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Abstract

Despite antiretroviral therapy (ART) which halts HIV-1 replication and reduces plasma viral load to clinically
undetectable levels, viral rebound inevitably occurs once ART is interrupted. HIV-1-infected cells can undergo clonal
expansion, and these clonally expanded cells increase over time. Over 50% of latent reservoirs are maintained
through clonal expansion. The clonally expanding HIV-1-infected cells, both in the blood and in the lymphoid
tissues, contribute to viral rebound. The major drivers of clonal expansion of HIV-1-infected cells include antigen-
driven proliferation, homeostatic proliferation and HIV-1 integration site-dependent proliferation. Here, we reviewed
how viral, immunologic and genomic factors contribute to clonal expansion of HIV-1-infected cells, and how clonal
expansion shapes the HIV-1 latent reservoir. Antigen-specific CD4" T cells specific for different pathogens have
different clonal expansion dynamics, depending on antigen exposure, cytokine profiles and exhaustion phenotypes.
Homeostatic proliferation replenishes the HIV-1 latent reservoir without inducing viral expression and immune
clearance. Integration site-dependent proliferation, a mechanism also deployed by other retroviruses, leads to slow
but steady increase of HIV-1-infected cells harboring HIV-1 proviruses integrated in the same orientation at specific
sites of certain cancer-related genes. Targeting clonally expanding HIV-1 latent reservoir without disrupting CD4* T

cell function is a top priority for HIV-1 eradication.

accessibility

Keywords: HIV-1 latent reservoir, Clonal expansion, Antigen-driven proliferation, Homeostatic proliferation, HIV-1
integration site, Aberrant proliferation, HIV-1 cure, HIV-1 proviral landscape, Defective HIV-1 proviruses, Chromatin

Background

HIV-1 persists in the latent reservoir as a major barrier
to cure [1-3]. CD4" T cells harboring latent and tran-
scriptionally inactive HIV-1 proviruses do not express
viral antigens and do not die of viral cytopathic effects
or immune clearance. While ART targets viral enzyme
function or viral entry, ART does not affect HIV-1 tran-
scription nor kills infected cells. Because of the ex-
tremely long half-life (~43-44 months) [4, 5] of the
latent reservoir, it takes > 73 years for the latent reservoir
to decay to zero [4]. Therefore, all HIV-1-infected indi-
viduals need to take life-long ART. There are 37 million
people living with HIV-1 and only 62% of them requir-
ing HIV-1 treatment have access to ART [6]. Given the
adverse effects, economic burden and social stigma of
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life-long ART for the HIV-1-infected individuals, thera-
peutic strategies targeting the HIV-1 latent reservoir is
required to end the HIV-1 endemic.

Main text

The HIV-1 latent reservoir undergoes clonal expansion
The landscape of the HIV-1-infected cells is shaped by
viral cytopathic effects, immune clearance and clonal ex-
pansion of the infected cells (Fig. 1a). The size of the la-
tent reservoir correlates with the area-under-the-curve
of the product of viral load and CD4 count during acute
infection, suggesting that reservoir seeding happens dur-
ing peak viremia [7]. Indeed, early HIV-1-infection
(within 4 weeks of expansion) can persist as clonally ex-
panded HIV-1-infected cells [8]. However, it is the HIV-
1-infected cells which are archived immediately before
ART (which are likely survivors of ongoing immune se-
lection pressure), as opposed to the initial peak viremia
clones, which persist and undergo clonal expansion after
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a Expansion dynamics of HIV-1-infected CD4* T cells
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Fig. 1 Expansion dynamics of HIV-T-infected CD4" T cells during HIV-1 infection. a The landscape of HIV-1-infected cells is shaped by viral
cytopathic effect, immune clearance and clonal expansion of the HIV-1-infected cells. The major drives of clonal expansion of HIV-1-infected cells
include antigen-driven proliferation, homeostatic proliferation, and integration site-driven proliferation. HIV-1-infected antigen-specific cells surge
as antigen stimulation peaks and wane as the antigen-specific response subsides. Homeostatic proliferation driven by cytokines such as IL-7 and
IL-15 does not induce viral antigen expression and evades immune clearance. These two mechanisms are controlled by physiologic immune
responses. In contrast, HIV-1 integration may drive aberrant cellular proliferation, which is not affected by host immune feedback controls. Thus,
HIV-1 integration site-driven clonal expansion leads to a slow but steady increase of HIV-1-infected cells. Y axis, frequency of HIV-1-infected cells.
b The clonal expansion dynamics of antigen-specific CD4™ T cells depends on antigen exposure, cytokine profiles and exhaustion phenotypes.
HIV-1-specific CD4" T cells increase during acute HIV-1 infection and decline after ART initiation as the majority of HIV-1 antigen is eliminated.
Despite chronic antigen exposure, these HIV-1-specific CD4™ T cells are few, dysfunctional and impaired in proliferation capacity. On the other
hand, TB-specific and Candida-specific CD4" T cells are preferentially infected and depleted during HIV-1-infection, which can be partially restored
upon ART. In contrast, CMV-specific CD4* T cells are relatively protected from HIV-1 infection and remain relatively abundant and functional
during HIV-1 infection

