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Abstract 

Background:  Ticks (class Arachnida, subclass Acari) are vectors of transmitting a broad range of pathogenic micro-
organisms, protozoa, and viruses affecting humans and animals. Liaoning Province is rich in forests where different 
animals and, abundant Haemaphysalis longicornis ticks exist.

Methods:  Using viral metagenomics, we analyzed the virome in 300 Haemaphysalis longicornis ticks collected from 
June to August 2015 in the forested region of Liaoning Province, China.

Results:  From the 300 ticks, 1,218,388 high-quality reads were generated, of which 5643 (0.463%) reads showed sig-
nificant sequence identity to known viruses. Sequence and phylogenetic analysis revealed that viral sequences show-
ing a close relationship with Dabieshan tick virus, Aleutian mink disease virus, adeno-associated virus, Gokushovirus, 
avian gyrovirus 2 were present in the virome of these ticks. However, the significance of these viruses to human and 
animal health requires further investigation. Notably, an hepe-like virus, named tick-borne hepe-like virus sequence, 
was obtained and was highly prevalent in these ticks with a rate of 50%. Nevertheless, one constraint of our study was 
the limited geographical distribution of the sampled ticks.

Conclusion:  Our study offers an overview of the virome in ticks from a forest region of Liaoning Province and pro-
vides further awareness of the viral diversity of ticks.
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Background
Ticks (class Arachnida, subclass Acari) transmit a broad 
range of pathogenic microorganisms, protozoa, and 
viruses and are the second most common vectors of dis-
eases affecting livestock, humans, and companion ani-
mals [1, 2]. The diseases caused by the tick-borne virus 
are numerous and severe. In Africa, Asia, and Europe, 

158 cases of CCHFV (Crimean-Congo hemorrhagic fever 
virus) infection were published from 1953 to 2016, with 
an overall case fatality rate of 32.4% [3]. SFTS (Severe 
fever with thrombocytopenia syndrome), with a 5.3% 
national average mortality rate, was reported in 23 prov-
inces of China, with increased numbers yearly from 2010 
to 2016 [4]. Moreover, the incidence of some tick-borne 
infections and transmissions in recent decades showed 
an increasing or fluctuating tendency due to various fac-
tors, mainly associated with increased tick-exposure, 
especially with the enlargement of cities, taking the place 
of forests, and exposing wild hosts to humans and live-
stock animals [5–7].
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The rise of metagenomics analysis has transformed 
virus discovery and revealed a remarkable diversity of 
viruses sampled from ticks [8, 9]. Researchers found 
a large monophyletic group of emerging viruses and 
named this putative new virus family ’Chuviridae’ [9, 
10]. Jingmen tick virus, a segmented RNA virus, was 
detected firstly from ticks in the Jingmen region of 
Hubei Province in China [11]. Huaiyangshan virus, a 
novel species of the genus Phlebovirus, was found in 
human and tick samples with high prevalence [12, 13]. 
Together, these studies showed that using metagen-
omics can express the diversity of viruses from ticks 
massively.

Liaoning Province, situated in the northeastern 
region of China, is owned by a temperate monsoon cli-
mate region with plenty of rainfall and sunshine. Fur-
thermore, it has 4.641 million hectares of forests and is 
rich in animal resources, with 827 species of animals, 
including amphibians, mammals, reptiles, and birds. 
Researchers found that tick richness correlated with 
forest size, even among locally common birds [14]. 
Ticks and tick-borne diseases have the evolution of 
cooperation with various wild animal hosts, and these 
hosts constitute reservoir hosts for ticks and tick-borne 
pathogens[1]. Nevertheless, with urbanization and the 
increasing range of human activity, a state of equilib-
rium between them may be off, and the risk of tick bites 
and infecting diseases increases. Haemaphysalis lon-
gicornis (H. longicornis) is the predominant species in 
Liaoning Province [15], but the overview of viruses car-
ried by ticks has not yet been entirely elucidated. It is 
necessary to investigate the viruses carried by ticks and 
identify their natural habitats to prevent outbreaks of 
tick-borne viral diseases [6].

Since the necessity and feasibility, this study aims to 
study the diversity and evolutionary origin of viruses 
in ticks from a forest of Liaoning Province by a viral 
metagenomic approach.

