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Oxygen: viral friend or foe?

Esther Shuyi Gan1* and Eng Eong Ooi1,2,3
Abstract

The oxygen levels organ and tissue microenvironments vary depending on the distance of their vasculature from
the left ventricle of the heart. For instance, the oxygen levels of lymph nodes and the spleen are significantly lower
than that in atmospheric air. Cellular detection of oxygen and their response to low oxygen levels can exert a
significant impact on virus infection. Generally, viruses that naturally infect well-oxygenated organs are less able to
infect cells under hypoxic conditions. Conversely, viruses that infect organs under lower oxygen tensions thrive
under hypoxic conditions. This suggests that in vitro experiments performed exclusively under atmospheric
conditions ignores oxygen-induced modifications in both host and viral responses. Here, we review the
mechanisms of how cells adapt to low oxygen tensions and its impact on viral infections. With growing evidence
supporting the role of oxygen microenvironments in viral infections, this review highlights the importance of
factoring oxygen concentrations into in vitro assay conditions. Bridging the gap between in vitro and in vivo
oxygen tensions would allow for more physiologically representative insights into viral pathogenesis.
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Background
Viral infections are heavily dependent on host cells for
energy, enzymes and metabolic intermediates for suc-
cessful replication [134]. Factors that influence the state
of a cell, including differential gene expression and path-
way activation, could all impact the outcome of viral
pathogenesis. One such factor is the oxygen level in the
microenvironment in which cells reside. Oxygen plays
key roles in respiration, metabolism and energy produc-
tion. Given the key role of oxygen in cell function, cells
have evolved oxygen sensors that regulate the expression
of a suite of genes in response to lowered oxygen levels.
For this discovery, William Kaelin, Gregg Semenza and
Peter Ratcliffe were awarded the 2019 Nobel Prize for
Physiology and Medicine. Here, we elaborate upon our
understanding of how cells react to different oxygen
levels and review how oxygen affects the outcome of
viral infection and disease pathogenesis. In general,
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viruses that naturally infect and replicate in tissues with
high oxygen content are impaired by hypoxic environ-
ments. Conversely, hypoxia has been shown to increase
the infection of viruses that naturally infect organs with
lower oxygen tensions.
Main text
Oxygen cascade
Although oxygen is needed by all human cells, not all
cells in our bodies receive similar amounts of oxygen.
Oxygen levels in most organs, with a few exceptions, are
lower than that of atmospheric oxygen (20–21% or 152-
160 mmHg). This disparity is largely due to blood trans-
portation through the vascular anatomy and subse-
quently vascular beds in tissues [55]. Due to its poor
solubility in liquids, oxygen is transported around the
body by hemoglobin in red blood cells. Each hemoglobin
molecule carries up to a maximum of 4 oxygen mole-
cules with its affinity for each oxygen molecule increas-
ing as each of its binding sites is occupied [120]. Oxygen
delivery in the human respiratory system depends on
several factors such as the partial pressure of oxygen,
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efficiency of gas exchange, concentration and affinity of
hemoglobin to oxygen and cardiac output [92]. The
highest oxygen concentration is typically found in the
respiratory tract. As respired air enters the trachea and
is humidified in the upper respiratory tract, the pressure
of oxygen decreases while concentration of water in-
creases, thus altering the partial pressure of oxygen in
this gas mixture [92]. Further dilution occurs as oxygen
diffuses in and out of arteries. This is best exemplified in
organs such as the spleen and liver. In spleens, oxygen
concentrations are highest nearest the splenic artery
(~ 6%) as compared to locations in the spleen distant
from the splenic artery (~ 1%) [16]. In the liver, oxygen
tensions range from approximately 12% oxygen sur-
rounding the portal vein to 1% oxygen in the proximity
of the central vein [137]. The average oxygen concentra-
tions of different organs observed in humans and animal
models are summarized in Table 1. Taken collectively,
with the exception of the lungs which are exposed to
ambient air, median physiological oxygen tensions of or-
gans are significantly lower than that of atmospheric
oxygen tensions. This is known as the oxygen cascade.
Thus, physiological oxygen concentrations in which viral
infection and replication occur can be significantly dif-
ferent to the level of oxygen in normal air. It is therefore
Table 1 Summary of oxygen concentrations in various organs

