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DMO-CAP inhibits influenza virus ®

replication by activating heme oxygenase-
T-mediated IFN response
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Abstract

Background: As a leading cause of respiratory disease, influenza A virus (IAV) infection remains a pandemic threat
in annual seasonal outbreaks. Given the limitation of existing anti-influenza therapeutic drugs, development of new
drugs is urgently required. Flavonoids extracted from Artemisia rupestris L. have an inhibitory effect on virus infections.
Despite this fact, the antiviral properties of 6-demethoxy-4'-O-methylcapillarisin (DMO-CAP), one of such flavonoids,
against the influenza virus have not been reported. Thus, the aim of this study is to investigate the anti-IAV
virus efficacy and antiviral mechanism of DMO-CAP.

Methods: The inhibitory activity of DMO-CAP against IAV was detected in vitro using viral titers by Western
blot analysis, gRT-PCR, and immunofluorescence assays. The mechanism of DMO-CAP against influenza virus
was analyzed by Western blot analysis, gRT-PCR, and luciferase assay.

Results: DMO-CAP exhibits broad spectrum of antiviral activities against IAV in vitro. Mechanistically, DMO-CAP

efficient anti-IAV effects.

potential agent or supplement against IAV infection.

treatment induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), JNK MAPK, and ERK
MAPK, which led to the activation of Nrf2/heme oxygenase-1 (HO-1) pathway. Then, the up-regulation of HO-1
expression activated the IFN response and induced the expression of IFN-stimulated genes, thereby leading to

Conclusions: DMO-CAP inhibited IAV replication by activating HO-1-mediated IFN response. DMO-CAP may be a

Background
Influenza is one of the most common yet serious infec-
tious diseases that represent a significant hazard to public
health. Globally, annual epidemics cause 3 to 5 million
cases of severe disease, millions of hospitalizations, and up
to 650,000 deaths worldwide [1, 2]. The outbreak of avian
influenza virus in recent years suggests that influenza still
poses an ongoing and powerful threat to humans [3].
Although administration of vaccines seem a vital strategy
for prophylaxis, the lag time between virus identification
and vaccine distribution weakens its preventive effect. In
the short time, antiviral therapy is the best option to control
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the spread of influenza. To date, licensed drugs in the clinic
only include M2 ion-channel blockers (amantadine and
rimantadine), neuraminidase inhibitors (oseltamivir and
peramivir), and RNA-dependent RNA polymerase (RdRp)
inhibitor (favipiravir [T705]) [4—6]. Lately, the US Food
and Drug Administration has approved Xofluza™ (baloxa-
vir marboxil) for the treatment of acute, uncomplicated
influenza, or flu, in people 12 years old and older. Xofluza
is a first-in-class, single-dose oral medicine with a novel
proposed mechanism of action that inhibits polymerase
acidic endonuclease. It exhibited efficient activities
against a wide range of influenza viral infection, includ-
ing oseltamivir-resistant and avian strains (H7N9 and
H5N1) in nonclinical studies [7, 8]. However, the rapid
emergence of drug-resistant viral mutants restricts the
utilization of these drugs [9]. Thus, a safer and more ef-
fective anti-IAV drugs must be developed.
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In contrast to the virus, host factors do not change
quickly. Therefore, overpowering influenza by targeting
host factors involved in viral replication is a potentially
effective strategy. Such a strategy may weaken the virus’
ability to evolve resistance [10]. Heme oxygenase-1 (HO-1)
is an inducible enzyme that degrades pro-oxidant heme
into equimolar quantities of carbon monoxide (CO), iron,
and biliverdin [11]. HO-1 is an effective cytoprotection be-
cause of its antioxidant and anti-inflammatory properties
[12]. In addition, HO-1 regulates innate immunity and
autoimmunity by modulating IFN-B production, which can
control viral infections, such as human immunodeficiency
virus, hepatitis B virus, hepatitis C virus, Ebola virus, RSV,
dengue, and influenza A virus (IAV) [13-17]. Specifically,
Ma et al. found that YZH-106, a rupestonic acid derivative,
presented effective anti-IAV activity by activating HO-1-
mediated type I IFN response [16]. In 2012, Cummins et al.
demonstrated that HO-1 can regulate the immune re-
sponse to influenza virus infection and vaccination in
aged mice [17].