Methods
Sample collection
According to climatic conditions of summer-autumn 
favor tick proliferation, we collected 300 live adult ticks 
from June to August during 2015 in a big forest park of 
Dalian city in southern Liaoning (Fig.  1A) by the drag-
flag method. Six different batches of fifty ticks were sam-
pled based on sampling time (early June, late June, early 
July, late July, early August, and late August). Ticks were 
placed in labeled vials and shipped on dry ice [16]. All the 
collected ticks were identified using tick taxonomic keys 
by tick entomologists under the microscope at a magnifi-
cation of × 56 [17].

Tick sample pool preparation
The collected ticks were divided into six groups (Pool 
01-06) based on their sampling month (early June, late 
June, early July, late July, early August, and late August) 
(Additional file 1). An additional table shows these pools 
in detail (see Additional file  1). Before homogenization, 
each tick pool was washed with 75% alcohol to remove 
contaminants on ticks and washed thrice with 1  mL of 
phosphate-buffered saline (PBS) to eliminate external 
microbes. The tick samples were homogenized, frozen, 
and thawed three times on dry ice, and the supernatants 
were then collected after centrifugation (5 min, 15,000g, 
4 °C).

Viral metagenomic analysis
500ul of each supernatant was filtered through a 0.45-
μm filter (Millipore) to remove eukaryotic and bacterial 
cell-sized particles. The filtrate was treated for 60  min 
at 37  °C with a DNases mixture (Turbo DNase from 
Ambion, Baseline-ZERO from Epicentre), benzonase 
(Novagen), and RNase (Fermentas) to digest unprotected 
nucleic acid [18, 19]. Nucleic acids (total DNA and RNA) 
were then extracted using a QIAamp Viral RNA Mini Kit 
(QIAGEN) following the manufacturer’s instructions. 
Extractions were reverse-transcribed to cDNA using 
reverse transcriptase (Super-Script III, Invitrogen). Total 
nucleic acids were subjected to RT reactions with Super-
Script III reverse transcriptase (Invitrogen), following 
second-strand cDNA synthesis with Large (Klenow) frag-
ment (NEB). Sixty-four libraries were then constructed 
using Nextera XT DNA Sample Preparation Kit (Illu-
mina) and sequenced using the HiSeq Illumina platform 
with 250 base pair-ends with dual barcoding for each 
pool [20].

Bioinformatics analysis
Paired-end reads of 250  bp generated by HiSeq were 
debarcoded using vendor software from Illumina. Clonal 
reads were removed, and low-sequencing-quality tails 
were trimmed using Phred. Adaptors were removed using 
the default parameters of VecScreen[21]. The cleaned 
reads were assembled de novo within each barcode group 
utilizing the ENSEMBLE assembler [22]. The assembled 
contigs and singlets were compared to an in-house viral 
proteome database using BLASTx with an E-value cut-
off of < 10¯5. Candidate viral hits were then contrasted to 
an in-house non-redundant (NVNR) protein database to 
remove false-positive viral hits. The NVNR database was 
compiled using non-viral protein sequences extracted 
from an NCBI nr fasta file (based on annotation tax-
onomy, excluding the virus kingdom). Contigs with-
out significant BLASTx similarity to the viral proteome 



Page 3 of 12Yang et al. Virol J          (2021) 18:163 	

database were searched against viral protein families in 
the vFam database using HMMER3 to detect remote viral 
protein similarities.

Viral sequences acquisition and PCR validation
The assembled contigs and unassembled reads in known 
taxonomy assignments obtained from the previous step 
were performed de novo assembly and reference map-
ping in Geneious version 2019.2.3 [23] to acquire inter-
esting viral genomes or segments. Then, nested PCR 
and Sanger sequencing was used to verify important 
fragments (i.e. TKHEV, DTV-ln, and TKGyV). Besides, 

genome annotation, ORF prediction and primer design 
were also performed using Geneious version 2019.2.3.