Tissue O2 (%) mmHg Species Reference

Atmospheric Air 21.1 160 Human [17]

Trachea 19.7 150 Human [17]

Arterial Blood 13.2 100 Human [17]

Venous Blood 5.3 40 Human [17]

Brain 4.4 ± 0.3 33.8 ± 2.6 Human [4, 102]

Normal Lung 5.6 42.8 Human [93]

Lung Tumor 0.1–6.1 0.7–46 Human [93]

Skin (Epidermis) 1.1 ± 0.42 8 ± 3.2 Human [147]

Skin (Dermal Papillae) 3.15 ± 0.8 24 ± 6.4 Human [147]

Liver 7.5 ± 0.7 40.6 ± 5.4 Human [13, 94]

Kidney 6.8 ± 0.8 52 ± 6 Human [108]

Kidney 5.9–6.6 45–50 Rat [129]

Placenta 7.4 ± 0.4 56.2 ± 3.2 Human [76]

Umbilical cord 2.7–3.9 20–30 Human [47]

Umbilical artery 1.3–1.9 10–15 Human [47]

Bone Marrow 7.22 ± 0.1 54.9 ± 0.98 Human [60]

Ovaries 11.6 88 Human [43]

Spleen 10 ± 2.4 80 ± 18 Rats [65]

Lymphoid organs 0.5–4.5 3.8–34.2 Mice [16]

Skeletal muscle 3.3 ± 0.58 25 ± 4.4 Human [8]

Adipose tissue 4.7–8.9 36–68 Human [40]
useful to understand how cells adapt to physiological
oxygen tension.

The HIF family and molecular mechanisms of oxygen
sensing
In microenvironments with lowered oxygen levels, cells
regulate the expression of genes, such as those involved
in controlling angiogenesis, iron metabolism and gly-
colysis, to adapt and survive. To understand the cellular
response to lowered oxygen levels, investigators focused
on the regulation of erythropoietin (EPO), that is known
to be induced in response to lowered oxygen to stimu-
late erythropoiesis. Analysis of the cis-acting sequences
involved in EPO induction led to the identification of
hypoxia inducible factor (HIF) [130, 143, 144].

The HIF family
HIF transcription factors are basic helix-loop-helix DNA
binding proteins of the PER-ARNT-SIM family [143].
HIFs form heterodimers, where alpha subunits HIF1α,
HIF2α, HIF3α [39, 49, 130] interact with a constitutively
expressed beta subunit HIF1β, also known as the aryl
hydrocarbon receptor nuclear translocator 1 (ARNT1)
[145]. HIF1α and HIF2α are oxygen sensitive subunits
that share 48% genetic sequence homology [63]. Both
dimerize with HIF1β during hypoxic conditions to induce
gene transcription [39]. HIF3α is distantly related, sharing
less sequence homology and function with HIF1α or
HIF2α. It has 6 splice variants [49]. Its function remains
understudied in comparison to HIF1α and HIF2α al-
though in vitro studies suggest that the prevailing actions
of HIF3α variants are inhibitory and constitutes a negative
feedback loop for HIF1α and HIF2α [59, 98].
Both HIF1α and HIF2α proteins have multiple con-

served domains involved in DNA binding, protein inter-
action and dimerization, oxygen-dependent degradation
(ODD) and transcriptional activity (N-TAD and C-
TAD). HIF3α isoforms are shorter and carry only a N-
TAD domain together with a leucine zipper motif with
unknown function [99, 115]. HIF1β contains no tran-
scriptional activation domains and requires dimerization
with HIF1α to induce transcription. With 70, 85 and
100% homology between their basic helix-loop-helix
DNA binding and remaining basic domains, it is not sur-
prising that HIF1α and HIF2α binds DNA indistinguish-
ably [136]. While extremely similar in both homology
and function, there are subtle differences between HIF1α
and HIF2α. The C-TAD domains of HIF1α and HIF2α
control target gene transcription through the recruit-
ment of co-factors but target gene selectivity between
the 2 proteins have been postulated to arise from the N-
TAD domains which recognize distinct transcriptional
co- factors [3, 32, 38, 67]. Besides differences in protein
domains, the expression of this protein is variable in
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different cell types. HIF1α is expressed in almost all im-
mune cell types including neutrophils [142], monocytes
[12, 131], macrophages [29], dendritic cells [11, 75] and
lymphocytes [9, 101]. HIF2α however is only expressed
in certain cell types such as endothelial cells [66] and
tumor associated macrophages [72].
Immune cells in the circulatory system are exposed to a

