
RESEARCH Open Access

Recombinant expression of beak and
feather disease virus capsid protein and
assembly of virus-like particles in Nicotiana
benthamiana
Guy L. Regnard1, Edward P. Rybicki1,2 and Inga I. Hitzeroth1*

Abstract

Background: Beak and feather disease virus (BFDV) is an important disease causing agent affecting psittacines. BFDV is
highly infectious and can present as acute, chronic or subclinical disease. The virus causes immunodeficiency and is
often associated with secondary infections. No commercial vaccine is available and yields of recombinant BFDV capsid
protein (CP) expressed in insect cells and bacteria are yet to be seen as commercially viable, although both systems
produced BFDV CP that could successfully assemble into virus-like particles (VLPs). Plants as expression systems are
increasingly becoming favourable for the production of region-specific and niche market products. The aim of this
study was to investigate the formation and potential for purification of BFDV VLPs in Nicotiana benthamiana.

Methods: The BFDV CP was transiently expressed in N. benthamiana using an Agrobacterium-mediated system and
plant expression vectors that included a bean yellow dwarf virus (BeYDV)-based replicating DNA vector. Plant-produced
BFDV CP was detected using immunoblotting. VLPs were purified using sucrose cushion and CsCl density gradient
centrifugation and visualised using transmission electron microscopy.

Results: In this study we demonstrate that the BFDV CP can be successfully expressed in N. benthamiana, albeit at
relatively low yield. Using a purification strategy based on centrifugation we demonstrated that the expressed CP can
self-assemble into VLPs that can be detected using electron microscopy. These plant-produced BFDV VLPs resemble
those produced in established recombinant expression systems and infectious virions. It is possible that the VLPs are
spontaneously incorporating amplicon DNA produced from the replicating BeYDV plant vector.

Conclusions: This is the first report of plant-made full-length BFDV CP assembling into VLPs. The putative pseudovirions
could be used to further the efficacy of vaccines against BFDV.
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Background
Beak and feather disease virus (BFDV; family Circoviridae,
genus Circovirus) is one of the most common disease
agents to infect psittacines [1]. The virus infects both wild
and captive birds, and has been detected in at least 10% of
psittacine species [2–4]. It is the causative agent of psitta-
cine beak and feather disease (PBFD), which can present

in three forms. The acute form of the disease has a high
mortality rate and is mainly seen in young and neonatal
birds [5, 6]. By far the most reported form of the disease is
the chronic form, which primarily affects adult birds [7].
Symptoms of chronic disease are the characteristic beak
and feather abnormalities associated with PBFD [8]. Birds
that are infected with BFDV become immunocomprom-
ised, which is the primary cause of chronic infection and
persistent excretion of the virus in diseased birds [9, 10].
The third form of the disease is subclinical infection: this
form presents the greatest risk for disease spread, as the
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infected birds continue to shed virus at low concentrations
and show no symptoms of infection [11, 12].
A commercial vaccine for BFDV is currently unavail-

able, and treatment of PBFD is principally palliative and
supportive [13–15]. Eradication of the disease is un-
likely due to the prevalence of infection and the stabil-
ity of the virus [16]. A vaccine against BFDV would
therefore be desirable, especially due to the presence of
subclinical infections that may complicate biocontrol
efforts, and since the disease progression varies. The
likelihood that a single-strain vaccine would be success-
ful is high, due to the absence of obvious serotypes
which indicates conservation of major epitopes between
isolates: there is therefore a high probability of cross-
isolate protection [17, 18].
The virions of BFDV consist of icosahedral capsids,

containing a 2-kb circular ssDNA genome that encodes
two genes: these are the capsid gene (cp), which produces
the CP, and the replication associated protein (rep), which
produces Rep [19–21]. The literature reports the size of
the virion to be between 14 and 20 nm in diameter, with
the smallest reported size being 10 nm and the largest be-
ing 22 nm (Fig. 1). The range of virion sizes appeared to
be independent of whether uranyl acetate or phospho-
tungstic acid was used during the staining procedure. A
three dimensional structure determined by cryoelectron
microscopy, however, gives a size of 20.5 nm [20]. The
most recent analysis of particle size using electron and
atomic force microscopy indicates that the CP can form
two distinct assemblies with sizes of 10 nm and 17 nm
and in addition this could possibly explain the range of