years of ART [9, 10]. The persistence of HIV-1-infected  proportion of clonally expanded HIV-1-infected cells in-
cells does not mean that the same HIV-1-infected cells crease over time [11-13]. As >90% of HIV-1 proviruses
remain unchanged over the course of ART. HIV-1-  are defective [14—16], it was thought that these clonally
infected cells undergo clonal expansion and the expanded «cells mainly harbor defective HIV-1
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proviruses. However, three independent studies demon-
strated that ~56% of cells harboring replication-
competent HIV-1 proviruses undergo clonal expansion
[17-19]. Similarly, HIV-1-infected cells in the lymphoid
tissue undergo clonal expansion with no new rounds of
ongoing replication under suppressive ART, as evidenced
by the lack of phylogenetic evolution [10, 20, 21]. Consid-
ering that these observations are likely affected by under
sampling (many clones are not large enough to be de-
tected as expanded), these studies suggest that the major-
ity of the latent reservoir are likely maintained by clonal
expansion [17-19, 22]. Therefore, targeting the clonally
expanding latently infected cells is a high-priority goal for
HIV-1 eradication.

The major discrepancy in understanding HIV-1 clonal
expansion dynamics is that the size of the HIV-1 latent
reservoir does not change over time [4] but the cells that
maintain this reservoir expand over time [17-19]. This
indicates a major gap in understanding of clonal expansion
dynamics during HIV-1-infection. We propose that 1)
HIV-infected clones wax and wane in response to antigen
stimulation, as part of the physiological immune responses
of the host; 2) homeostatic proliferation induces expansion
of HIV-1-infected cells without causing immune recogni-
tion and thus replenishes the latent reservoir; 3) HIV-1
integration site-dependent proliferation drives slow but
steady increase of the infected cells (Fig. 1a).

Clonally expanded HIV-1-infected CD4" T cells in the
peripheral blood and the lymphoid tissue contribute to
viral rebound

There is considerable debate about which cellular sub-
sets and anatomical compartments are the actual HIV-1
latent reservoir, and which of the reservoirs causes viral
rebound during treatment interruption. To examine the
sources of rebound viremia in vivo, analytical treatment
interruption (ATI) were used in ART-suppressed, HIV-
1-infected individuals [23]. By analyzing HIV-1 RNA se-
quences from limiting dilution viral outgrowth cultures
and rebound plasma viruses after ATI, one study failed
to find the identical matching HIV-1 sequences from the
two sampling time points [24] while another study does
[25]. Although the above study estimated the low contri-
bution of HIV-1-infected cells in the peripheral blood as
the major reservoir [26], multiple studies have shown
that HIV-1-infected peripheral CD4" T cells contribute
to viral rebound [27-29]. First, activated HIV-1 provi-
ruses by latency reversing agents from CD4" T cells
share identical sequence with the plasma viremia during
AT]J, indicating HIV-1-infected CD4" T cells contribute
to viral rebound [27]. Second, identical HIV-1 proviruses
and cell-associated RNA sequences from clonally
expended HIV-1-infected cells in the peripheral blood
and in the lymphoid tissue on ART match the plasma
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RNA after ATI, suggesting in vivo clonally expanded
CD4" T cells in the peripheral blood and the lymphoid
tissue are likely responsible for the viral rebound [28].
Third, a more comprehensive study showed various cell
subsets and anatomical compartments including periph-
eral blood contribute to rebound viremia [29]. In individ-
uals with larger clonally expanded HIV-1-infected cells in
peripheral blood and lymphoid tissues, more identical
sequences were found to match rebound plasma viruses,
indicating the importance of clonal expansion in HIV-1
persistence and rebound dynamics [29].

Expansion dynamics differ in HIV-1-infected CD4" T cells
harboring different subsets of proviruses