gradient of oxygen concentrations in the blood, lymphoid
organs and areas of inflammation [120, 121]. It is therefore
essential for immune cells such as monocytes, macrophages
and dendritic cells to rapidly adapt to fluctuating oxygen.
HIF1α has indeed been implicated in all facets of the im-
mune response including inflammation [113], responses to
bacterial and viral infections [46, 104, 126, 135], immune
cell metabolism [28, 103, 111] and lymphoid cell develop-
ment [19]. HIF1α could thus be a major regulator of infec-
tion outcome.

Oxygen sensing mechanisms of HIF1α
HIF1α sensitivity to cellular oxygen tension is largely
dependent on post-translational modifications. While
HIF1α is constitutively expressed, it is highly regulated
by oxygen and has a short half-life of approximately 5
mins [125]. Sufficient oxygen in the cellular environ-
ment, such as those in most in vitro experiments, will
result in rapid proteasomal degradation of HIF1α in the
cytoplasm [38]. An overview of these processes is shown
in Fig. 1.
In oxygen rich environments, a family of prolyl hy-

droxylase domains (PHD1–3) hydroxylate highly con-
served proline residues (Pro402 and Pro564) in the
ODD domain of HIF1α in an iron-, α-ketogluterate-, as-
corbate- and oxygen-dependent manner [12, 29]. This
hydroxylation enables the binding of the von-hippel Lin-
deau (VHL) E3 ubiquitin ligase complex to HIF1α. Ubi-
quitination of HIF1α then initiates the process of
proteasomal degradation. In addition to PHDs, an inde-
pendent regulatory hydroxylation step by Factor Inhibit-
ing HIF (FIH) hydroxylates an aspargine (Asn803) to
interfere with HIF1α ability to recruit and bind to co-
factors via its C-TAD domain [30, 44]. Additional negative
regulation of HIF1α occurs by acetylation of Lys532 by
acetyl transferase arrest-defective 1[77], GSK3β phosphor-
ylation of Ser551, Ser558 and Ser559 [107] and PLK3
phosphorylation of Ser576 and Ser 659 [149]. All these
processes contribute to HIF1α destabilization leading to
proteasomal degradation of HIF1α, which prevents tran-
scription of hypoxia inducible genes [77, 107, 149]. Clinic-
ally, patients with von Hippel-Lindau syndrome, where
VHL is defective, have an overproduction of hypoxia-
inducible genes encoding for angiogenesis leading to the
development of multiple tumors [122].
As PHD and FIH hydroxylation of HIF1α is oxygen-

dependent, any decrease in oxygen levels would lead to
stabilization and nuclear translocation of HIF1α. This
transport occurs when importin-α binds to the nuclear
localization signal in the C-terminal NLS of HIF1α, re-
cruit importin-β and initiates nuclear translocation [35].
In the nucleus, HIF1α forms heterodimers with HIF1β.
It has been postulated that HIF1β preferentially binds to
HIF1α phosphorylated by MAPK243, therefore increas-
ing transcriptional activity of HIF1α. However transcrip-
tional activity requires N-TAD and C-TAD domains to
recruit co-factors CBP/p300, SRC-1 and TIF2 to induce
efficient transcription of target genes [18, 91]. Through
its interaction with CBP/p300, S-nitrosation on cyst-
eine800 has also been shown to increase HIF1α tran-
scription activity [151]. Other co-factors for HIF1α
include pyruvate kinase M2 isoform [97] and mediator
associated kinase CD8K [45], ATPase/helicase chromatin
remodeling factor Pontin [95] and SWI/SNF nucleosome
remodeling complex [82].
Transcription of hypoxia-inducible genes occurs when

