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Abstract

Background: Endothelial cells are believed to play an important role in response to virus infection. Our previous
microarray analysis showed that H9N2 virus infection and inactivated viral particle inoculation increased the
expression of interferon-inducible transmembrane protein 1 (IFITM1) in human umbilical vein endothelial cells
(HUVECs). In present study, we deeply investigated the expression patterns of IFITM1 and IFITM1-mediated
antiviral response induced by H9N2 virus infection and inactivated viral particle inoculation in HUVECs. Epithelial cells
that are considered target cells of the influenza virus were selected as a reference control.

Methods: First, we quantified the expression levels of IFITM1 in HUVECs induced by H9N2 virus infection or viral particle
inoculation using quantitative real-time PCR and western blot. Second, we observed whether hemagglutinin
or neuraminidase affected IFITM1 expression in HUVECs. Finally, we investigated the effect of induced-IFITM1
on the antiviral state in HUVECs by siRNA and activation plasmid transfection.

Results: Both H9N2 virus infection and viral particle inoculation increased the expression of IFITM1 without
elevating the levels of interferon-ɑ/β in HUVECs. HA or NA protein binding alone is not sufficient to increase
the levels of IFITM1 and interferon-ɑ/β in HUVECs. IFITM1 induced by viral particle inoculation significantly
decreased the virus titers in culture supernatants of HUVECs.

Conclusions: Our results showed that inactivated viral particle inoculation increased the expression of IFITM1
at mRNA and protein levels. Moreover, the induction of IFITM1 expression mediated the antiviral state in HUVECs.
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Background
H9N2 influenza virus exists on all continents except
Antarctica and is the most common subtype of influenza
viruses isolated from poultry (chickens and ducks) in
China [1, 2]. H9N2 viruses have been isolated from pigs
and humans with influenza-like illness in Hong Kong and
Mainland China [3–9], demonstrating that the H9N2 in-
fluenza virus could cross species barriers and expand its
host range from birds to mammalians. Recently, a re-
search showed that H9N2 viruses and pandemic H1N1 vi-
ruses have high genetic compatibility and they can
produce higher pathogenic reassortment in experimental
condition [10]. In addition, H9N2 viruses provide their six
inner genes to contribute to the evolution of the H7N9,
H10N8 and H5N6 viruses that cause severe human re-
spiratory infections in China [11–13]. All these features
indicate that H9N2 virus has a considerable public health
threat. Thus, it is valuable to reveal the pathogenesis of
H9N2 influenza virus infection and the innate immune re-
sponses of host to the H9N2 viruses.
Pathogen invasion could be recognized by pattern recog-

nition receptors (PRRs) and results in production of inter-
feron [14]. The type I interferon binds to interferon-α/β
receptors and activates JAK-STAT signaling pathway,
resulting in the expression of hundreds of interferon-
stimulated genes (ISGs) [15]. Products of these genes are
mostly antiviral proteins which are essential for mediating
the antiviral state of the host. Interferon-induced trans-
membrane proteins (IFITMs) were identified nearly
30 years ago, and although other functions have been pro-
posed, the primary role of IFITM proteins seems to be
antiviral. IFITM proteins are a family of small transmem-
brane proteins that are induced strongly by interferon, but
that are also expressed basally in several cell types and lines
[16, 17]. To date, three IFITM proteins (IFITM1, IFITM2
and IFITM3) have been identified to display broad
spectrum antiviral activity in human and mice [18, 19]. Es-
pecially, the IFITM1 and IFITM3 were proven to be more
effective in resisting influenza virus infection [20, 21]. The
siRNA-mediated depletion of IFITMs significantly in-
creased H1N1 virus titers in primary lung fibroblasts and
in HeLa cells, while overexpression of IFITM1, 2, 3 could
improve resistance to the H3N2 influenza in A549 and
MDCK cell lines [22]. Although the antiviral activity of
IFITMs has been identified in multiple types of cells, the
antiviral activity of IFITM1 has not been reported in endo-
thelial cells infected with H9N2 virus or inoculated with
inactivated viral particle.
Generally, airway epithelial cells are considered to be

the main target cells of influenza viruses because of ex-
pressing two kinds of influenza virus receptors (α-2, 6-
and α-2, 3-linked sialic acid receptors) [23–25]. But the
more and more evidences indicated that endothelial cells
might play an important role in response to influenza