In this study, we first presented that 6-demethoxy-
4'-O-methylcapillarisin (DMO-CAP), a flavonoid derivative
of Artemisia rupestris L., exerts a wide spectrum of anti-IAV
activity. IAV replication was inhibited after the activation of
HO-1-mediated type I IFN signal pathway by DMO-CAP.

Methods

Compounds

DMO-CAP is a separation and purification of the 50%
ethanol-eluted fractions extracted from Artemisia rupestirs
L. The compound structure was confirmed with LC-HRMS
and MS spectra [18]. In this study, 67 mM stock solutions
of DMO-CAP were prepared in dimethyl sulfoxide
(DMSO, Sigma-Aldrich, Carlsbad, CA). Oseltamivir
carboxylate (OC, Medchem, Princeton, NJ, USA), amanta-
dine hydrochloride (AH, sigma-Aldrich, St Louis, MO,
USA) and ribavirin (RBV, Sigma-Aldrich, Carlsbad, CA)
were used as reference compounds. Furthermore, 20 mM
stock solutions of OC were prepared in DMSO. 20 mM
stock solutions of RBV were prepared in culture medium.
These drugs were configured to the essential experimental
concentrations.

Cell lines, viral strains and viral infection

Madin-Darby canine kidney (MDCK) cells were purchased
from America Type Culture Collection (ATCC) and cul-
tured in minimum essential medium (MEM; Invitrogen,
Carlsbad, CA) comprised 10% fetal bovine serum (Gibco,
Grand Island, NY), 1% antibiotics (100 U/ml penicillin
and 100 mg/ml streptomycin) (Invitrogen, Carlsbad,
CA). Mouse macrophage RAW264.7 cells were obtained
from Cell Resource Center at Institute of Basic Medical
Sciences, Chinese Academy of Medical Sciences, Beijing,
China, cultivated in Dulbecco’s Modified Eagle Medium
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(DMEM, Invitrogen), containing 10% FBS and 1% antibi-
otics. Human embryonal kidney (HEK293T-17) cells were
purchased from the Cell Culture Center of Peking Union
Medical College and cultured in Dulbecco’s Modified
Eagle Medium (Invitrogen, Carlsbad, CA, USA) supple-
mented with 10% FBS and 1% antibiotics at 37 °C in a 5%
CO, incubator.

Influenza strain A/Fort Monmouth/1/1947 (H1N1)
was purchased from America Type Culture Collection
(ATCCQC). Clinical isolated A/Wuhan/359/1995 (H3N2),
A/LiaoningZhengxin/1109/2010 (H1IN1, oseltamivir re-
sistant strain), and A/HunanZhuhui/1222/2010 (H3N2,
amantadine resistant strain) were kindly provided by
Yuelong Shu, Ph.D., Professor, the Institute for Viral
Disease Control and Prevention, China Centers for Dis-
ease Control and Prevention. IAV strains were prepared
by propagating in 10-day-old embryonated chicken eggs
for 72 h.

For infections of MDCK cells, cells were washed with
PBS and infected with influenza virus at indicated multi-
plicity of infection in serum-free medium for 2 h at 37°C.
accompanying the supernatant was removed and replaced
by maintenance medium supplemented with 2 pgml™*
TPCK-treated trypsin (Worthington, Lakewood, Colorado,
USA) and 0.08% BSA (Beijing Yuan Heng Golden Horse
biological technology development Co., Ltd., China). For
RAW264.7 cells, the maintenance medium was supple-
mented with 2% FBS.