Library quantification
To safeguard consistency in the library, the volume of 
each library for next generation sequencing (NGS) is 
based on the relative brightness intensity of electro-
phoretic bands. After the construction of the sequenc-
ing libraries, the quality of the libraries was confirmed 
by agarose gel electrophoresis (1% agarose). Eventually, 
library quantitation, including testing the concentration 
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Fig. 1  The map of collection sites and the viral reads in each pool. A Map of tick collection sites. B The proportion of viral sequences in total reads. 
C The abundance of viral reads of each family. The abundance was shown as the actual number of viral reads in each library
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and fragment insertion size were performed before NGS 
sequencing.

Quality control
Standard precautions were used for all steps to prevent 
cross-sample contamination and nucleic acid degrada-
tion. Aerosol filter pipet tips were used to reduce the pos-
sibility of sample cross-contamination. All the materials 
(including microcentrifuge tubes, pipet tips, and so on) 
directly contacted with nucleic acid samples were RNase 
and DNase free. Nucleic acid samples were dissolved in 
DEPC treated water and RNase inhibitors were added.

Phylogenetic analysis
The sequence alignment files to build phylogenetic trees 
in Figs.  4 and 5 were made with ’ClustalW’, and other 
alignment files to build phylogenetic trees in Figs. 2 and 
3 were generated using ’MUSCLE’. The ClustalW [24] 

and MUSCLE [25] multiple sequence alignment pro-
grams in MEGA version 10.1.8 were run with default 
parameters to generate amino acid sequence align-
ments, including the sequences found in this study and 
the best BLASTx matches in GenBank and representa-
tive sequences from their corresponding family. One 
of the phylogenetic analyses (Fig.  4E) was only per-
formed by maximum likelihood (ML) using MEGA ver-
sion 10.1.8 [26] and the remaining phylogenetic tree by 
Bayesian inference (BI) methods using Mrbayes version 
3.2.7 [27] based on amino acid sequences. The node 
supports were determined with 1000 bootstrap repli-
cates in ML analyses. In the BI analyses, we used two 
simultaneous runs of Markov chain Monte Carlo sam-
pling, and the runs were terminated upon convergence 
(standard deviation of the split frequencies < 0.01). The 
visualization and beautification of the phylogenetic tree 
were achieved by Figtree version 1.4.4.
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Results
Overview of tick virome
A total of 300 adult ticks were collected across a forest 
park in southern Dalian City from June to August 2015. 
The samples represented one tick species common to 
Liaoning Province, H. longicornis. Ticks were pooled into 
six libraries based on the sampling period. All tick pools 
were sequenced by two lanes of Illumina HiSeq, result-
ing in 1,218,388 raw reads with an average of 203,064 
raw reads per pool (Additional file  1). Of those reads, 

5643 (0.463%) be identified as viral sequences through 
BLASTx search based on protein sequence identity, 
showing the percentage of viral reads in total reads was 
deficient (Fig.  1B). We found that viral reads clustered 
within known thirteen viral families. The presence and 
abundances of viral families from different pools are 
shown in Additional file 2, presenting the abundance of 
each family, which shows a vast difference (Fig. 1C). The 
viral reads contain 870 sequences, annotated as verte-
brate viruses, 4519 annotated sequences as insect viruses, 
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131 annotated sequences as plant viruses, and 123 
sequence reads as phage.

A novel hepe‑like virus sequence
Although there was imparity in virus sequence com-
position among libraries, reads of the single-stranded 

negative-sense viruses were the most abundant in the 
tick libraries, comprising 69% of all viral reads. After De 
Nove Assembly and Mapping to reference sequences, we 
recovered a 5.3 kb segment encoding a putative > 1,700-
amino acid protein, provisionally named tick-borne 
hepe-like virus (TKHEV) strain lntk2unc1 (GenBank 
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ID: MW334982; Protein ID: QTE18640) (Table  1). By 
mapping the original reads to this segment, the result 
indicates that the depth of sequencing is sufficient for 
the subsequent analysis (Fig.  2A). The closest relative 
of TKHEV, 52% amino acid sequence identity, was tick-
borne tetravirus-like virus (KM048322) identified in 
Dermacentor variabilis ticks [28]. To detect this highly 
divergent virus sequence, we performed domain-based 
searches by Pfam with an expected value threshold of 