HIF1α/HIF1β heterodimer bind to a core consensus se-
quence 5′– (A/G) CGTG − 3′ within the hypoxia re-
sponse element (HRE) at the proximal promoters of
target genes [128]. Though the HRE sequence is abun-
dant throughout the human genome, HIF1α only binds
to approximately 1% of such sequence [128]. In addition
to the HRE, several HIF1α target genes contain a HIF
ancillary sequence (HAS) 5′-CAGGT-3′, which is an im-
perfect inverted repeat of the HRE. Kimura and col-
leagues have shown that alteration of this sequence
affects the HIF1α-induced transcriptional activity of
EPO [86, 87]. Interestingly, HIF1α preferentially binds
HRE at regions of chromatin with DNaseI hypersensitiv-
ity, RNA polymerase II, basal transcriptional activity and
histone modifications [105, 128, 148]. This may serve to
explain why HIF1α has cell-type specificity in function.

Hypoxia as a consideration for in vitro studies
Stabilization of HIF in cells residing in low oxygen micro-
environments drives cellular reprogramming that also af-
fects the availability of pro-viral and anti-viral host factors
that collectively determine the outcome of viral infections.
For instance, increase in glycolysis has been shown to be
favorable for dengue virus (DENV) [41], herpes simplex
virus (HSV) [1], human immunodeficiency virus (HIV)
[62], rubella virus [7], hepatitis C virus (HCV) [80], influ-
enza [133] and norovirus [116] infection.
A growing body of evidence suggests that, besides gly-

colysis, many other hypoxia-driven changes will also
have important implications not only in the study of
viral pathogenesis.

Viruses which lifecycle is inhibited by hypoxia
Viruses that infect the respiratory tract are generally
restricted by hypoxia [36]. This restriction potentially



Fig. 1 The oxygen sensing pathway of HIF1α. HIF is the master regulator of the cellular hypoxic response. Under normoxic conditions, HIF1α is
hydroxylated in an oxygen dependent manner and tagged for degradation by VHL complexes. In low oxygen environments, HIF1α is stabilized
due to the lack of oxygen, translocate to the nucleus and forms a heterodimer with HIF1β and other cofactors to activate transcription of hypoxia
inducible genes. Viruses that are able to stabilize HIF1a under atmospheric conditions by inhibiting PHD or VHL interactions are shown in the
top panel
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impacts the use of recombinant adenoviruses as a
vector for cancer vaccine. Hypoxia is an important
feature of solid tumors and the ability of oncolytic vi-
ruses such as adenoviruses or vesicular stomatitis
virus (VSV) to replicate under these low oxygen con-
ditions could be a critical determinant to the success
of these therapies. However, in vitro, significantly re-
duced synthesis of adenovirus (wildtype strain Ad309)
viral protein was observed when cells were cultured
at 1% oxygen, ultimately leading to lower production
of infectious Ad309 compared to experiments in nor-
mal air [119]. As tumor hypoxia has been shown (8-
10 mmHg) [64], this restriction of adenovirus infec-
tion could be a factor in poor intratumoral spread
resulting in the limited efficacy observed in clinical
trials [150].
Perhaps a more promising oncolytic virus is VSV,
which has been shown to overcome hypoxia-induced re-
strictions in viral protein translation during early infec-
tion in vitro [27]. However, renal carcinoma cells (RCC)
lacking pVHL, resulting in constitutive HIF activity,
showed greater resistance to the cytolytic effect of VSV
as compared to wildtype RCC. Gene expression profiling
under these conditions indicates that HIF enhances
IFNβ upon VSV infection. This suggests that HIF could
play an antiviral response against VSV, and should be an
important consideration when used as an oncolytic viral
therapy [70] (Table 2).