reported values that have been described [22]. The virion
is extremely stable in the environment, and horizontal
transmission through ingestion of contaminated material
is seen as the primary route of infection [16, 23]. The
persistence of virus outside of the host and a dearth of
available treatments have resulted in considerable re-
search towards developing a vaccine against BFDV.
Initial vaccine research centred on inactivated virus vac-

cines derived from whole tissue of infected birds, purified
from feathers or internal organs [12]. This was problem-
atic, however, as production of purified virus was reliant
on sourcing infected birds, which has ethical implications
and can be severely limiting in terms of availability of har-
vestable tissue [10]. Furthermore, problems arising from
incomplete inactivation of the purified virus have made an
inactivated BFDV vaccine an unattractive option [24]. The
virus has not as yet been propagated in tissue culture;
therefore, the application of recombinant DNA technolo-
gies has been viewed as an alternative to infected whole
tissue as a source of virus [25].
Recent work towards expression of recombinant BFDV

CP shows great promise, with the CP having been success-
fully expressed using a number of expression platforms,
including bacterial and yeast fermentation, insect cell cul-
ture and plants [15, 26–29]. Tissue culture technology has
also been applied in the expression of other circovirus
CPs, such as porcine circovirus (PCV) and goose circo-
virus (GoCV) [30, 31]. Use of recombinant PCV CP as a
vaccine has been shown to result in a humoral response
that can produce sterilising immunity that blocks effective
virus infection of the host [32, 33]. Limited studies have
been conducted on recombinant BFDV CP; however,
Bonne, et al. [10] reported that vaccination with insect
cell-produced CP failed to elicit sterilising immunity,
and instead resulted in a decrease in viraemia, replication
and virus shedding. This research indicates that recombin-
ant BFDV CP could be used to effect a response in the
psittacine immune system, but that further optimisation
of the dosage would be required to improve the strength
of the immune response.
One important area of focus for recombinant viral vac-

cine research has been in the production of virus-like
particles (VLPs). These lack viral nucleic acids and are
therefore non-infectious, while retaining the same struc-
tural characteristics of the infectious virion [34]. VLPs are
highly immunogenic and stimulate both the humoral and
cellular response pathways even in the absence of adju-
vants, and have been successfully applied in humans –
both the hepatitis B and human papillomavirus vaccines
are VLP-based – as well as in humans and poultry, against
influenza [35–39]. The BFDV virion has a T = 1 symmetry
and is assembled from 60 CP subunits that are arranged
into 12 pentamer units [20]. The virion of circoviruses is
comprised of repeats of a single protein, making it an

Fig. 1 Summary of the BFDV virion size as reported by various authors.
Sizes were determined from electron micrographs of particles stained
with either uranyl acetate (black) or phosphotungstic acid (grey)
Trinkaus, et al. [59], Ritchie, et al. [8], Kock, et al. [60], Ritchie, et al. [49],
Ritchie, et al. [49], Greenacre, et al. [61], Sanada, et al. [62], Todd, et al.
[55], McOrist, et al. [63], Jacobson, et al. [64], Todd, et al. [55], Wylie and
Pass [65], Crowther, et al. [20], Pass and Perry [66]
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attractive target for investigation of the production of
VLPs – and these have in fact been demonstrated for
PCV and demonstrated for bacterial and insect cell-
produced BFDV CPs [22, 40–42].
Recombinant BFDV CP expressed in insect cell culture

spontaneously assembles into particles ranging in size from
16 to 22 nm in diameter, which falls within the size range
reported for infectious virions (10–22 nm in diameter) [41].
Attempts to produced BFDV VLPs using other recombin-
ant systems have been mixed: for example, expression of
the full-length BFDV CP using bacterial fermentation re-
sulted in insoluble protein and low yields [15, 27]. Although
the expression of a truncated version was successful in in-
creasing yields, this may hinder the assembly of intact VLPs
[27]. Sarker, et al. [29] have been able to successfully ex-
press the BFDV CP and form VLPs in E. coli with the yield
an order of magnitude greater than reported in previous
studies. Plant-based expression in N. benthamiana of
BFDV CP by Duvenage, et al. [26] included a C-terminal-
fused 140 or 255 residue elastin-like polypeptide to improve
protein yield and ease of purification. The fusion of the
BFDV CP to the peptide tag would potentially affect the
ability of the CP to assemble into VLPs, and assembly of
the plant-expressed BFDV CP into VLPs was not assessed.
In summary, the development of a vaccine against