Cytotoxicity test

The cytotoxicity effects of compounds on cells were evalu-
ated by CCK Kit (TransGen Biotech, Beijing, China) [19].
Briefly, MDCK and RAW264.7 cells were cultured in
96-well plates and different concentrations of DMO-CAP
were applied in two-fold dilution for 48 h. Then, 10 ul
CCK solution was added to each well. After incubating at
37°C for 1h, the plates were detected by scanning absorb-
ance at 450 nm on Enspire (Perkin Elmer, Waltham, MA).
The 50% toxicity concentration (TCso) of DMO-CAP was
calculated by Reed and Muench method [20].

Cytopathic effect (CPE) assay

MDCK cells infected with influenza virus at 100TCIDs,
for 2h, following the unbound viruses were removed
and treated with or without the tested compounds for
48 h [19]. Then, the 50% inhibitory concentration (ICsg)
was calculated based on Reed and Muench method and
the selectivity index (SI) of compounds was calculated as
the ratio of TCsy/IC5 [21].

Western blot assay

For whole-cell extract preparation, the cells were lysed
in M-PER mammalian protein extraction reagent con-
taining halt protease inhibitor cocktail (Thermo Fisher
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Scientific, Waltham, MA, USA), and the nuclear and
cytosolic extracts were prepared using nuclear and cyto-
plasmic extraction kit (Beyotime, Beijing, China).

Cell lysate was subjected to 10%SDS-PAGE gel. Pro-
teins were transferred onto a 0.2 uM PVDF membrane
(Thermo Fischer Scientific). Membranes were blocked
with 5% milk for 2h and incubated overnight at 4°C
with specific primary antibody. After a standard washing,
membranes were incubated with horse radish peroxidase
(HRP)-labeled secondary antibody. The assay developed
using a chemiluminescent substrate. The primary anti-
bodies used in this study included antibodies against p38,
P-P38, ERK, P-ERK, JNK/SAPK, P-JNK/SAPK, HO-1,
Nrf2, PKR, IFIT1, OAS], histone H3, B-actin (Cell Signal-
ing Technology, Beverly, MA, USA) and IAV M2, NS1
(Santa Cruz, Dallas, Texas, USA). The goat anti-rabbit
and anti-mouse HRP-labeled antibodies were obtained
from Cell Signaling Technology.

Quantitative real-time RT-PCR

Total cellular RNAs were extracted using RNeasy Mini
Kit (Qiagen, USA). IAV M2 mRNA, IFN-a mRNA, and
IFN-B mRNA were measured by One-Step qRT-PCR
using primers reported as Table 1 showed. GAPDH
mRNA served as internal control to normalize tested
mRNAs. The using reaction system and conditions re-
ported as previously [16].

Immunofluorescence assay

MDCK cells infected IAV were mock-treated or treated
with the indicated concentrations of DMO-CAP for 24
h. The cells were fastened with PBS containing 4% para-
formaldehyde followed by incubation with 0.1% Triton
X-100 for 20 min. Cells were then blocked and incubated
with an antibody against IAV M2 (Santa Cruz, Dallas,
T). Bound primary antibody was visualized by Alexa
Fluor 488-conjugated secondary antibody (Invitrogen).
Cell nuclei were stained with DAPI (Beyotime, Shanghali,

Table 1 Oligonucleotides used for real-time RT-PCR
OLIGONUCLEOTIDE SEQUENCE (5"-3)

5" M2 (INFLUENZA) GACCRATCCTGTCACCTCTGAC

3" M2 (INFLUENZA) GGGCATTYTGGACAAAKCGTCTACG

5"IFN-B (M) AGCTCCAAGAAAGGACGAACAT
IFN-B (M) GCCCTGTAGGTGAGGTTGATCT
IFN-a (M) CCTGTGTGATGCAACAGGTC
IFN-a (M) TCACTCCTCCTTGCTCAATC
M) CTCTGGAAAGCTGTGGCGTGATG

ATGCCAGTGAGCTTCCCGTTCAG
) AGTCAAGGCTGAGAACGGGAAACT
D) TCCACAACATACTCAGCACCAGCA

W W v W W
[a
x>
o
)]
T
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China). Pictures were taken with an Olympus TH4-200
microscope [19].