virus infection. Most endothelial cells are also showed to
express two kinds of influenza virus receptors which
provide potential possibility for influenza virus infection
in endothelial cells [26]. H5N1 and H7N9 influenza vi-
ruses have been proven to directly infect human lung
microvascular endothelial cells and replicate in endothe-
lial cell lines [27, 28]. Several studies indicated that
endothelial cells might be the source of the cytokines
and involved in lung injury during influenza virus infec-
tion [29–32]. So, it is important to understand the cellu-
lar responses in endothelial cell during influenza virus
infection. Our previous study revealed that H9N2 virus
could infect human umbilical vein endothelial cells
(HUVECs) and induce high level expression of several
ISGs, especially IFITM1 [33]. The microarray results
showed that both H9N2 virus infection and inactivated
viral particle inoculation increase the expression of
IFITM1 at transcription level, and the viral particle in-
oculation induces a higher level (44.75 folds) of IFITM1
than that (8.53 folds) induced by virus infection. How-
ever, the level of IFITM1 needs to be quantified by Real-
Time PCR and western blot, and little is known about
the antiviral activity of IFITM1 induced by H9N2 virus
and viral particle in HUVECs. The present study aimed
to quantify the expression of IFITM1 induced by H9N2
virus and viral particle and investigate the antiviral state
mediated by IFITM1 in HUVECs. And the results
showed that both H9N2 virus infection and viral particle
inoculation significantly increased the expression of
IFITM1 at mRNA and protein levels, and the IFITM1
protein induced by viral particle inoculation significantly
enhanced the antiviral state of HUVECs against H9N2
virus infection.

Methods
Experiment protocol
We first quantified the expression levels of IFITM1 in
HUVECs induced by H9N2 virus infection or viral par-
ticle inoculation using quantitative real-time PCR and
western blot. Secondly, we detected levels of interferon-
ɑ/β using ELISA kits. Thirdly, we observed the effect of
HA and NA on IFITM1 expression, and located the pos-
ition of inactivated viral particles in HUVECs. Finally,
we investigated IFITM1-mediated antiviral response
by siRNA and activation plasmid transfection. To
compare the expression patterns of IFITM1 between
endothelial cells and epithelial cells, all of the above
experiments were performed on human epithelial cells
at the same time.

Cells culture
Human umbilical vein endothelial cells (HUVECs, CRL-
1730, ATCC), human bronchus epithelial cells (BEAS-
2Bs, CRL-9609, ATCC) were used for detecting the
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expression of IFITM1 and secretion of interferon-ɑ/β.
Madin Darby canine kidney cells (MDCK, CCL-34,
ATCC) were used for plaque assay. These cell lines were
cultured in DMEM (Gibco) supplemented with 10% FBS
(Gibco), 100 U/mL of penicillin G and 100 μg/mL of
streptomycin (Gibco) at 37 °C in a 5% CO2 incubator.
The cells in passages 5~8 were seeded into six-well
plates and cultured for 24 h before each experiment.

Virus, virus infection and virus inactivation
The H9N2 virus used in this study was A/Chicken/Hebei/
4/2008 (H9N2) (Ck/HB/4/08). The complete genome se-
quences of the virus are available from GenBank under ac-
cession numbers FJ499463–FJ49947033. The viruses were
propagated in 9-day-old embryonated eggs from specific-
pathogen-free (SPF) hens at 37 °C for 60 to 72 h. Virus ti-
ters were determined by plaque assay. Our previous study
demonstrated that exogenous trypsin was required for the
efficient replication of the H9N2 virus in HUVECs [33].
Thus, 0.25 μg/mL exogenousl-1-tosylamide-2-phenylethyl
chloromethyl ketone (TPCK)-treated trypsin was added to
the medium for all experiments. To inspect the interaction
between viral particles and HUVECs, we created inactivated
H9N2 viral particles by using 0.094% β-propionolactone
(SERVA Electrophoresis) according to previous description
[34], and plaque assay was used to evaluate whether viral
replicative capacity was completely destroyed.