1 × 10−3. The incomplete ORF contains three conserved 
domains, methyltransferase, RNA helicase, and RNA-
dependent RNA polymerase (RdRp) domains (Fig.  2A), 
consistent with other virus sequences’ genome structure 
of the family Hepeviridae. We also found limited amino 
acid identity (< 30%) across the RDRP domain of TKHEV 
with corresponding members of Hepeviridae through 
BLASTx search. Unfortunately, no read is assigned to the 
capsid protein region of TKHEV in all pools. The RdRp 

Table 1  Viral sequences identified in our study

Strain name consists of four parts: Province acronyms + Pools no. + The first three letters Family or subfamily + Contig no

Family Name Abbreviation Length (bp) Identity (BLASTx) Coverage Closest relative 
virus

Hits in rawdata Genbank ID

Hepeviridae Tick-borne hepe-
like virus strain 
lntk2unc1

TKHEV 5130 52.65% 96.00% Tick borne 
tetravirus-like 
virus

5552 MW334982

Phleboviridae Tick uukuvirus 
strain lntk-
2phec1

DTV-ln 6263 99.81% (L) 99.00% Dabieshan tick 
virus

955 MW334981

180 96.67% (S) 100.00% Dabieshan tick 
virus

2 MW334983

Parvoviridae Tick amdopar-
vovirus strain 
lntk5parc1

TKAMPV 444 97.97% 100.00% Aleutian mink 
disease virus

4 MW334985

Tick adeno associ-
ated virus 1 
strain lntk1parc2

TKAAV1 330 96.36% 100.00% Adeno-associated 
virus

2 MW334986

Tick adeno associ-
ated virus 2 
strain lntk6parc2

TKAAV2 549 97.81% 100.00% Adeno-associated 
virus

14 MW334987

Tick adeno associ-
ated virus 3 
strain lntk6parc1

TKAAV3 2665 96.28% (replication) 99.00% Adeno-associated 
virus

69 MW334988

99.25% (capsid) 100.00% Adeno-associated 
virus

Tick densovirus 1 
strain lntk-
6denc1

TKDSV1 1334 33.77% 81.00% Cherax quad-
ricarinatus 
densovirus

41 MW353163

Tick densovirus 2 
strain lntk-
6denc2

TKDSV2 725 27.50% 95.00% lone star tick
densovirus 1

21 MW353164

Anelloviridae Tick gyrovirus 
strain lnt-
k45anec1

TKGyV 1208 99.10% 82.00% Avian gyrovirus 2 46 MW334984

Microviridae Tick gokusho-
virus 1 strain 
lntk5micc2

TKGV1 471 99.36% 99.00% Human gut 
gokushovirus

10 MW334989

Tick gokusho-
virus 2 strain 
lntk5micc1

TKGV2 1519 96.67% 86.00% Human gut 
gokushovirus

66 MW334990

Tick microvirus 1 
strain lntk-
4micc2

TKMV1 471 92.66% 100.00% Microviridae sp. 20 MW334991

Tick microvirus 2 
strain lntk-
1micc1

TKMV2 453 87.42% 100.00% Microviridae sp. 3 MW334992

Tick microvirus 3 
strain lntk-
2micc2

TKMV3 390 70.45% 100.00% Microviridae sp. 2 MW334993
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is the only conserved-sequence domain across all RNA 
virus sequences and was used for phylogenetic inference 
[30].

The phylogenetic tree shows that the hepatitis E viruses 
(HEVs) clustered into two major branches infecting ver-
tebrates and invertebrates, based on three conserved 
domains, respectively. TKHEV was located in the branch 
of HEVs infecting invertebrates. TKHEV formed a dis-
tinct clade with Barns Ness breadcrumb sponge hepe-
like viruses 1 and 2 (MF189998 and MF189999) (Fig. 2B), 
despite a very long branch separating them (KM048322 
and MN830235 belong to unclassified viruses). Remarka-
bly, TKHEV did not fall within the already classified gen-
era and may represent a novel member of hepe-like virus 
in the family Hepeviridae. Moreover, it may represent a 
new family of arthropod-associated viruses.