Despite ART, chronic immune activation persists in
HIV-1-infected individuals [30, 31]. While ART blocks
new rounds of infection to the neighboring cells, ART
does not inhibit HIV-1 expression in the existing in-
fected cells. Therefore, even under suppressive ART, the
HIV-1 LTR promoter remains active, driving cell-
associated HIV-1 RNA expression [32], production of
viral particles and consequent T cell activation [33]. As
both intact and defective HIV-1 proviruses may have in-
tact HIV-1 promoter function [14], both intact and de-
fective HIV-1 proviruses have the potential to express
viral antigens upon stochastic reactivation [14, 34]. Fur-
ther, as the frequency of defective proviruses (100—1000
per million CD4" T cells) outnumbers the frequency of
intact HIV-1 proviruses (1-100 per million CD4" T
cells) [14-16, 35], defective proviruses that can produce
viral antigens will be an important source for chronic
immune activation. The majority (>90%) of HIV-1-
infected proviruses are defective due to packaging signal
deletions, large internal deletions, APOBEC3G-induced
hypermutations and point mutations [14, 16, 34]. Using
limiting dilution cell-associated RNA sequencing, it was
shown that defective proviruses, such as those contain-
ing APOBEC3G-mediated hypermutations, are readily
producing HIV-1 RNA without ex vivo stimulation [32].
In vitro analysis revealed that HIV-1 proviruses having
packaging signal deletions can produce readily detectable
levels of HIV-1 p24 antigen [14, 34]. Functional analysis
revealed that these HIV-1 proviruses, despite having
packaging signal deletions or inactivating APOBEC3G-
mediated G-to-A hypermutations, can induce CD8" T
cell recognition [34]. Of note, large internal deletions
seem to have dominant negative effect on viral protein
production — that in proviruses with both hypermuta-
tions and large internal deletions, the HIV-1 proviruses
will not be able to produce viral proteins and will not in-
duce CD8" T cell recognition of the infected cells [34].
While some proviruses with large internal deletions can
activate alternative splice sites to produce spliced RNA
products and potentially aberrant viral proteins [34, 36],
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the large internal deletions frequently encompass splice
sites and splice elements and disables viral protein
production [34, 37]. Therefore, CD4" T cells harboring
proviruses with large internal deletions are released from
negative selective forces, and maybe preferentially
expanded over time [16, 34]. These lines of evidence
suggest that despite effective ART, HIV-1-infected cells,
including those containing intact and defective provi-
ruses, can continue to cause immune activation.

Antigen stimulation drives dynamic expansion and
contraction of HIV-1-infected cells

Clonal expansion of HIV-1-infected cells is driven by
antigen-driven proliferation [38, 39], homeostatic prolif-
eration [40, 41] and integration site-driven proliferation
[11-13] (Fig. 1a). As HIV-1 proviruses reside in memory
CD4" T cells, it has been thought that the expansion dy-
namics of HIV-1-infected cells follows the physiologic
expansion of memory CD4" T cells by antigen-driven
stimulation or cytokine-driven homeostatic proliferation
(through interleukin (IL)-7 and IL-15). Indeed, in an
HIV-1-infected individual who had uncontrolled meta-
static squamous cell carcinoma, an HIV-1-infected CD4"
T cell clone expanded as the tumor progressed and
contracted when cancer treatment was initiated [38].
Despite adherence to ART and the absence of drug-
resistant viruses, plasma viral load surged as the tumor
relapsed, suggesting that the expansion of the HIV-1-
infected clone and HIV-1 expression were induced by a
tumor-specific immune response. Elegant examination
of this example of antigen-driven proliferation of HIV-1-
infected cells provides insights into some previously un-
explained clinical scenarios, such as the presence of viral
blips and predominant plasma clones despite ART. First,
in HIV-1-infected individuals adherent to ART, clinically
detectable levels of plasma viremia can still be occasion-
ally captured. Such intermittent low-level viremia
(plasma viral load <200 copies/ml), termed viral blips, is
devoid of drug resistance mutations, does not benefit
from treatment intensification, and does not require
changes in antiretroviral regimens [42]. Phylogenetic ana-
lysis during episodes of low-level viremia revealed genetic-
ally identical viruses termed the predominant plasma
clones [43-45]. Based on the antigen-driven HIV-1-
infected T cell clonal expansion dynamics, it is likely that
antigen stimulation activates HIV-1-infected, antigen-
specific CD4" T cells and drives HIV-1 expression and
clonal expansion. Thus, the predominant plasma clones
which wax (during antigen stimulation) and wanes (when
antigen stimulation resolves) over time [46]. While concur-
rent ART remains effective in preventing ongoing HIV-1
replication, ART does not inhibit HIV-1 LTR promoter
function, viral RNA expression or clonal expansion of the
HIV-1-infected cells. Such antigen-driven proliferation of
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HIV-1-infected cells is likely not integration site dependent
— that HIV-1 integration sites in these proliferated cells,
likely driven by antigen stimulation, are typically not
in specific cancer-related genes (see below) [38, 47].
These HIV-1-infected, antigen-specific CD4" T cells
undergo HIV-1 expression and clonal expansion, lead-
ing to transient residual viremia and viral blips [47].
Thus, antigen stimulation-induced viral blips are typ-
ically transient, which surges as antigen stimulation
peaks and wanes as the antigen-specific response sub-
sides. However, in depth characterization of nine indi-
viduals with residual viremia caused by expanded
clones carrying replication-competent proviruses,
showed long periods of stable or intermittent viral
production (median 3.2 years) [47], suggesting that in
some cases the response to certain antigenic stimula-
tions may persist over time.