Quantitative real-time PCR analysis
To quantify the levels of IFITM1 induced by H9N2 virus
and viral particle, HUVECs or BEAS-2Bs were divided
into three groups: control group (inoculation with virus-
free media), H9N2 virus group (infection with virus at a
multiplicity of infection (MOI) of 5) and viral particle
group (inoculation with viral particles at a MOI of 5).
To detect the effect of HA and NA (Sino Biological) on
the mRNA expression of IFITM1, HUVECs or BEAS-
2Bs were divided into control group, low concentration
group, high concentration group. Cells in control group
were inoculated with free media, cells in low and high
concentration groups were respectively treated with
0.1 μg/mL and 1 μg/mL HA or NA [35, 36]. RNA in
each group used for Real-Time PCR analysis was ex-
tracted using TRIzol reagent (Invitrogen) at 6, 12 and
24 h after treatment. cDNA was synthesized using ran-
dom hexamer and a superscript III reverse transcriptase
kit (Invitrogen). Real-time PCR was performed on the
cDNA for RNA quantitation using Ex TaqMix (Takara
Bio) and Eva green (Biotium) for IFITM1. GAPDH was
amplified in parallel with the target genes as an en-
dogenous control and all samples were analyzed in tripli-
cate. The fold changes of specific mRNA from different
groups compared to control group. The primer se-
quences were used as follows: GAPDH, F (5′ to 3′):

ACAACTTT GGTATCGTGGAAGGAC and R (5′ to
3′): AGGGATGATGTTCTGGAGAGCC, IFITM1, F (5′
to 3′): ACTGAAACGACAGGGGAAAG and R (5′ to
3′): GAACAGGGACCAGACGACAT.

Western blot analysis
Cells in each group used for western blot analysis were
collected at 12, 24 36 h after treatment and lysed with
RIPA lysis buffer (Cell Signaling Technology). The cell
lysates were centrifuged and the resultant supernatants
were resolved by SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) and then transferred onto polyvinylidene
difluoride (PVDF) membranes (Roche). The membranes
were blocked with 5% skim milk and probed with a
monoclonal antibody to β-actin (Santa Cruz Biotechnol-
ogy), IFITM1 (Sigma-Aldrich). After a further incubation
with peroxidase (HRP) conjugated secondary antibody
(ORIGENE). Proteins were visualized using enhanced
chemiluminescence. The relative protein level of IFITM1
to β-actin was analyzed by Image J software.

ELISA assay
ELISA assay was used to quantify the levels of interferon-
ɑ/β. Supernatant in each group was collected at 6, 12 and
24 h postinfection, and analyzed by ELISA kits (R & D
Systems). According to previous description [37, 38], cells
in positive control group were treated with poly I: C
(Sigma) at the concentration of 10 μg/mL.

Plaque assay
The plaque assay was used to detect the virus titers
propagated in eggs and cell culture supernatant. Plaque
assay was performed on MDCK cells as described previ-
ously [39]. Briefly, MDCK cells were seeded into 6-well
plates. Confluent monolayers were washed with phos-
phate buffered saline (PBS) and infected with H9N2
virus or cell culture supernatants. The inoculum was
discarded after incubation for 1 h and the remaining
cells were washed with PBS. An overlay consisting of
a mixture of 1.6% agarose (Lonza) and double-
strength DMEM with 0.25 μg/mL TPCK-trypsin
(Worthington) was added to the above cells and incu-
bated at 37 °C for 72 h. Plaques were stained with
0.1% crystal violet and counted.

siRNA transfection
For interference assay, cells were transfected with con-
trol siRNA or IFITM1 specific siRNA using Lipofecta-
mine 3000 transfection reagent kit (Invitrogen). IFITM1
specific and control siRNA used in the study were pur-
chased from Santa Cruz Biotechnology, and the siRNA
for human cells is a pool of 3 target-specific 19–25 nt
siRNAs designed to knock down gene expression.
According to instructions of products, we firstly
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prepared mixtures (0.2 μM siRNA and 7.5 μL Lipo-
fectamine 3000) of siRNA and Lipofectamine 3000
transfection reagents using Opti-MEM Media. To
interfere the expression of IFITM1, cells were infected
with H9N2 virus or viral particle and incubated for
1 h, then cells were covered with mixtures for 36 h
at 37 °C in a 5% CO2 incubator. The interference
effect of IFITM1 specific siRNA was detected by
western blot at 36 h postinfection.

IFITM1 CRISPR activation plasmid transfection
For overexpression assay, cells were transfected with
control plasmid or IFITM1 CRISPR activation plasmid
(Santa Cruz Biotechnology) using Lipofectamine 3000
transfection reagent kit (Invitrogen). The IFITM1
CRISPER activating plasmid is a synergy activation
medium (SAM) transcriptional activation system de-
signed to specifically upregulate gene expression. Ac-
cording to instructions of products, we firstly prepared
mixtures (2 μg plasmid and 7.5 μL Lipofectamine 3000)
of plasmid and Lipofectamine 3000 transfection reagents
using Opti-MEM Media. Then cells were covered with
the mixtures for 36 h at 37 °C in a 5% CO2 incubator.
The overexpression level of IFITM1 was detected by
western blot at 36 h after transfection.