Uukuvirus sequence
Uukuvirus is a genus containing a clade of tick-borne 
phenuiviruses separated from the Phlebovirus and Ban-
yangvirus (Bandavirus) clades [31]. Among the total 
reads, 9.7% of the reads were taxonomically related to a 
member of invertebrate single-stranded negative-sense 
viruses, from which we assembled a near-complete viral 
L segment and a short S segment. However, we did not 
obtain the segment of M, a critical component of the 
genome that encodes the viral glycoprotein allowing cell 
entry. The L segment and S segment tentatively were 
designated as Dabieshan tick virus (DTV-ln) strain lntk-
2phec1 (L: MW334981; S: MW334983) (Table 1). The L 
segment shows 99.81%, 99.52%, and 96.83% amino acid 
identity with Dabieshan tick virus (DTV) (MT413430, 
KM817666, and MN723843, respectively). These three 
were identified in H. longicornis ticks in China [10, 32]. 
The S segment shows a 96.67% amino acid identity with 
DTV (KM817733), which was also collected from H. 
longicornis ticks [10]. Based on RdRp, DTV-ln formed 
a well-supported monophyletic group closely related to 
the "classic" uukuviruses, suggesting that they may share 
a single common ancestor in these genes. Interestingly, 
a group of Tacheng tick virus 2 (TcTV2) and Lihan tick 
virus formed a separate branch that was previous to a 
branch of DTV-ln. Of these, TcTV2 (QKR71511), a novel 
phlebovirus, was identified from a patient with a history 
of tick bite in northwestern China and caused the patient 
headache, anorexia, nausea, vomiting, fever, neck stiff-
ness, and erythema [33]. DTV-ln fell with genus Uuku-
virus and formed a branch with a group of DTVs [10, 34] 
(Fig. 3A), suggesting DTV-ln likely can infect people.

Parvoviridae sequences
In this study, six viral sequences clustered within the 
family Parvoviridae. Among these, four sequences belong 

to the subfamily Parvovirinae infecting vertebrates 
(including humans), and the other two sequences belong 
to the subfamily Densovirinae infecting invertebrates 
[35]. A segment from amdoparvovirus, tentatively des-
ignated as tick amdoparvovirus (TKAMPV) strain lnt-
k5parc1 (MW334985), was identified. TKAMPV had a 
high identity (98.62%) at the amino acid level to Aleutian 
mink disease virus. Phylogenetic trees showed TKAMPV 
clustered with Aleutian mink disease virus (APB42237 
and ALB26790), isolated from mink sampled from China 
(Fig.  4A). Three sequence fragments fell with the genus 
Dependoparvovirus were identified. Due to high identity 
with adeno associated virus, we tentatively named it tick 
adeno associated virus 1 (TKAAV1) strain lntk1parc2 
(MW334986), tick adeno associated virus 2 (TKAAV2) 
strain lntk6parc2 (MW334987), and tick adeno associ-
ated virus 3 (TKAAV3) strain lntk6parc1 (MW334988) 
(Table  1). TKAAV1 and TKAAV2 encode a replication-
associated protein, and another segment encodes partial 
replication-associated and capsid protein. The amino acid 
sequences of TKAAV1, TKAAV2, and TKAAV3 all share 
high identities (> 96%) with adeno-associated viruses. 
Phylogenetic trees suggested the above three viral 
sequences clustered into the group of adeno associated 
viruses within genus Dependoparvovirus (Fig. 4B–D).

The other two segments shared < 40% amino acid 
identity with the more closely related virus, tenta-
tively named tick densovirus 1 (TKDSV1) strain 
lntk6denc1(MW353163) and tick densovirus 2 
(TKDSV2) strain lntk6denc2 (MW353164). TKDSV1 
formed an individual cluster before a group of viruses 
belonging to Iteradensovirus (Fig. 4E), showing it may be 
a new genus of Densovirinae. In total, we only make sure 
TKDSV1 belongs to the subfamily Densovirinae, but we 
still cannot determine its specific genus.

Gyrovirus sequence
We identified a segment that belonged to the fam-
ily Anelloviridae and named it tick gyrovirus (TKGyV) 
strain lntk45anec1 (MW334984) (Table  1). TKGyV had 
an incomplete open reading frame (ORF), exhibiting 99% 
amino acid identity with avian gyrovirus 2 (AFJ92650), 
a virus isolated from human fecal samples. Based on 
the VP1, phylogenetic analysis indicated that TKGyV is 
inside a clade containing the avian gyrovirus 2 (AFJ92650, 
YP004376205) (Fig. 4F).