Expansion dynamics differ in HIV-1-infected CD4" T cells
specific for different pathogens
The expansion dynamics of HIV-1-infected cells differ
between CD4" T cells specific for different antigens
(Fig. 1b). HIV-1-specific CD4" T cells are required
for HIV-1 control [48]. Presumably both HIV-1-
infected CD4" T cells and professional antigen pre-
senting cells can provide constant immune activation
to HIV-1-specific CD4" T cells and induce HIV-1-
specific CD4" T cell proliferation. The HIV-1-infected
cells are enriched in memory cells polarized in Thl
[49] or expressing effector memory phenotypes [50].
While HIV-1-specific CD4" T cells are readily de-
tected in treated and untreated HIV-1-infected indi-
viduals [51], these HIV-1-specific T cells are few,
dysfunctional and impaired in proliferation capacity
[52, 53], due to T cell activation [54], chronic im-
mune activation [55], upregulation of inhibitory mole-
cules [56-58], and the loss of lymphoid structure
supporting CD4 homeostasis [59-61] (Fig. 1a). While
HIV-1 preferentially infects HIV-1-specific cells in the
context of acute and recrudescent HIV-1 infection
[39], cytopathic effects [62] may lead to clonal deple-
tion of HIV-1l-infected cells. Early ART, which halts
ongoing immune activation and new rounds of viral infec-
tion, restores the frequency and proliferative responses of
HIV-1-specific CD4" T cells compared to untreated indi-
viduals [63]. Therefore, due to the complexity of ongoing
antigen stimulation (which drives proliferation) and im-
mune exhaustion (which reduces proliferation capacity), it
remains to be determined how HIV-1-specific CD4" T
cells, and the HIV-1 proviruses which reside in them,
expand or contract over the course of HIV-1 infection,
before and after ART introduction.

The difference in susceptibility of clonal depletion is
potentially due to the cytokine profiles of the pathogen
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specific CD4" T cells (Fig. 1b). Similar to HIV-1-specific
CD4" T cells, Mycobacterium tuberculosis (TB)-specific
CD4" T cells are preferentially depleted early during
HIV-1 infection due to viral cytopathic effect and the
loss of proliferation capacity due to chronic immune ac-
tivation [64]. TB-specific CD4" T cells have increased
expression of CCR5 and produce IL-2 and IL-2 receptor
CD25 [64, 65]. Binding of IL-2 to CD25 promote cellular
proliferation and HIV-1 replication. Thus, TB-specific
CD4" T cells are preferentially infected and depleted by
HIV-1 infection. After ART, TB-specific CD4" T cells
can be restored [66]. Similarly, Candida albicans-specific
CD4" T cells are also preferentially infected by HIV-1
and depleted during progressive HIV-1 infection [67].
Candida specific-CD4" T cells express more IL-2, [L-17
and CD25 and are highly susceptible to HIV-1 infection.
Candida specific-CD4" T cells are preferentially lost at
early HIV-1 infection with ongoing CD4 depletion [67].
In contrast, cytomegalovirus (CMV) specific CD4* T
cells are preserved in function, quantity and proliferation
capacity during HIV-1 infection [68—70]. CMV-specific
CD4" T cells express lower level of PD-1 than HIV-1-
specific CD4" T cells [57, 71]. The cytokine profile of
CMV-specific CD4" T cells provide survival benefit dur-
ing HIV-1-infection. For example, CMV-specific CD4" T
cells express high levels of MIP-1 while TB-specific
CD4" T cells do not [65]. MIP-1p binds to and downre-
gulates its ligand CCR5, preventing HIV-1 infection [72].
Further, CMV-specific CD4" T cells produce CD57, a
marker for limiting proliferation, which restricts HIV-1
replication [73, 74]. Thus, CMV-specific CD4" T cells
are less susceptible to HIV-1 infection and are preserved.
During latent CMV infection, consistent low level of
antigen stimulation maintains memory inflation of
short-lived, functional CMV-specific T cells [75]. Thus,
CMV-specific CD4" T cells remains relatively functional
during HIV-1 infection. CMV-specific CD4+ T cells, if
infected with HIV-1 (although less susceptible), may
proliferate at a higher rate due to intermittent CMV
antigen stimulation and the retained proliferation

capacity.

HIV-1-infected cells evade immune clearance through IL-
7-driven homeostatic proliferation

Homeostatic proliferation maintains the repertoire of
memory CD4" T cells [76-78]. During chronic HIV-1-
infection, the proliferation capacity of CD4" T cells is
significantly impaired because of decreased IL-7 receptor
expression [79], chronic immune activation [80], im-
mune exhaustion [58, 81, 82], and the destruction of
lymphoid tissue [83]. IL-7 expression level is upregulated
in response to CD4" T cell depletion during HIV-1-
infection [84], promoting proliferation of HIV-1-infected
CD4" T cells. Interestingly, IL-7 induces proliferation of
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HIV-1-infected cells without reactivating latent HIV-1
[85, 86], suggesting that HIV-1-infected CD4" T cells
may undergo homeostatic proliferation without being
recognized by immune surveillance.