Immunofluorescence
Immunofluorescence was used to locate the position of
viral particles in cells. According to previous description
[40], HUVECs or BEAS-2Bs were directly fixed in 2%
paraformaldehyde, permeabilized with 0.5% Triton X-100.
After blocking with phosphate-buffered saline (PBS) con-
taining 5% bovine serum albumin (BSA) for 1 h at 37 °C.
Cells were labeled with anti-nucleoprotein (NP) antibody
A-3 (Aviva Systems Biology) overnight, followed by
stained with FITC conjugated anti-rabbit secondary anti-
body (ORIGENE) for 1 h at 37 °C. The images were
captured using OLYMPUS fluorescence microscopy.

Statistical analysis
The data were expressed as means ± standard deviations
(SD). All the statistical tests were performed using
GraphPad Prism software (version 6.0). Statistical signifi-
cance of differences were determined using the Student’s
t-test or one-way analysis of variance (ANOVA).
P < 0.05 was considered statistically significant.

Results
H9N2 virus infection and viral particle inoculation
increased the expression of IFITM1
According to our previous microarray results, both
H9N2 virus infection and inactivated viral particle
inoculation upregulate the expression of IFITM1 at tran-
scriptional level. Here we used Real-Time PCR and

western blot to quantify the levels of IFITM1 induced by
virus infection or viral particle inoculation in HUVECs
and BEAS-2Bs. Results showed that both H9N2 virus in-
fection and viral particle inoculation increased the ex-
pression of IFITM1 at mRNA and protein levels in
HUVECs and BEAS-2Bs (Fig. 1). Compared to virus
group, viral particle inoculation induced higher levels of
IFITM1 at the mRNA level at 24 h and at protein level
at 36 h (P < 0.05, ANOVA) in HUVECs (Fig. 1a–c). In
contrast, H9N2 virus infection induced higher expression
of IFITM1 at mRNA level at 6 h, 12 h, 24 h (P < 0.05,
ANOVA), and higher levels of IFITM1 protein at 6 h, 12 h
(P < 0.05, ANOVA) in BEAS-2Bs (Fig. 1d–f ). Our data
showed that H9N2 virus infection and viral particle inocu-
lation induced different kinetics of IFITM1 expression in/
between HUVECs and BEAS-2Bs.

Levels of interferon-α/β induced by H9N2 virus infection
and viral particle inoculation
According to previously described, expression of IFITM
proteins are potently induced by type I interferon [41].
To determine whether interferon-α/β were involved in
the expression of IFITM1 induced by H9N2 virus and
viral particle, we treated HUVECs and BEAS-2Bs with
H9N2 virus or viral particle at a MOI of 5 and incubated
for 1 h. Supernatant in each group was collected at 6, 12
and 24 h postinfection for ELISA assay. Results showed
that there was no significant difference (P > 0.05,
ANOVA) between treated and untreated control group
at each time point in HUVECs (Fig. 2a, b), suggesting
that interferon-α/β did not participate in the induction
of IFITM1 in HUVECs. However, different results were
observed in BEAS-2Bs. Compare to control group, levels
of interferon-α/β were significantly upregulated at 6, 12
and 24 h postinfection (P < 0.05, ANOVA), viral particle
inoculation just induced a higher level of interferon-α
(P < 0.05, ANOVA) at 6 h (Fig. 2c, d). In addition, H9N2
virus infection also induced higher levels of interferon-
α/β than that induced by viral particle inoculation in
BEAS-2Bs (Fig. 2c, d). The results demonstrated that
H9N2 virus and viral particle might share different
mechanisms in the induction of IFITM1 expression in
HUVECs and BEAS-2Bs.

HA and NA proteins had no effect on the expression of
IFITM1
Results in Figs. 1, 2 showed that H9N2 virus infection
and viral particle inoculation increased the expression of
IFITM1 independently of interferon-α/β in HUVECs.
Thus, we investigated whether envelope proteins were
involved in the induction of IFITM1 expression. We in-
cubated HUVECs with HA or NA protein at different
concentrations. Supernatant in each group was collected
at 6, 12 and 24 h for ELISA assay, cells were extracted
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for Real-Time PCR analysis. The results showed that
interferon-α/β levels were not significantly increased after
treatment with HA or NA (P > 0.05, ANOVA) in both
BEAS-2Bs and HUVECs (Fig. 3). As shown in Fig. 4, the
mRNA levels of IFITM1 were not significantly increased
at 6, 12 and 24 h (P > 0.05, ANOVA) in HUVECs and
BEAS-2Bs. The results suggested that the HA or NA pro-
tein binding alone is not sufficient to induce the expres-
sion of IFITM1 in HUVECs or BEAS-2Bs.

