassinoids TMV N. tabacum, N. glutinosa Systemic, HR Not reported [139]

Quinolizidine alkaloids TMV N. tabacum Systemic Not reported [140]

Harpin popW TMV N. tabacum HR SA [141]

Soluble silicon TRSV, TMV N. tabacum Systemic SA [142]

Esterified whey protein fractions 
(EWPF)

TMV N. tabacum HR SA [143]

Eudesmanolides TMV N. tabacum, N. glutinosa Systemic, HR SA [144]

Spermine and longer polyamines CMV Arabidopsis thaliana Systemic SA [145]

PABA TMV Capsicum annuum Systemic SA [146]

Eugenol TYLCV Solanum lycopersicum Systemic SA [147]

Ningnanmicin TMV N. tabacum Systemic SA [148]

SHAM CMV A. thaliana Systemic SA [149]

Ascorobic acid TuMV Brassica rapa Systemic JA [150]

2,3-butanediol CMV, TMV C. annuum Systemic SA/JA/ET [151]

Bacillus amyloliquefaciens strain 
MBI600

TSWV, PVY S. lycopersicum Systemic SA [152]

Bacillus amyloliquefaciens strain 5B6 BBWV, CMV, PepMoV C. annuum Systemic SA / JA [153]

Penicillium simplicissimum CMV A. thaliana, N. tabacum, N. bentha-
miana

Systemic SA/ JA/ET [154]

Trichoderma harzianum strain T-22 
(T22)

CMV S. lycopersicum Systemic SA/JA/ET [155]

Pseudozyma churashimaensis (Yeast) CMV, PeMMoV, PeMoV, BBWV C. annuum Systemic SA/JA/ET [156]
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recent development of genome editing technologies, we 
are now able to specifically edit various host factors, and 
some of the resulting edited plants acquire unexpected 
viral resistance not only to the target virus but also to 
other viruses. Therefore, the possibility of producing new 
virus-resistant crops by specifically manipulating host 
factors based on a good understanding of their functions 
should be extensively explored.
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