Retroviral integration into cancer-related genes promotes
clonal expansion

While HIV-1 does not cause cancer in the infected cell,
many retroviruses induce insertional oncogenesis and
uncontrolled clonal expansion of the infected cell. For
example, the discovery of oncogene originates from re-
search on retroviral pathogenesis. Rous sarcoma virus is
the first retrovirus that was discovered and known to
cause cancer in its avian host, leading to the discovery of
oncogenes [87]. Lessons about retroviral-induced inser-
tional oncogenesis in humans were learned from thera-
peutic retroviral vectors and human T lymphotropic
virus (HTLV) infections.

Retroviral vectors have been used as a gene therapy
tool to correct genetic diseases. For example, individuals
with X-linked severe combined immunodeficiency
(SCID-X1) were treated by gene therapy to restore inter-
leukin receptor y gene in bone marrow CD34" precursor
cells using gammaretroviral vectors [88]. However, four
out of the nine patients who received gene therapy de-
veloped T cell leukemia, due to the gammaretroviral vec-
tors insertion-mediated activation of proto-oncogenes,
such as BMI1 and CCND2 or disruption of tumor sup-
pressor genes such as CDKN2A, resulting into uncon-
trolled T cells growth [89]. Such Moloney murine
leukemia virus (MLV)-based gene therapy induces
leukemia in treated patients, likely due to MLV preferen-
tially integrating into the transcription start sites [90].

Understanding retroviral insertional oncogenesis led to
the use of safer, non-oncogenic retroviral vectors such
as lentiviruses. In an example of lentiviral vector medi-
ated gene therapy for B-thalassemia, the lentiviral vector
encoding [-globin integrated in the same orientation of
the transcription regulator HMGA2 gene, disrupted
HMGA?2-mediated transcriptional regulation, and caused
clonal expansion of this T cell clone [91]. In another ex-
ample, lentiviral vectors carrying the chimeric antigen
receptor (CAR) cassette in the treatment of chronic
lymphocytic leukemia integrated into the intron of the
tumor suppressor gene TET2, disrupted TET2 regula-
tory region and led to a dominant clone (94% at the
peak of response) in vivo [92]. This suggests that non-
oncogenic lentiviruses can induce clonal expansion of
the transduced primary T cells in vivo.

HTLYV, the first reported human oncogenic retrovirus
causes adult T cell lymphoma-leukemia (ATL) [93, 94].
While HTLV causes cancer through several mechanisms
regardless of the integration site, such as viral HBZ
mRNA transcription and protein Tax, HTLV interaction
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with the host chromatin at the integration site is a major
mechanism for oncogenesis (reviewed in [95]). Unlike
HIV-1, HTLV has CTCF binding sites within the pro-
viral genome, which allows distant host gene interactions
through CTCF-mediated chromatin looping [96]. While
initial integration does not favor specific chromosomes,
HTLV integration into acrocentric chromosomes pro-
vides a higher survival benefit [97]. Similar to HIV-1,
HTLV integration preferentially occurs at actively tran-
scribed genes [98]. The host genomic environment at
HTLV integration site determines HTLV clonal expan-
sion in vivo and favors insertions with the same orienta-
tion as the nearest host gene [98]. Thus, over the scale
of 50-60 years, a dominant clone grows out of host con-
trol and leads to ATL. Given the similarity between
HIV-1 and HTLV induced clonal expansion in the in-
fected lymphocytes, further examination of mechanisms
of HIV-1-induced clonal expansion may provide thera-
peutic targets to disrupt HIV-1-driven clonal expansion
without damaging the uninfected cells.

Integration site-dependent proliferation drives the
proliferation of HIV-1-infected cells