Location of viral particle
Viral particle inoculation significantly increased the ex-
pression of IFITM1 independently of interferon-α/β in
HUVECs, and the binding of HA or NA protein alone is
not sufficient to increase the IFITM1 level. We sus-
pected that effect of viral particle on IFITM1 expression
was generated inside the cells. Then we located viral par-
ticles using immunofluorescence. Cells were inoculated
with viral particles at a MOI of 5 and incubated for 1 h.
According to previous description [27, 42], viral particles

were labeled with anti-NP antibody A-3 and FITC
conjugated secondary antibody at 8 h after inoculation.
Results showed that NP-positive cells were observed
after inoculation with viral particles (Fig. 5). The results
indicated that the cellular interaction between intracellu-
lar molecules and viral particles might be involved in the
induction of IFITM1 expression in HUVECs.

IFITM1 induced by H9N2 virus infection did not
significantly enhance the antiviral state
To determine the antiviral activity of IFITM1 protein
induced by H9N2 virus infection, HUVECs or BEAS-
2Bs were infected with H9N2 virus at MOI of 5 and
incubated for 1 h, then cells were transfected with
IFITM1 specific siRNA or control siRNA for 36 h. As
shown in Fig. 6a, IFITM1 specific siRNA transfection
successfully knocked down the expression of IFITM1
induced by H9N2 virus infection in HUVECs. How-
ever, the virus titers were just increased by
13.1 ± 2.4% (P > 0.05, t-test) compared with the virus

Fig. 1 Quantitation of IFITM1 induced by H9N2 virus or inactivated viral particle in HUVECs and BEAS-2Bs. HUVECs and BEAS-2Bs were treated
with H9N2 virus (i.e., Virus) or viral particle (i.e., Particle) at MOI of 5. Cells used for RT-PCR and western blot analysis were collected at different
time points. a The expression of IFITM1 at mRNA level in HUVECs. b, c The expression of IFITM1 at protein level in HUVECs, and the relative
protein level to β-actin. d The expression of IFITM1 at mRNA level in BEAS-2Bs. e, f The expression of IFITM1 at protein level in BEAS-2Bs, and the
relative protein level to β-actin. * means particle group and virus group compared with control group (*, P < 0.05. **, P < 0.01, ANOVA). # means
particle group compared with H9N2 virus group (#, P < 0.05. ##, P < 0.01, ANOVA)
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Fig. 2 Production of interferon-α/β by HUVECs and BEAS-2Bs inoculated with H9N2 virus or viral particle. HUVECs and BEAS-2Bs were inoculated
with H9N2 virus or viral particle at a MOI of 5, and then supernatants were collected at 6, 12, 24 h. Levels of interferon-α/β were detected using
ELISA kits. Values represent the means from three independent experiments plus standard deviations. a, b The concentration of interferon-α/β in
culture supernatants of HUVECs. c, d The concentration of interferon-α/β in culture supernatants of BEAS-2Bs. *means particle group and virus
group compared with control group (*, P < 0.05. **, P < 0.01, ANOVA). # means particle group compared with H9N2 virus group (#, P < 0.05. ##,
P < 0.01, ANOVA)

Fig. 3 Evaluation of interferon-α/β in HUVECs and BEAS-2B incubated with hemagglutinin (HA) and neuraminidase (NA). HUVECs and BEAS-2Bs
were incubated with HA or NA at concentrations of 0.1, 1 μg/mL, supernatants were collected at 6, 12, 24 h. Levels of interferon-α/β were determined
using ELISA kits. Values represent the means from three independent experiments plus standard deviations. a, b The concentration of interferon-α/β in
culture supernatants of HUVECs. c, d The concentration of interferon-α/β in culture supernatants of BEAS-2Bs
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group (control siRNA) (Fig. 6c). Similarly, the expression
of IFITM1 induced by H9N2 virus infection was also suc-
cessfully interfered by IFITM1 specific siRNA transfection
in BEAS-2Bs (Fig. 6b). And the virus titers were just in-
creased by 9.7 ± 3.8% (P > 0.05, t-test) compared with virus
group (control siRNA) (Fig. 6d). The results suggested that
IFITM1 induced by H9N2 virus infection did not mediate
the antiviral response in HUVECs and BEAS-2Bs.