BFDV has moved away from inactivated virus towards
the recombinant expression and purification of BFDV CP.
This has been shown to successfully produce a humoral
response in vaccinated birds. Insect cell and bacterial
fermentation-derived BFDV CP have been reported to as-
semble into VLPs, but this has yet to be shown for plant
systems. The aim of this study, therefore, was to investi-
gate the formation and potential for purification of BFDV
VLPs in N. benthamiana, through the transient expression
of the BFDV CP using, among others, a bean yellow dwarf
virus (BeYDV)-based replicating DNA vector.

Methods
Molecular cloning
The BFDV cp sequence from isolate BKS1ZA_84 (GenBank
accession number GQ165756), isolated by Varsani, et al.
[43] from a Budgerigar, was synthesised without codon op-
timisation by Geneart (Germany). The plant expression
vectors used in this study were based on the pTRA binary
Agrobacterium tumefaciens plant expression vector suite
which was provided by Prof. Rainer Fischer of the Fraunho-
fer Institute for Molecular Biology and Applied Ecology in
Germany [44]. The vector suite consists of three plant ex-
pression vectors targeting protein expression to different lo-
cations within the cell: pTRAc (cytoplasm), pTRAkc-ERH
(endoplasmic reticulum retained) and pTRAkc-rbcs1-cTP
(stromal compartment of the chloroplast) (Fig. 2). Removal
of the SEKDEL-encoding sequence for pTRAkc-ERH
produces pTRAkc-AH, which allows for the secretion

of the recombinant protein to the apoplast. A fourth
plant expression vector that was used for the expression
of the BFDV CP was pRIC 3.0 (Fig. 2). This vector incor-
porates sequences of the single-stranded circular DNA
genome of BeYDV that allow for vector replication in
planta [45]. PCR amplification was used to modify the
terminal ends of the BFDV cp (Table 1), including a C-
terminal histidine tag sequence and the introduction of
restriction sites to generate a set of non-replicating and
replicating constructs with different localisation signals
(Fig. 3).

A. tumefaciens-mediated transient expression
The A. tumefaciens GV3101::pMP90RK cells were elec-
troporated using 40–400 ng of recombinant plasmid as
described by Maclean, et al. [44]. Recombinant clones
were selected using agar plates containing kanamycin
(30 μg/mL), rifampicin (50 μg/mL) and carbenicillin
(50 μg/mL) and incubated at 27° C.
For infiltration, recombinant A. tumefaciens GV3101::

pMP90RK were grown up overnight at 27° C with agitation
in induction medium supplemented with kanamycin
(30 μg/mL), rifampicin (50 μg/mL) and carbenicillin
(50 μg/mL) [45]. The strain LBA4404 containing pBIN-
NSs, provided by Marcel Prins from the Laboratory of
Virology, Wageningen in the Netherlands, was supple-
mented with kanamycin (30 μg/mL), rifampicin (50 μg/mL)
and 2 mM MgSO4. The addition of MgSO4 was to prevent
cell clumping during incubation [44]. The NSs protein has
been shown to suppress post-transcriptional gene silencing
in plants, leading to an increase in transient protein expres-
sion [46]. Cells were harvested by centrifugation at 4000 g
for 10 min, and resuspended in infiltration medium [45].
The suspensions were diluted to the required absorbance
(OD600), for expression optimisation studies a range of
OD600 values were tested, using an Ultrospec™ 10 Cell
density meter (Amersham Biosciences, United Kingdom)
and incubated at 22° C for 2 h. The A. tumefaciens
GV3101::pMP90RK suspensions of each expression con-
struct were co-infiltrated with strain LBA4404 containing
pBIN-NSs into 6-week-old N. benthamiana plants by
injecting the suspension into the abaxial spaces using a
needleless 1 mL syringe. The plants were maintained in a
greenhouse under a 16 h light and 8 h dark photoperiod
at light intensity of 60–80 μE/m2/s and 22° C.
Vacuum infiltration of A. tumefaciens into N. benthami-

ana was performed as described by Maclean, et al. [44],
with the following modifications. The Agrobacterium
strains were combined in infiltration medium for a final
OD600 of 1.00 for strain GV3101::pMP90RK and 0.25
for strain LBA4404 making a total OD600 of 1.25. The
6-week-old N. benthamiana plants were prepared for
inversion into infiltration medium by sealing the base
of the plant through the use of a 130 × 130 mm acrylic
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Table 1 Primers for PCR amplification used during molecular cloning