HIV-1 preferentially integrates into introns of actively tran-
scribed genes, both in vitro and in vivo [14, 99-101]. In
these studies, HIV-1 integration sites were identified but at
a small scale [100]. Using modified deep sequencing ap-
proaches to examine and HTLV integration sites developed
by the Bangham group [98], thousands of HIV-1 integra-
tion sites in HIV-1-infected individuals were identified for a
more comprehensive examination of the HIV-1 integration
landscape [11]. Despite that HIV-lintegration into T cell
genomes is biased by multiple viral and host factors (CPSF6
[102] and LEDGF/p75 [103]), cells harboring HIV-1 provi-
ruses which are integrated into the exact same nucleotide is
unlikely to come from two distinct integration events. Ra-
ther, it is more likely the result of one infection event
followed by proliferation of the infected cells. Therefore,
HIV-1 proviruses having the exact same integration site in-
dicates clonal expansion of the infected cells. Using
sonication-based random DNA shearing, the same HIV-1
integration site with different DNA shearing breakpoints
indicates the number of cells that belong to the same clone.
This method, called sonic abundance [104], identifies both
the integration site and the number of clonally expanded
HIV-1-infected cells. These integration site analyses re-
vealed dramatic difference of HIV-1-integration landscape
in vitro versus in vivo. First, the frequency of HIV-1 inte-
gration into cancer-related genes (12.5%) in HIV-1-infected
individuals is significantly higher than the frequency of
cancer-related genes in the human genome (5.19%) [12].
Second, the integration patterns in vivo and in vitro are
strikingly different. During in vitro infection, HIV-1-
integration sites are relatively random throughout the
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introns of genes, both in the same and opposite orientation
in respect to the host transcription unit [11, 12]. However,
during in vivo infection in CD4" T cells from virally sup-
pressed HIV-1-infected individuals, HIV-1 integration sites
are enriched in a small region in certain cancer-related
genes, such as in the introns immediately upstream the
translation start site of cancer-related genes BACH2, MKL2
and STATSB [11, 12]. In addition, HIV-1 proviruses are in-
tegrated exclusively in the same orientation with the host
transcription unit at these sites, which is the opposite of
what happens in vitro (that HIV-1 integration into the same
and opposite orientation is roughly equal [101]). HIV-1
integration into specific sites associated with clonal ex-
pansion in vivo, such as BACH2, MKL2, NFATC3 and
STATS5B, have been captured in multiple studies, using
different methods in different HIV-1-infected individ-
uals [11, 12, 105, 106]. These specific sites recur across
individuals not because of preferential integration, as
HIV-1 integration into these sites are not enriched during
in vitro infections [11]. Similar to HIV-1 integration sites,
simian immunodeficiency virus (SIV) with integration into
BACH2, MKL2 and STAT5B are found in SIV-infected
macaques before ART [107]. Despite that the genome-
wide distribution of HIV-1 and SIV integration showed a
high degree of overlap in vitro, it seems that more inte-
grants are oriented in the convergent orientation of these
genes in SIV-infected macaques under suppression, which
is opposite from what observed from ART treated HIV-1-
infected individuals in vivo [11, 12, 107]. However, more
SIV integration site data from long-term treated macaques
are needed to determine whether there is positive selec-
tion of SIV proviruses integrated in genes associated with
clonal expansion in individuals on ART. Nevertheless, the
specific mechanisms driving HIV-1 integration site-
dependent proliferation, which happens in vivo but not
in vitro, remain unclear.

In some instances, these drives (antigen-driven prolif-
eration, homeostasis-driven proliferation and integration
site-driven proliferation) of clonal expansion may act to-
gether. HIV-1-infected CMV-specific CD4" T cells may
inflate due to consistent CMV antigen stimulation at late
stage of CMV infection [75]. CD127 (IL-7 receptor) are
highly expressed on inflationary CMV-specific CD8" T
cells [108] and may presumably be expressed on CMV-
specific CD4" T cells. If HIV-1 provirus happens to inte-
grate into cancer-related genes, such as BACH2 and
MKL2, the infected cells may undergo aberrant prolifera-
tion [11, 12]. All these factors could promote the prolif-
eration of HIV-1-infected cells.

HIV-1 proviruses which are integrated into specific
cancer-related genes can be intact

Whether clonally expanded HIV-1 proviruses in these
specific sites of cancer-related genes are intact or
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-infected cells. HIV-1-host interactions at the integration site when

the transcription unit. ¢ HIV-1-driven integration site-dependent

defective was unknown. Since over 90% of HIV-1 are de-
fective [14—16], based on the possibility, the majority of
clonally expanded cells should harbor defective HIV-1
proviruses [13]. However, it remains technically challen-
ging to examine HIV-1 integration site and HIV-1 gen-
ome integrity at the same time in a high throughput way
to examine the integration site landscape of replication
competent HIV-1. First, when using random shearing
for HIV-1 integration site analysis, the HIV-1 genome is
disrupted, preventing simultaneous examination of HIV-
1 integration site and HIV-1 genome integrity at the
same time [11-13]. Second, in viral outgrowth

experiments trying to capture the clonality of replication
competent HIV-1, cells in the viral outgrowth cultures
underwent multiple rounds of in vitro infection, and
HIV-1 integration sites captured in the culture wells
cannot reflect HIV-1 integration sites in vivo [17-19].
Third, full-length HIV-1 proviral sequencing methods,
which can capture clonally expanded HIV-1, amplifies
regions spanning HIV-1 genome and excludes integra-
tion site information [14, 16].