IFITM1 induced by viral particle inoculation significantly
enhanced the antiviral state
HUVECs or BEAS-2Bs were inoculated with viral parti-
cles at MOI of 5 and incubated for 1 h, then cells were
transfected with siRNA for 36 h before infected with
H9N2 virus. Results showed that siRNA transfection
knocked down the expression of IFITM1 induced by
viral particle inoculation in HUVECs and BEAS-2Bs

Fig. 4 Expression of IFITM1 at mRNA level in HUVECs and BEAS-2Bs treated with hemagglutinin (HA) and neuraminidase (NA). HUVECs and BEAS-
2Bs were incubated with HA or NA at concentrations of 0.1, 1 μg/mL. Cells used for RT-PCR analysis were collected at 6, 12, 24 h. a The mRNA
levels of IFITM1 induced by HA in HUVECs. b The mRNA levels of IFITM1 induced by NA in HUVECs. c The mRNA levels of IFITM1 induced by HA
in BEAS-2Bs. d The mRNA levels of IFITM1 induced by NA in BEAS-2Bs

Fig. 5 Localization of inactivated viral particles in HUVECs and BEAS-2Bs. HUVECs and BEAS-2Bs were inoculated with viral particles at a MOI of 5
for 8 h, the distribution of viral particles were visualized by immunofluorescence. Cells in each group were double-stained with an anti-nucleoprotein
antibody (NP, green) and 4′, 6-diamidino-2-phenylindole (DAPI, blue). a Localization of viral particles in HUVECs. b Localization of viral
particles in BEAS-2Bs
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Fig. 6 Antiviral activity of IFITM1 induced by H9N2 virus infection in HUVECs and BEAS-2Bs. HUVECs and BEAS-2Bs were infected with H9N2 virus
at MOI of 5 and incubated for 1 h, then cells were transfected with control siRNA or IFITM1 specific siRNA for 36 h. Virus titer in each group was
detected using plaque assay at 36 h postinfection. The effect of IFIMT1 specific siRNA on IFITM1 expression was detected using western blot. a
IFITM1 protein level after transfected with siRNA in HUVECs. b IFITM1 protein level after transfected with siRNA in BEAS-2Bs. c Virus titers in HUVECs
transfected with control siRNA or IFITM1 specific siRNA. Compared to virus group (control siRNA), the virus titer in virus + siRNA group (IFITM1 specific
siRNA) was increased by 13.1 ± 2.4% (P > 0.05, t-test). d Virus titers in BEAS-2Bs transfected with control siRNA or IFITM1 specific siRNA. Compared to
virus group (control siRNA), the virus titer in virus + siRNA group (specific siRNA) was increased by 9.7% ± 3.8% (P > 0.05, t-test)

Fig. 7 Antiviral activity of IFITM1 induced by viral particle inoculation in HUVECs and BEAS-2Bs. HUVECs and BEAS-2Bs were inoculated with viral
particle at MOI of 5 and incubated for 1 h, then cells were transfected with control siRNA or IFITM1 specific siRNA for 36 h before infected with
H9N2 virus at MOI of 5. Virus titer of each group was detected by plaque assay at 36 h postinfection. The effect of IFIMT1 specific siRNA on IFITM1
expression was detected using western blot. a IFITM1 protein level after transfected with siRNA in HUVECs. b IFITM1 protein level after transfected
with siRNA in BEAS-2Bs. c Virus titers in HUVECs transfected with control siRNA or IFITM1 specific siRNA. Compared to particle group (control siRNA),
the virus titer in particle + siRNA group (IFITM1 specific siRNA) was increased by 60.5 ± 10.7% (P < 0.05, t-test). d Virus titers in BEAS-2Bs transfected
with control siRNA or IFITM1 specific siRNA. Compared to particle group (control siRNA), the virus titer in particle + siRNA group (specific siRNA) was
increased by 12.9 ± 3.6% (P > 0.05, t-test). * means particle group compared with particle + siRNA group (*, P < 0.05, t-test)
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(Fig. 7a, b). Compared to particle group, the virus titers
were significantly increased by 60.5 ± 10.7% (P < 0.05, t-
test) after transfection with IFITM1 specific siRNA
(Fig. 7c). In contrast, the virus titers were only increased
by 12.9 ± 3.6% (P > 0.05, t-test) after transfection with
IFITM1 specific siRNA in BEAS-2Bs (Fig. 7d). The re-
sults indicated that the IFITM1 protein induced by viral
particle inoculation significantly enhanced the antiviral
state of HUVECs.