Luciferase assay

Luciferase reporter genes activities responded to Nrf2,
NF-kB and AP-1 were detected with Dual-Glo Luciferase
Assay System (Promega, Mullion, W1, USA). HEK293T-17
cells seeded in 12-well plate were cotransfected with
pGL4.37[luc2P/ARE/Hygro]  (Promega)/pAP-1-Luc/pNF-
KkB-Luc (provided by Professor Jian-ping Ye at Pennington
Biomedical Research Center, Louisiana State University,
LA, USA) expressing firefly luciferase and pRL-SV40 vector
(Promega) expressing renilla luciferase in a 10:1 mass ratio.
After the infection of IAV and treatment with DMO-CAP
for 24 h, Lysis cells and collect supernatants at 4 °C, 12,000
rpm. Then 10 pl sample supernatant and 40 pl of luciferase
reagent was added to white 96-well plate and the firefly lu-
minescence was measured after 10 min on Enspire. Then,
40 pl of Stop & Glo Reagent was added and renilla lumines-
cence was measured in the same plate after 10 min. Lucifer-
ase activities were calculated by the ratio of the firefly
luminescence to the renilla luminescence.

Statistical analyses

All data are given as the mean + standard deviation (SD).
Two groups were compared by student’s-test, more groups
were compared by one-way ANOVA using GraphPad
Prism6.0 software. Differences with the P value of < 0.05,
0.01 and 0.001 were considered statistically significant.

Results

Cytotoxicity and antiviral activity of DMO-CAP in vitro
DMO-CAP (Fig. 1a), a flavonoid monomer, was obtained
from 50% ethanol-eluted fractions separated and purified
from Artemisia rupestris L. [18]. To determine the anti-
viral activity of DMO-CAP, we initially studied the cyto-
toxicity of DMO-CAP in MDCK and RAW 264.7 cells
cells by CCK assay. The TCs, value of DMO-CAP is 200
and 400 uM in MDCK and RAW 264.7 cells, respect-
ively, with an incubation time of 48 h (Fig. 1b). Thus, the
highest concentration of DMO-CAP was set as 50 uM in
the following antiviral assays, which confers minimal to
no cellular cytotoxicity.

Through CPE assay, the selectivity index (SI) of
DMO-CAP against A/FortMonmouth/1/1947 (H1N1)
and A/Wuhan/359/1995 (H3N2) ranges from 5.2 to 7.20
(Table 2). Meanwhile, the antiviral efficacy of DMO-CAP
was also tested using viral titers reduction assay. We ob-
served a dose-dependent reduction in viral titers when the
cells were treated with DMO-CAP after IAV infection
(Fig. 2a). In addition, we evaluated the inhibition ability of
DMO-CAP against IAV by Western blot and qRT-PCR
analysis. DMO-CAP dose-dependently reduced the amounts
of IAV M2 protein and RNA in vitro (Fig. 2 b and c). To
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Fig. 1 The structure and cytotoxicity of compound DMO-CAP. a The structure of DMO-CAP. b The viabilities of DMO-CAP on MDCK and
RAW264.7 cells was measured by CCK assay

further confirm that DMO-CAP inhibited viral protein syn-
thesis, we analyzed the expression of the viral M2 protein
through indirect immunofluorescence assay. In Fig. 2d,
DMO-CAP exhibited a dose-dependent inhibition of the
M2 protein expression in vitro. In addition, as shown in
Fig. 2e, DMO-CAP can inhibit the expression of M2
protein on other influenza strains, including A/Liaoning
Zhengxin/1109/2010 (HIN1, oseltamivir resistant strain)
and A/HunanZhuhui/1222/2010 (H3N2, amantadine resist-
ant strain). Overall, DMO-CAP exhibited a wide range of
effective antiviral activities against IAV infection.