Viruses enhanced by hypoxia
On the other hand, a multitude of viruses replicate in
organs with oxygen microenvironments significantly



Table 2 Summary of viruses inhibited and augmented by hypoxia

Mechanism Cell Line Conditions Reference

Inhibited

Adenovirus Cell arrest H1299 / A549 1% oxygen [119, 132]

SV40 Blocks replication CV1 0.02% oxygen [124]

H1 parvovirus ND Constitutive expression of HIF1α [25]

VSV Increase in innate immune responses RCC Constitutive expression of HIF1α [69]

Augmented

DENV Increased antibody dependent uptake via
upregulation of FcγRIIA and membrane
ether lipid concentrations

THP-1, Primary Monocytes 3% oxygen [46]

Correlated with increased anaerobic
glycolysis for increased ATP production

Huh7 3% oxygen [42]

EBV Induce reactivation of EBV Burkitt lymphoma Sal Deferoxamine (DFX) [90]

HSV Hypoxia induced GADD34 U87 5% oxygen [2]

HCV ATP increase due to the induction of
anaerobic glycolysis

Huh7.5 3% oxygen [139]

Sendai Virus ND Rhabdomyosarcoma 3 Kpa [37]

KSHV HIF1α induction of viral Rta promoter Hep3B Expression of reporter plasmids
containing Rta promoter

[58]

ND Not determined
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lower than that of atmospheric air. To establish success-
ful infection, these pathogens would have evolved to
thrive in cells adapted to such oxygen microenviron-
ments. Indeed, low oxygen levels have been shown to be
advantageous to a number of viruses (Table 1). Under
hypoxic conditions, cells develop a metabolic response
to ensure their survival, in part by upregulating anaer-
obic glycolysis for energy production In hepatocytes, this
increase in anaerobic glycolysis directly correlated with
increases in DENV replication [42]. Similarly, hypoxia
enhances the replication and promotes a sustained infec-
tion of hepatitis C virus (HCV) by triggering alterations
in liver cellular bioenergetics resulting in a higher rate of
anaerobic glycolysis in a HIF-independent manner [139].
In addition, as cells adapt to a lack of oxygen, a multitude

of lipids, proteins and signaling pathways are differentially
expressed, which can be potentially advantageous for viral
infection. For example, enhanced replication of herpes sim-
plex virus (HSV) G207 under hypoxic conditions [2] is pos-
tulated to be due to hypoxia mediated upregulation of
GADD34, which complements the replication of HSVs de-
ficient in the viral gene γ34.5 [61]. Similarly, hypoxia en-
hances parvovirus B19 replication [15, 24, 118] by
upregulating cellular Epo/EpoR receptor signaling in eryth-
roid progenitor cells (EPCs) [24] which have been shown to
be vital for parvovirus B19 replication [23]. This could be a
contributory factor to the specificity of parvovirus B19 for
infecting EPCs, which reside in the bone marrow that has
oxygen concentrations of 0–4% [114].
Another virus, Kaposi’s sarcoma-associated herpes-

virus (KSHV) was the first virus identified to have a
functional HRE in its Rta gene. As activation of Rta re-
sults in induction of the lytic replication of the virus, this
suggests that hypoxia can directly stimulate KSHV repli-
cation via HIF1α [58, 140]. Indeed, it has previously been
shown that hypoxia induces the lytic replication of
KSHV in primary effusion lymphoma cell lines [31].
More recently, dengue virus (DENV) infection and

replication has been shown to be enhanced in mono-
cytes at oxygen levels comparable to that within the
lymph nodes (3%). This enhancement was observed both
in a context of a DENV-only infection as well as
antibody-dependent infection that simulates clinical sec-
ondary infection with a DENV serotype heterologous to
the primary infection [52–54, 57]. DENV exists as 4 an-
tigenically distinct serotypes. Antibodies produced after
infection with one DENV serotype are able to enhance
infection with the remaining 3 serotypes. Binding of
cross-reactive or sub-neutralizing levels of antibodies to
DENV enables viral entry into myeloid-derived cells via
the fragment crystallizable gamma receptor (FcγR)
[5, 10, 20–22, 26, 33, 146]. This route of infection is
also commonly referred to as antibody dependent
enhancement (ADE). When monocytes are incubated
at 3% oxygen, HIF1α directly binds to and upregu-
lates transcription of FcγRIIA. Moreover, hypoxia-
dependent but HIF1α-independent changes in cellu-
lar membrane lipid composition further complement
the increase in FcγRIIA to increase uptake of
antibody-opsonized DENV. This synergistic effect is
attributed to the increased proportion of ether phos-
phatidylethanolamine (ether-PE) in membranes of
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cells cultured under hypoxic conditions [46]. Taken
together, such hypoxia induced changes increase
myeloid cells susceptibility to antibody-dependent
DENV infection. It also suggests that assessment of
virus neutralizing antibodies should be conducted in
myeloid cells incubated at oxygen levels that reflect
the microenvironment of the lymph nodes, where
these cells reside and function.