In response to this challenge, several methods were
developed to examine HIV-1 integration site and HIV-1
genome integrity at the same time. First, using whole
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genome amplification by phi29 polymerase, the Lichter-
feld group [109] and the Kearney group [110] developed
matched integration site and proviral sequencing to
examine the integration site and HIV-1 near-full length
genome sequencing at the same time. Second, using
limiting dilution culture and CD3/CD28-mediated pro-
liferation, the Siliciano group sequenced the HIV-1 inte-
gration site and HIV-1 near full-length genome from
CD4" T cells undergoing ex vivo proliferation. Of note,
cells harboring replication competent HIV-1 died of viral
cytopathic effects in this study after 3 weeks of max-
imum T cell activation, and only defective proviral
clones were identified. The HIV-1 proviruses integrated
into the cancer-related gene BACH2 (2 clones total)
from these two methods are defective. However, since
both methods attempts to examine all HIV-1 proviruses,
the majority of the integration sites captured are from
defective proviruses, and the number of integration sites
of intact HIV-1 remain limited to draw conclusions. The
fact that over 50% cells harboring infectious HIV-1 pro-
viruses are from clonal expansion [17-19] suggests that
other methods which can preferentially enrich for intact
HIV-1 are needed to examine the HIV-1 integration site
landscape of replication competent proviruses. Our
group developed HIV-1 Sortseq which identifies HIV-1-
infected cells expressing readily detectable levels of HIV-
1 RNA [111]. Using HIV-1-chimeric RNA junction
analysis, we identified cells which harbor inducible HIV-
1 integrated into cancer-related genes found in clonally
expanded cells in vivo, such as BACH2 and NFATC3.
Thus, both intact and defective HIV-1can be integrated
into cancer-related genes, and both intact and defective
HIV-1 proviruses can undergo clonal expansion. As the
landscape of HIV-1 integration is heterogeneous, thus it
is difficult to draw conclusions. Finding defective provi-
ruses integrated into recurrent integration genes such as
BACH?2 does not indicate that all HIV-1 integrated into
BACH?2 are defective. Similarly, finding clonally ex-
panded cells integrated into non-cancer related genes
does not indicate that HIV-1 integration into cancer-
related genes does not cause clonal expansion. A more
high-throughput method which can break the technical
barrier (that 90% of the sequences or proviruses isolated
are defective) and detect HIV-1 integration sites of intact
HIV-1 proviruses is necessary to understand HIV-1 inte-
gration site-dependent clonal expansion mechanisms.

Mechanisms of integration site-dependent proliferation

The majority of HIV-1 proviruses are integrated into the
introns of actively transcribed genes [100]. HIV-1 can be
integrated into the host transcription unit in the same
(Fig. 2a) or opposite (Fig. 2b) orientation. When HIV-1
is integrated in the same orientation, the host and the
HIV-1 promoter compete for the RNA polymerase and
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the transcription machinery, creating transcriptional
interference. Transcriptional interference is typically
thought as a mechanism that the host gene expression
suppresses HIV-1 gene expression through viral pro-
moter occlusion [112, 113] (Fig. 2a and b). For HIV-1
proviruses integrated in the same orientation as the host
transcription unit (Fig. 2a), transcription from host gene
leads to readthrough transcription into HIV-1 provirus
or transcriptional termination at the HIV-1 polyA signal
[113]. For HIV-1 proviruses integrated in the opposite
orientation as the host transcription unit (Fig. 2b), viral
promoter occlusion reduces the level of HIV-1 transcrip-
tion [112].

Upon T cell activation, such as antigen stimulation
which signals through T cell receptor pathways, tran-
scription factors AP1, NFAT and NF«B translocate into
the nucleus, bind to the respective binding sites on HIV-1
promoter and lead to stochastic HIV-1 activation. Such T
cell activation relieves the aforementioned host-mediated
transcriptional interference and allows HIV-1-driven tran-
scription [113]. Therefore, upon stimulation, for HIV-1
proviruses integrated in the same orientation as the host
transcription unit, HIV-1 promoter drives HIV-1 tran-
scription and host gene expression through HIV-1-to-host
RNA splicing (Fig. 2a, see below) [106, 111]. For HIV-1
proviruses integrated in the opposite orientation as the
host transcription unit, HIV-1 3" LTR can drive anti-sense
host RNA transcription and can potentially interfere with
normal host gene transcription [111] (Fig. 2b).

When HIV-1 dominates over the host promoter upon
stochastic activation, HIV-1 promoter drives aberrant
host gene transcription. This means that the host gene
expression is controlled by HIV-1 promoter activity not
under cellular regulation. Detailed analysis on HIV-1-
host RNA splicing revealed the importance of HIV-1-
driven aberrant host gene expression at the integration
site as a mechanism for integration site-dependent pro-
liferation. Upon stochastic activation, HIV-1 promoter
drives HIV-1 transcription and viral RNA production.
Typically, HIV-1 RNA splices from HIV-1 splice donors
(such as the major splice donor) to HIV-1 splice accep-
tors and produces spliced HIV-1 RNA. However, HIV-1
RNA can also splice from a HIV-1 splice donor into a
host splice acceptor [106, 111, 113, 114] (Fig. 2a). There-
fore, when HIV-1 is integrated upstream of the host
gene translation start site, such as BACH2, MKL2 and
STATSB [11, 12, 106], HIV-1 promoter drives HIV-1
transcription and induces RNA splicing from HIV-1
major splice donor into the host gene splice acceptor,
and leads to transcription of the full coding sequence of
the host gene, such as in the proliferation-related gene
BACH?2 [106, 111]. When HIV-1 is integrated into a
proliferation-related gene downstream of the translation
start site, such as the proto-oncogene VAVI, HIV-1
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interrupts into the middle of the VAV1 coding sequen-
cing, leading to N-terminal truncated VAV1 protein ex-
pression. As N-terminal VAV1 truncation removes the
regulatory region of VAV1, this HIV-1-driven truncated
VAV1 expression leads to increased cellular proliferation
[111] (Fig. 2c). A similar example in lenviral transduc-
tion for chimeric antigen receptor (CAR)-T cell editing,
a lentiviral insertion into a tumor suppressor gene TET2
downstream of the host gene translation start site leads
to host-to-lentiviral splicing into the lentiviral genome
and transcriptional termination, leading to C-terminal
truncation of the tumor suppressor gene TET2 expres-
sion and increased proliferation of the T cell clone [92]
(Fig. 2¢).