DMO-CAP inhibits influenza virus replication through up-
regulation of HO-1 expression

HO-1, an inducible enzyme expressed in the irritant of
physical and chemical stresses, has proven its cytopro-
tectant, antioxidant, and antiapoptotic properties against
many diseases [22, 23]. DMO-CAP, identified as flavonoids,
a classical medicinal ingredient, has been demonstrated to
have anti-inflammatory and antioxidant activities, which
are partly similar to the function of HO-1 [18]. Thus,
we aimed to determine whether the anti-IAV activity of
DMO-CAP was related to HO-1.

To verify the hypothesis, we used cobaltic protopor-
phyrin IX chloride (CoPP), a potent HO-1 inducer, to
confirm the antiviral effect of HO-1 on IAV infection.
As shown in Fig. 3a, both DMO-CAP and CoPP can
up-regulate the expression of HO-1 and inhibit the repli-
cation of IAV. In addition, the combined treatment of

Table 2 Inhibitory activities of compounds against influenza strains

DMO-CAP and CoPP can synergistically up-regulate the
expression of HO-1 and have cooperative effects on inhi-
biting IAV replication in vitro. Then, the cells were trans-
fected with HO-1 siRNA or scrambled (SCR) siRNA and
infected with IAV A/FM1/1947. As shown in Fig. 3b, com-
pared with SCR siRNA, HO-1 siRNA treatment partially
enhanced IAV replication and reversed the antiviral effect
of DMO-CAP to some extent. Up-regulation of HO-1 is
at least partly required for DMO-CAP to inhibit the repli-
cation of IAV.

DMO-CAP activates the interferon response by stimulating

the Nrf2/ARE pathway to up-regulate the expression of HO-1
HO-1 expression is up-regulated not only by its substrate,
heme, but also by various non-heme inducers, such as
heat shock, inflammatory cytokines, endotoxin, and oxida-
tive stress [24, 25]. Antioxidant responsive element (ARE),
one of transcription factors binding to HO-1 gene and
Nrf2/ARE complex, had been found that could regulate
HO-1 expression [26, 27]. To detect the upstream signal-
ing pathway of HO-1 induced by DMO-CAP, luciferase
reporter genes activities responded to Nrf2, NF-kB and
AP-1, three typical nuclear transcription factors associated
with the transactivation of HO-1 expression, were de-
tected with Dual-Glo Luciferase Assay System. As shown
in Fig. 4a, ARE-driven luciferase activity responding to
Nrf2 binding was induced by DMO-CAP in a dose-
dependent manner; whereas, no effect was observed on
the other two transcription factors. Furthermore, the

A/FortMonmouth/1/1947

A/Wuhan/359/1995

TCso ICso Sl ICso Sl

(M) (uv) (L)
DMO-CAP 223 + 041 31.78 + 051 7.02 4291 + 060 520
oC > 487 +0.12 0.56 + 0.09 > 869,64 0.69 + 0.24 > 70580
RBV >890 + 0.13 102 +0.12 > 872.55 197 +0.22 > 45178
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Fig. 2 Antiviral activity of DMO-CAP against IAV. a Antiviral activity of DMO-CAP in RAW264.7 cells against A/Fort Monmouth/1/1947 (H1N1) and
IAV A/Wuhan/359/1995 (H3N2) was tested by viral titers assay. b and ¢ DMO-CAP reduced the expression of M2 RNA and protein in MDCK cells
by one-step gRT-PCR assay and Western blot assay. d DMO-CAP reduced the expression of M2 protein by immunofluorescence. @ DMO-CAP
reduced the expression of M2 protein of influenza resistant strains by Western blot assay. Mock: normal cells without treatment; HINT: cells were
infected with IAV A/FM1/1947 at 0.01MOI; H3N2: cells were infected with IAV A/Wuhan/359/1995 (H3N2) at 0.01MOI. Con: cells were infected
pathognomonic viral strains and treated with equal amounts of DMSO or DMO-CAP. The experiments were performed in triplicate and the data
represents mean + SD. ***P < 0.001, **P < 0.01, *P < 0.05 versus Con

result of nuclear/cytosol fractionation analysis shows that
nuclear Nrf2 accumulation was induced by DMO-CAP
within 3h in [AV-infected RAW 264.7 cells, whereas
HO-1 protein expression increased (Fig. 4b).
Mitogen-activated protein kinase (MAPK) signaling path-
ways are composed of three subfamilies, including ERK