Microviridae sequences
We identified five segments within the family Micro-
viridae, named tick gokushovirus 1 (TKGV1) strain 
lntk5micc2 (MW334989), tick gokushovirus 2 
(TKGV2) strain lntk5micc1(MW334990), tick micro-
virus 1 (TKMV1) strain lntk4micc2 (MW334991), tick 
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microvirus 2 (TKMV2) strain lntk1micc1 (MW334992) 
and tick microvirus 3 (TKMV3) strain lntk2micc2 
(MW334993) (Table 1). Phylogenetic trees using the rep-
lication protein (VP4) amino acid revealed that TKGV1 
clusters with an unclassified Gokushovirinae, which was 
isolated from Homo sapiens (ARQ16003), with 99.4% 
amino acid sequence identity (Fig.  5A), TKGV2 formed 
a clade with Gokushoviruses, with 96.7% amino acid 

sequence identity (Fig. 5B). The other segments are highly 
divergent from all other microviruses currently available, 
exhibiting only 38%-84% amino acid identity. TKMV2 
formed a clade with unclassified Microvirus (AXH74437, 
AYQ58205) (Fig. 5D), while TKMV1 and TKMV3 formed 
a separate clade for more distantly related to other micro-
viruses, which suggests these maybe represent the seg-
ments of the novel virus.
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Fig. 5  Phylogenetic trees of virus sequences within Microviridae. A Phylogenetic analysis based on replication protein (139aa). B–E Phylogenetic 
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sequences obtained in this study



Page 10 of 12Yang et al. Virol J          (2021) 18:163 

Discussion
Liaoning Province is rich in forests and wildlife, provid-
ing an adaptable condition to live for ticks. Researchers 
found that more enormous forests had more extensive 
and more diverse wildlife communities, which supported 
more extensive and diverse tick communities [36]. In 
nature, environments in the forest, including ticks and 
other animals, are usually in equilibrium. However, 
the enlargement of cities and exposure of wild hosts to 
humans and livestock animals have destroyed the bal-
ance between them, resulting in the risk of infection 
increased annually, especially farmers living in wooded 
and hilly areas [37] and tourists. Furthermore, H. longi-
cornis is found to harbor the highest variety of tick-borne 
agents [38]. At least 30 human pathogens were linked 
with H. longicornis, including six species of virus: Severe 
fever with thrombocytopenia syndrome virus, Jingmen 
tick virus, Bocavirus, Nairobi sheep disease virus, Lym-
phocytic choriomeningitis virus, Tick-borne encephalitis 
virus [39].

Our primary objective is to throw light on the virome of 
300 adult H. longicornis ticks in Liaoning Province. Two 
lanes of Illumina HiSeq were used to generate 1,218,388 
raw reads from six tick pools; of these, 5665 (0.465%) 
reads belong to 18 viral families. Notably, we observed a 
phenomenon regarding the reads number from Pool02 
is exceptionally high (Fig. 1B, C). On the one hand, this 
may be due to the difference between the tick samples 
because pools to each other did not differ in steps of sam-
ple treatment as nucleic acid extraction, cDNA synthesis, 
and library construction. On the other hand, the sample 
volume of each library is based on the relative brightness 
intensity of electrophoretic bands to determine to safe-
guard consistency in each library in an integrated library 
to purification and sequencing. However, the limitation 
of this approach is that sample volume may not be of suf-
ficient accuracy that causes some errors between every 
pool.

Previous meta-transcriptomic studies targeting 
arthropod viromes have revealed abundant novel and 
highly divergent viruses [30, 40]. Totally fourteen virus 
sequences concerning hepe-like, phlebo-, parvo-, anello- 
and microviruses were identified, indicating the cir-
culation of diverse tick-associated viruses in Liaoning. 
Based on updates of the viral database, we compared 
our results with those sequences from previous stud-
ies [22, 41]. TKHEV, an hepe-like virus, possessed an 
incomplete ORF with three conserved domains, consist-
ent with other viruses’ genome structure within the fam-
ily Hepeviridae. TKHEV had 52% amino acid sequence 
identity with tick-borne tetravirus-like virus (AII01815) 
and limited amino acid identity across the RDRP domain 
of this virus with a representative of Hepeviridae. The 