HIV-1 integration into cancer-related gene alone does
not determine integration site-dependent proliferation
(Fig. 2c). First, it depends on the location and direction
of the integration event [11, 12]. Second, it depends on
whether the resulting HIV-1-induced aberrant host gene
transcription induces a significant change in the gene ex-
pression and function, such as increased proliferation-
related gene expression (such as BACH?2), gain-of-
function truncation in a proliferation-related gene (such
as VAVI), or loss-of-function truncation in a tumor sup-
pressor gene (TET2). Of note, in overt T cell activation,
such as antigen-driven proliferation and homeostatic
proliferation, the proliferation of the infected cell does
not depend on the HIV-1 integration site. Clonally ex-
panded cells can still be captured in antigen-induced
proliferation harboring HIV-1 integrated into sites irrele-
vant to proliferation [38]. The difference is that while
antigen stimulation follows host immune homeostasis
control and the HIV-1-infected clones may wane upon
antigen removal, HIV-1-driven integration site-dependent
proliferation will gradually increase over time (Fig. 2c),
although such increase may take a scale of years of in vivo
selection to be observed [11, 12].

HIV-1 integration site-dependent clonal expansion - does
the chromatin environment matter?

The integration sites that are found repeatedly, in vivo
but not in vitro, are associated with integration site-
driven proliferation [11, 12, 105]. These genes are
termed “recurrent integration genes” [115]. While HTLV
mediates chromatin looping through CTCEF sites within
the HTLV genome and changes the enhancer landscape,
HIV-1 proviruses do not have CTCF sites to similarly
alter chromatin structure [96]. Still, researchers
hypothesize that local chromatin environment contrib-
utes to clonal expansion only when HIV-1 proviruses
are integrated in these recurrent integration sites. For
example, in an in vitro model, it was proposed that these
recurrent integration genes are located near the nuclear
pore where HIV-1 integration occurs [115, 116]. These
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recurrent integration genes are spatially clustered during
T cell activation and proximal to super-enhancers [115].
By mapping the HIV-1 integration sites at the recurrent
integration genes with a separate dataset of CD4" T cell
chromatin accessibility landscape wusing Assay for
Transposase-Accessible Chromatin using sequencing
(ATACseq), it seems like these recurrent integration
genes have more accessible chromatin region near these
HIV-1 integration sites, and therefore potentially contrib-
utes to clonal expansion. However, testing this hypothesis
in CD4" T cells from HIV-1-infected individuals remain
challenging due to the rarity of HIV-1-infected cells and
the lack of selection markers to identify these cells. In con-
trast, overlaying HIV-1 integration sites and ATACseq
(from a separate aliquots of CD4" T cells from the same
individual) from three HIV-1-infected individuals suggests
that HIV-1 proviruses may integrate into loci away from
accessible regions [109]. Nevertheless, examination of
chromatin accessibility at the HIV-1 integration site re-
mains technically not possible, and whether the chromatin
environment at the HIV-1 integration sites favors clonal
expansion or prevents gene expression remains under
debate.

Conclusions

While antigen-driven proliferation and homeostatic pro-
liferation are under host immune regulation, HIV-1 inte-
gration site-driven proliferation is not inhibited by host
immune feedback controls. Therefore, clones driven to
expand by the effect of HIV-1 integration may accumu-
late over time, similar to how HTLV causes leukemia.
While it takes 50—60 years for HTLV to induce cancer
transformation of the infected cell, HIV-1 does not even-
tually cause cancer in the infected cell. Still, proliferation
of HIV-1-infected cells through HIV-1-driven prolifera-
tion is a major mechanism of HIV-1 persistence. Target-
ing the proliferating HIV-1-infected cells without
disrupting normal CD4" T cell function is a top priority
to eliminate the clonally expanding HIV-1 reservoir. For
example, ongoing clinical trials are investigating whether
inhibition of T cell proliferation can accelerate the decay
of the latent reservoir (NCTO03262441) [117]. Since
homeostatic proliferation does not induce HIV-1 antigen
expression, immune therapies requiring HIV-1 protein
expression, such as broadly neutralizing antibodies, may
not affect this expanding reservoir unless combined with
strong reversal of HIV-1latency. Strategies targeting pro-
liferation of HIV-1-infected cells, but not uninfected
cells, should be searched to eliminate the clonally
expanding latent reservoir.
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