MAPK, JNK MAPK, and p38 MAPK; the MAPK signaling
pathway regulates important cellular processes of defense
pathogen invasion [28, 29]. Nrf2-mediated HO-1 expres-
sion is reportedly related to the activation of MAPK signal-
ing pathway [30]. To clarify the relationship between
the up-regulation of Nrf2 and MAPKs after DMO-CAP

a HIN1

DMO-CAP
+
Mock Con DMO-CAP copp COPP

P W W e
= | O

D e— am— M2

p-actin

Fig. 3 DMO-CAP inhibited 1AV replication through up-regulating HO-1 expression. a HEK293T-17 cells were infected with IAV A/FM1/1947 (0.2

b HIN1
HO-1 siRNA
SCR + HO-1
Mock siRNA DMO-CAP DMO-CAP siRNA
- D S S e | (-actin
a— — D e HO-1

-_— e e O |

MOI) and then treated with DMO-CAP (50 uM). CoPP (2 uM) together with DMO-CAP (50 uM) and CoPP (2 uM) for 24 h. b HEK293T-17 cells were
transfected with HO-1 siRNA or SCR siRNA for 24 h and then infected with IAV A/FM1/1947 (0.2 MQI) in the absence or presence of DMO-CAP for
24 h. The expression of M2 and HO-1 proteins were analyzed by Western blot
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Fig. 4 DMO-CAP activates the interferon response by stimulating the Nrf2/ARE pathway to up-regulate the expression of HO-1. a Nrf2 DNA

binding activity was analyzed in HEK293T-17 cells co-transfected with pGL4.37 [luc2P/ARE/Hygrol/pAP-1-Luc/pNF-kB-Luc and pRL-SV40 vector, the
results were presented as Nrf2 DNA binding activity relative to its basal levels in mock 293 T. **P < 0.01 versus Mock. b DMO-CAP promoted Nrf2
nuclear transcription. RAW264.7 cells were infected with IAV A/FM1/1947 (0.2 MOI) for 2 h and treated with 50 uM DMO-CAP for another 3 h. The
total amount of cellular, cytoplasmic and nuclear Nrf2 protein were analyzed by Western blot. ¢ DMO-CAP activated the phosphorylation of p38
MAPK;, JNK MAPK and ERK MAPK. RAW264.7 cells were infected with IAV A/FM1/1947 (0.2 MOI) and treated with 50uM DMO-CAP for 15 min and
then phospho-p38. phospho-JNK and phospho-ERK proteins were valued by Western blot. d RAW264.7 cells were infected with 1AV A/FM1/1947
(0.2 MQI) for 2 h, followed by treating with or without DMO-CAP (50uM or 25uM). The mRNA level of IFN-a and IFN-3 were detected by gRT-PCR
assay. **P < 0.01 versus Mock. e RAW264.7 cells were infected with IAV A/FM1/1947 (0.2 MOI) for 2 h and the protein levels of 1SGs were measured by

Western blot after treatment with DMO-CAP for 24 h

treatment, we detected the phosphorylation level of
MAPKs. As shown in Fig. 4c, DMO-CAP can stimulate
the phosphorylation levels of ERK MAPK, JNK MAPK,
and p38 MAPK in 15 min. DMO-CAP can up-regulate
the Nrf2-mediated HO-1 expression by MAPK path-
ways in the RAW?264.7 cells.