Overexpression of IFITM1 significantly enhance the
antiviral state
HUVECs or BEAS-2Bs were transfected with plasmid
for 36 h before infected with H9N2 virus. The results
showed that transfection with IFITM1 CRISPR activa-
tion plasmid upregulated the expression of IFITM1 in
HUVECs and BEAS-2Bs (Fig. 8a, b). Compared to con-
trol group, the virus titers were significantly decreased
by 55.72 ± 7.53% (P < 0.05, t-test) in BEAS-2Bs trans-
fected with IFITM1 CRISPR activation plasmid (Fig. 8c),
the virus titers were significantly decreased by
52.76 ± 1.02% (P < 0.05, t-test) in HUVECs transfected
with IFITM1 CRISPR activation plasmid (Fig. 8d).

Discussion
The expression of ISGs is an early response of host to
virus infection, and their products confers host the anti-
viral state which inhibits the entry process or replication

of invading virus. To date, multiple proteins translated
by ISGs have been validated as antiviral proteins, such as
protein kinase R (PKR), myxovirus-resistance proteins,
ISG15, Schlafen 11 and so on. IFITM proteins are re-
cently identified antiviral factors that play critical roles
in the intrinsic and interferon-mediated control of virus
infection [20, 22]. Since initially identified by a siRNA
screen for factors that restrict influenza virus replication,
more and more researches revealed the inhibition effect
of IFITMs on enveloped viruses through affecting the
interaction between virus envelope proteins and endoso-
mal or lysosomal [43]. Recently, a study demonstrated
that depletion of IFITM1 with siRNA increased titers of
H1N1 virus in primary lung fibroblast cells and in HeLa
cell line, overexpression of IFITM1 resisted H3N2 virus
infection in A549 and MDCK cell lines [22]. In this
study, our results showed that overexpression of IFITM1
significantly reduced the virus titers in HUVECs and
BEAS-2Bs (Fig. 8). The present data reaffirmed the re-
striction effect of IFITM1 on influenza virus infection.
To investigate whether IFITM1 induced by H9N2 virus
infection and viral particle inoculation mediated the
antiviral response in HUVECs, we detected the virus ti-
ters in HUVECs transfected with IFITM1 specific siRNA
or control siRNA. The results showed that IFITM1 in-
duced by H9N2 virus infection could not enhanced the
antiviral state in HUVECs. In contrast, IFITM1 induced
by viral particle inoculation significantly enhance the

Fig. 8 Overexpression of IFITM1 significantly reduced virus titers in HUVECs and BEAS-2Bs. HUVECs and BEAS-2Bs were transfected with control
plasmid (Control) or IFITM1 CRISPR activation plasmid (plasmid) for 36 h, then cells were infected with H9N2 virus at MOI of 5. Virus titer of each
group was detected by plaque assay at 36 h postinfection. The overexpression of IFIMT1 was detected by western blot. a IFITM1 protein level
after transfected with plasmid in BEAS-2Bs. b IFITM1 protein level after transfected with plasmid in HUVECs. c Virus titers in BEAS-2Bs transfected
with control plasmid or IFITM1 CRISPR activation plasmid. Compared to control group (control plasmid), the virus titer in plasmid group (IFITM1
CRISPR activation plasmid) was decreased by 55.72.5 ± 7.53% (P < 0.01, t-test). d Virus titers in HUVECs transfected with control plasmid or IFITM1
CRISPR activation plasmid. Compared to control group (control plasmid), the virus titer in plasmid group (IFITM1 CRISPR activation plasmid) was
decreased by 52.76 ± 1.02% (P < 0.01, t-test). * means control group compared with plasmid group (**, P < 0.01, t-test)
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antiviral response in HUVECs (Fig. 7). Taking into ac-
count the above results, we hypothesized that virus rep-
lication preceded the expression of IFITM1 in initially
infected cells. A previous study demonstrated that
IFITM3 efficiently restricted influenza virus and IFITM1
modestly restricted influenza virus, and the expression
patterns of IFITMs are likely to be an independent de-
terminant of viral tropism [20]. Our previous microarray
results showed that H9N2 virus and viral particle do not
induce the expression of IFITM3 in HUVECs [33]. We
speculated that this might be a unique response of
HUVECs to H9N2 virus infection or viral particle inocu-
lation. Taken together, our data may offer further insight
into the innate immune response of endothelial cells to
influenza virus infection.
In the present study, the level of IFITM1 induced by