Viruses that stabilize HIF1α in an oxygen independent
manner
Besides relying on the level of oxygen to modulate host
cell responses via the HIF pathway, some viruses have
evolved the ability to interact with components of this
pathway for its benefit. Pathogens such as influenza virus
[123], vaccinia virus (VACV) [100], Epstein-Barr virus
(EBV) [141] and hepatitis B virus (HBV) [153] have been
shown to stabilize HIF1α after infection to stimulate the
transcription of hypoxia inducible genes, even under
normoxic conditions (Fig. 1, Table 3).
One strategy employed by viruses to stabilize HIF is to

inhibit its interaction with PHDs and VHLs (Fig. 1).
VACV protein C16 stabilizes HIF1α by directly binding
to PHD2 and inhibiting hydroxylation and subsequent
degradation of HIF1α. This results in rapid stabilization
of HIF1α early post infection activation of HIF1α re-
sponse genes [100]. HIF1α is similarly stabilized during
EBV infection indirectly via latent membrane protein 1
(LMP1), inducing proteasome degradation of PHD1 and
3. As a result, LMPs prevents the formation of HIF/VHL
complexes which are required for HIF1a degradation
[89, 141]. Importantly, as HIF1α activation induces
angiogenesis, its stabilization during EBV infection may
play important roles in EBV-mediated tumorigenesis
and tumor progression. In another example, KSHV em-
ploys several strategies to stabilize HIF1a such as the ex-
pression of a miRNA cluster within the viral genome
that binds PHD1 mRNA to downregulate its expression.
In addition, the KSHV protein LANA targets VHL for
degradation [14, 152]. Together, these result in the
stabilization and increased activity of HIF1α during
KSHV infection.
Table 3 Viruses that induces a pseudohypoxic state

Induces Hypoxia Response Effect Mechanism

Influenza HIF1α stabalization Impaired protea
degradation of H

Hepatitis B Virus (HBV) HIF1α stabalization HBx inhibits bin

HIF1α stabalization HBx activates M
the activity of H

VACV HIF1α stabalization C16 inhibition o

EBV Increased protein synthesis
of HIF1α

LMP induced
Viruses such as HCV and RSV are also known to re-
program cellular metabolism to stabilize HIF1α under
normoxic conditions. Oxidative stress induced by HCV
infection results in HCV-stabilized HIF1α which subse-
quently leads to synthesis and secretion of VEGF [109].
Similarly, RSV infection in bronchial airway epithelial
cells induce the release of nitric oxide (NO), which re-
sults in HIF1α stabilization and expression of HIF1α tar-
get genes [84]. This is likely due to increased oxygen
consumption via oxidative phosphorylation, which re-
sults in redistribution of intracellular oxygen away from
PHDs to respiratory enzymes, so that the cell senses in-
ternal hypoxia [56].
Similarly, viruses that attenuate the VHL and HIF1a

interaction results in the induction of the hypoxic re-
sponse. During HBV infection, the HBV X protein
(HBx) increases the expression, stabilization and tran-
scriptional activity of HIF1α by binding to and inhibiting
their interaction with VHL [68, 96, 106, 153]. In HPV in-
fections, the oncoprotein E6 forms a complex with
HIF1a to inhibit its association with VHL and thus pro-
tect HIF1a from proteasome dependent degradation
[51]. This directly leads to HIF1α induced glycolysis,
which contributes to the Warburg effect seen in cancer
cells.
Although influenza virus naturally infects respiratory

epithelial cells that are exposed to atmospheric condi-
tions (20–21% O2 or 152–160 mmHg), recent studies
suggest that H1N1 virus infection can trigger a hypoxic
response. Under normoxic conditions, H1N1 influenza
virus infection stabilizes HIF1α by inhibiting proteaso-
mal activity, resulting in the activation of the HIF1α
pathway [123]. Nuclear accumulation of HIF1α resulted
in enhanced proinflammatory cytokines secreted from
infected cells that could thus play a role in the develop-
ment of severe inflammation during H1N1 infection
[50].