HO-1 has been known to regulate IFN production
and play an important role in suppressing viral replica-
tions, including IAV [31, 32]. Hence, to determine
whether HO-1 up-regulation by DMO-CAP activates
antiviral IFN response in the case of IAV infection, we

studied the effect of DMO-CAP on the expressions of
IFN-a/p and ISGs. As indicated in Fig. 4d, we found
that DMO-CAP enhanced the mRNA expression of
IFN-P at 4 h post infection, whereas no effect was ob-
served on the mRNA expression of IFN-a. We also
found that DMO-CAP treatment induced the expres-
sion of ISGs, such as interferon-induced protein with
tetratricopeptide repeats 1 (IFIT1), double-stranded
RNA-dependent protein kinase (PKR), and 2'-5'-oli-
goadenylate synthetase 1 (Fig. 4e). We discovered that
HO-1 up-regulation by DMO-CAP activates antiviral
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IFN response, followed by induction of ISG protein in
IAV-infected RAW264.7 cells.

Discussion

HO-1, a stress-induced and cytoprotective enzyme
expressed in most cell types that catalyze heme metabolism
into CO, iron, and biliverdin, has been proven to play a vital
role in modulating immune responses [33-35]. HO-1 has
been known to inhibit viral infections through regulation of
immune responses, such as CoPP decreased RSV replica-
tion through increasing the production of HO-1-modulated
IFN-a/f in vivo [36]. Consistent with these findings, Ma et
al. found that HO-1 overexpression stimulated significant
up-regulation of IFN-o/p and inhibited replication of IAV
[16]. This study is the first to demonstrate the anti-IAV
activity and antiviral mechanism of DMO-CAP. The study
results showed that induction of HO-1 expression by
DMO-CAP treatment enhanced IFEN-B expression in the
RAW?264.7 cells. Thus, DMO-CAP can dose-dependently
inhibit replication of IAV.

The innate immune system plays an important role in
protection against IAV infections. HO-1-mediated inhib-
ition of viral replication is at least partly associated with
IFN-a/p induction, which increased the expression of
ISG genes, such as IFIT1, OAS, and PKR [37]. In this

Page 7 of 9

study, DMO-CARP activated the MAPK pathways, thereby
leading to Nrf2 expression and subsequent activation of
HO-1 gene expression, as well as the up-regulation HO-1
activities host cellular type I IFN response with induction
of ISGs expression (Fig. 5). Thus, the broad spectra of
antiviral activities of DMO-CAP are much likely to be as-
sociated with the induction of ISGs.

Flavonoids have a variety of biological activities, such as
anti-inflammatory and antioxidant properties. Flavonoids
play an important role in regulating virus replication by
inhibiting oxidative stress and inflammation [38, 39].
DMO-CADP, a flavonoid monomer, was verified to be effect-
ive against influenza virus activity in this study. Our study
found that DMO-CAP inhibits IAV replication at
least in part by up-regulating the expression of HO-1,
thereby activating interferon response (Fig. 5). There-
fore, further studies are needed to clarify whether
DMO-CAP has other mechanisms to inhibit influenza
virus replication.

Our research is the first to report the anti-IAV mechan-
ism of DMO-CAP, and our findings provide a new clue for
the development of an anti-IAV drug, which induces HO-1
expression. However, many questions remain, e.g., whether
DMO-CAP is an effective antiviral therapy against IAV
without adverse toxic effects in vivo.
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Fig. 5 Schematic showing that DMO-CAP inhibits influenza virus replication. DMO-CAP activated the MAPK pathways, thereby leading to Nrf2
expression and subsequent activation of HO-1 gene expression, as well as the up-regulation HO-1 activities host cellular type | IFN response with
induction of ISGs expression, which finally leads to inhibition of influenza virus replication
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Conclusion

In this study, it was found that DMO-CAP treatment in-
duced the phosphorylation of p38 MAPK, JNK MAPK,
and ERK MAPK, which led to the activation of Nrf2/heme
oxygenase-1 (HO-1) pathway. Then, the up-regulation of
HO-1 expression activated the IFN response and induced
the expression of IFN-stimulated genes, thereby leading to
efficient anti-IAV effects. Taken together, our data demon-
strated that DMO-CAP may be a potential agent or sup-
plement against IAV infection.
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