tick-borne tetravirus-like virus tentatively divided into 
the Alphatetraviridae, due to dissimilarity in sequence 
and host association, it likely represents a new fam-
ily of arthropod-associated viruses [28, 42]. According 
to ICTV, members of the family Hepeviridae are classi-
fied into two genera Orthohepevirus infecting mammals 
and avians, and Piscihepevirus, infecting invertebrates 
[29, 43]. Based on the RDRP domain, TKHEV fell with a 
branch infecting invertebrates (Fig.  2B). By characteriz-
ing the genomic organization, phylogenetic relationship, 
and conserved motifs, we found that this new virus may 
pertain to a new genus in the family Hepeviridae because 
it has a similar conserved genome structure highly diver-
gent from the known members in the family (Fig. 2B). To 
our knowledge, it is the earliest hepe-like virus identified 
from ticks. Furthermore, TKHEV was highly prevalent in 
ticks sampled with a rate of 50%, and the pathogenicity 
needs further study.

The next section of our study was concerned with the 
transmission of DTV. A strain of DTV (KM817666) was 
first discovered in H. longicornis ticks in Hubei province 
of China in 2014 [10]. Researchers found fragments S and 
L of another strain of DTV (MT413430) in Shandong 
province in 2020. DTV-ln also were detected in H. longi-
cornis ticks in Liaoning Province, suggesting the DTV is 
highly prevalent and widely distributed in China. How-
ever, ticks have very restricted distribution and need the 
host’s blood to live, which is why we speculate that they 
require an artificial or another way to move. Not only 
that, Liaoning has rich animal resources, especially birds. 
Therefore, we hypothesize that the migration of birds 
provides a geographic link between viruses [44]. Epide-
miological investigations showed that the reads of the L 
segment of DTV-ln were detected positive in four out of 
six pools (66.7%), but the S segment was only detected 
in pool 02. Besides, DTVs show a high amino acid iden-
tity with each other, suggesting they are relatively con-
servative in evolution and host selection. In our opinion, 
DTV is likely to be widespread in other regions of China 
as a natural focus pathogen. Due to the lack of related 
research on the DTV, its pathogenicity is still unknown. 
It may be a potential threat to human beings and animals, 
which deserves constant attention. Phylogenetic analy-
sis showed that DTVs belonged to the genus Uukuvirus. 
Moreover, a group of Tacheng tick virus 2 (TcTV2) and 
Lihan tick virus formed a separate branch that was pre-
vious to a branch of DTV-ln. One of these (QKR71511) 
can cause severe symptoms, suggesting DTV-ln likely can 
infecting people and other animals.

The researchers found avian gyrovirus 2 (AGV2) in the 
serum of diseased chicken for the first time [45], but to 
date, no evidence of AGV2 causing disease has been pro-
duced [46]. Our study found TKGyV including VP1 and 
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VP2 matched to AGV2, suggesting ticks may transmit 
this virus to chickens by bites. Besides, a novel fragment 
in Densovirinae was detected, which helped us know 
more about viruses infecting ticks.

The single most noteworthy observation to emerge 
from our study was that the sequences matched to mam-
malian viruses were found in the six libraries, such as 
TKAMPV, and TKAAV1-3 (Table  1). Low abundance 
of sequence reads matched to mammalian viruses in all 
the tick libraries suggests that they probably do not really 
replicate in ticks but from the blood meal of the ticks. 
Whether these mammalian viruses carried by ticks can 
cause tick-borne transmission to human or other mam-
mals needs further research.

Conclusions
Summarily, we provide a comprehensive investigation 
on virome in free ticks in Liaoning. Though no known 
viruses causing diseases to humans and animals were 
detected, our results can confirm the presence of uuku-, 
hepe-like, parvo-, gyro- and microvirus sequences in 
ticks. Nevertheless, one restraint of our study was the 
limited geographical distribution of the sampled ticks. 
We expect that analysis of ticks from diverse geographi-
cal areas would uncover more remarkable viral diversity 
of tick-borne viruses. Our study emphasizes a prominent 
diversity of the virus community and extends the present 
viral diversity. However, further research is needed to 
uncover the role of viruses in the pathogenic mechanism 
in animals and humans.
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