HIF1α inhibitor as a potential anti-viral strategy
The identification of the role of HIF1α in viral infection
suggests a unique opportunity for HIF1α inhibitors to be
used as anti-viral drugs. HIF1α inhibitors may be
Cell Line Reference

some function results in decreased
IF1α

A549 [123]

ding of VHL to HIF2α HepG2, L02 [68]

APK pathway which in turns induces
IF1α

Chang X-34, HepG2 [153]

f PHD2 Hek293T [100]

KR-4 [141]



Table 4 Summary of HIF1α inhibitors

Mode of inhibition Compound Target Reference

HIF1α mRNA EZN-2968 HIF1α [117]

HIF1α Translation Topotecan / AZN-2208 Topoisomerase 1 [6, 127]

PX-478 HIF1 / HIF2 Protein [88]

Digoxin HIF1α protein [156]

Temisirolimus / Everolimus / MLN0128 / Metformin mTOR [73, 157]

Wortmannin PI3K [155]

HIF1α Degradation 17-AAG / 17-DMAG HSP90 [110]

Romidepsin / Trichostatin HDAC [71, 81]

LW6 HDAC / VHL [85]

HIF1α DNA Binding DJ12 HRE [79]

HIF1α transcriptional activity Chetomin CH1 domain pf p300 [83]
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effective against viral infections that have exhibited the
ability to induce HIF1 α and thrive under its activity. To
date, HIF1α inhibitors have been developed primarily for
cancer tumor therapy. These inhibitors act on various
processes [112], including HIF1α mRNA expression,
protein translation, protein degradation, DNA binding
and transcriptional activity (Table 4).
While an increase in mRNA expression does not ne-

cessarily equate an increase in protein expression, HIF1α
mRNA levels have been suggested to be a rate-limiting
factor for its translation [154]. A highly specific RNA an-
tagonist EZN-2968 is an antisense oligonucleotide that
has been shown to bind to HIF1α mRNA to reduce its
translation both in vitro and in vivo. This then resulted
in the reduction of HIF1α transcriptional targets [48].
Phase I clinical trials showed safety in patients and fur-
ther studies are required to investigate EZN-2968 modu-
lation of HIF1α transcriptional targets [78, 117].
To inhibit HIF1α protein translation and accumulation

in cells, agents such as inhibitors of topoisomerases I
and II, receptor tyrosine kinase, cyclin dependent kinases
and signaling pathways are all possible candidates. As
studies have shown that mTOR plays a role in HIF1α
translation, inhibiting mTOR signaling could lead to
downregulation of HIF1α. Indeed mTOR inhibitors such
as temsirolimus [34], everolimus [138], metformin and
MLN0128 [73] have all been shown to inhibit HIF1α
protein translation. Stabilization of HIF1α in the cytosol
requires interaction with the chaperone protein HSP90.
In the presence of HSP90 inhibitors, HIF1α undergoes
proteasomal degradation [74]. Therefore HSP90 inhibi-
tors such as 17-AAG and 17-DMAG are currently in de-
velopment for cancer therapy [110]. In addition, small
molecules may also downregulate the activity of HIF1α
by inhibiting its ability to bind to HRE and initiate tran-
scription of target genes. Recently, a compound DJ12
was identified from a screen of 15,000 compounds to in-
hibit HIF1α activity by blocking its binding to HRE
sequences [79]. The development of such HIF1α inhibi-
tors provide unique and hitherto unexplored opportun-
ities to expand our anti-viral pharmacopoeia.

Conclusion
Collectively, differences between atmospheric oxygen
tensions in which in vitro experiments are generally con-
ducted in differs drastically from that of physiological
tissue oxygen microenvironments. In light of the grow-
ing body of evidence on the relationship between oxygen
tensions and viral replication, the application of tissue
oxygen tensions should be an important consideration
when studying viral pathogenesis.
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