viral particle inoculation was higher than that induced
by H9N2 virus infection in HUVECs (Fig. 1). The obser-
vation differed to what we generally expected, so it is
worthy of thinking the sense of IFITM1 expression up-
regulated by viral particle. Moreover, a recent study indi-
cated that H9N2 influenza virus infection induces the
expression of IFITM1 in lung, heart and liver in BALB/c
mice [44]. In vivo, the basal lamina with an average
thickness of 1 μm is the only structure which separates
epithelial cells and endothelial cells [45]. Death of in-
fected epithelial cells creates gaps and the released virus
particles readily access to endothelial cells [46, 47]. Thus,
the released virus particles may stimulate the antiviral
response in endothelial cells. In addition, cytokines pro-
duced by epithelial cells could further activate neighbor-
ing endothelial cells during influenza virus infection
[48]. So it is conceivable that interferon-α/β released by
infected epithelial cells could readily induce the expres-
sion of IFITM proteins in endothelial cells. Taken to-
gether, we may consider to enhance the antiviral state of
host by stimulating the respiratory tract with inactivated
viral particles.
Previous studies indicated that H5N1 virus infection

up-regulate the expression of type I interferon in human
pulmonary microvascular endothelial cells and induce
high levels of interferon-β in HUVECs [28, 49]. How-
ever, our results showed that expression of IFITM1 in-
duced by H9N2 virus and viral particle independently of
interferon-α/β in HUVECs (Fig. 2). Although a recent
study demonstrated that human IFITM3 and mouse
IFITM3 are induced by cytokines of the gp130 family
(such as IL-6) [50], we failed to find a possible mechan-
ism involved in IFITM1 expression. Thus, we investi-
gated the effects of HA and NA proteins on the
expression of IFITM1 in HUVECs. The results showed
that treatment with HA or NA could not upregulate the
levels of interferon-α/β and IFITM1 (Figs. 3, 4). Virus
RNA activates the cellular antiviral response has been

widely reported. In the present study, we did not investi-
gate the effect of RNA of H9N2 virus on the antiviral re-
sponse in endothelial cells. However, our results showed
that H9N2 virus could infect and replicate in HUVECs with
invalid effect on antiviral response of HUVECs. The results
indicated that RNA of H9N2 virus may play an insignificant
role in the expression of IFITM1 induced by H9N2 virus
infection or viral particle inoculation. We speculated that
the induction of IFITM1 expression may depend on the
interaction between viral particles and cellular factors.
Moreover, a previous study demonstrated that interactions
between cellular factors and envelope glycoprotein B of
replication defective human cytomegalovirus may induce
ISGs expression [51]. Then we verified whether the viral
particles were taken up by cells using immunofluorescence.
The results showed that viral particles could enter the
HUVECs (Fig. 5), suggesting that cellular interaction might
be involved in the induction of IFITM1 in HUVECs. Obvi-
ously, more work needs to be done to explore this induc-
tion mechanism, and data of the present study might
considerably narrow the range of possible mechanisms.
Generally, human influenza virus and avian influenza

virus prefer to infect epithelial cells expressing α-2, 6-
and α-2, 3-linked sialic acid receptors [24, 25]. To inves-
tigate whether these phenomena were unique responses
to H9N2 virus and viral particle in HUVECs, we per-
formed the same experiments on epithelial cells syn-
chronously. Our results showed that endothelial cells
and epithelial cells shared different features. Consistent
with a previous study [52], H9N2 virus infection and
viral particle inoculation elevated the levels of type I
interferon in BEAS-2Bs (Fig. 2). In addition, contrary to
endothelial cells, H9N2 virus infection induced a higher
level of IFITM1 in BEAS-2Bs (Fig. 1). These data sug-
gested that H9N2 virus or viral particle may stimulate
the innate immune response via different ways in vivo.
It is of course that further studies are necessary to go

beyond our present results. For example, further investi-
gation needs to be done for revealing the precise mech-
anism of distinct expression patterns of IFITM1 in
epithelial cells and endothelial cells. In particular,
whether inactivated viral particle inoculation increases
IFITM1 expression in endothelial cells in vivo and en-
hances the antiviral state of host.

Conclusions
Our results showed that inactivated viral particle inocula-
tion increased the expression of IFITM1 at mRNA and pro-
tein levels in HUVECs. Moreover, the induction of IFITM1
expression mediated the antiviral response in HUVECs.
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