Product Sense primer Antisense primer

Description Size
(bp)

Sequence (5′ - 3′) Cloning
site

Sequence (5′ - 3′) Cloning
site

BFDV BKS1ZA_84 cp
6xHis

GTAACGCGTTAGGTACATGTGGGGCACCTCTAAC AflIII/
MluI

GTGATGGTGATGCCCTTCAGTTCTGGGATTATTGG

796 GTAACGCGTTAGGTACATGTGGGGCACCTCTAAC AflIII/
MluI

CATCTCGAGCTAGTGATGGTGATGGTGATGCCCTTC XhoI

rbcs1-cTP BFDV
BKS1ZA_84 cp 6xHis

959 GGACCATGGCTTCCTCTGTTATTTCCTC NcoI CATCTCGAGCTAGTGATGGTGATGGTGATGCCCTTC XhoI

BFDV BKS1ZA_84 cp
6xHis SEKDEL

GTAACGCGTTAGGTACATGTGGGGCACCTCTAAC AflIII/
MluI

CTCATCTTTCTCAGAGTGATGGTGATGGTGATGCC

814 GTAACGCGTTAGGTACATGTGGGGCACCTCTAAC AflIII/
MluI

CCTCTCGAGCTAGAGCTCATCTTTCTCAGAGTGAT XhoI

LPH BFDV BKS1ZA_84
cp 6xHis SEKDEL

860 GGACCATGGAGTGGAGCTGGATCTTC NcoI CCTCTCGAGCTAGAGCTCATCTTTCTCAGAGTGAT XhoI

LPH BFDV BKS1ZA_84
cp 6xHis

840 GGACCATGGAGTGGAGCTGGATCTTC NcoI CATCTCGAGCTAGTGATGGTGATGGTGATGCCCTTC XhoI

Underlined sequence indicates restriction enzyme sites

Fig. 2 Agrobacterium pTRA plant expression vectors: pTRAc (a), pTRAkc-ERH (b), pTRAkc-rbcs1-cTP (c) and pRIC 3.0 (d). LB and RB, left and right
borders for T-DNA integration; SAR, scaffold attachment region of the tobacco Rb7 gene; P35SS, CaMV 35S promoter with duplicated transcriptional
enhancer; CHS, chalcone synthase 5′ untranslated region; pA35S, CaMV 35S polyadenylation signal; RK2 ori, origin of replication for A. tumefaciens; bla,
ampicillin/carbenicillin-resistance bla gene; ColE1 ori, origin of replication for E. coli; LPH, signal peptide sequence from the murine mAb24 heavy chain;
6xHis, 6 His tag sequence; SEKDEL, ER-retention signal sequence; rbcs1-cTP, chloroplast-transit peptide sequence of a Rubisco small-subunit gene
(rbcS1) from S. tuberosum; npt II, kanamycin-resistance npt II gene; Pnos and pAnos, promoter and polyadenylation signal of the nopaline synthase
gene; LIR, BeYDV long intergenic region; rep/repA, BeYDV rep/repA gene; SIR, BeYDV short intergenic region
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sheet that contained a 10 mm channel to the centre to
allow for the plant stem to be inserted (Fig. 4). This pre-
vented soil from falling into the infiltration medium while
the plant was inverted and leaves and stem submerged.
Plants were submerged into the bacterial suspension

and subjected to a vacuum of −90 kPa for 5–10 min, with
occasional agitation to release trapped air bubbles. The
vacuum was released rapidly (approximately 10 kPa/s). In
addition, a recombinant expression control, using strain
LBA4044 only, was vacuum infiltrated into plants. The
plants were grown as described above.
The following controls were included: plant leaf tissue

only, plant leaf tissue infiltrated with infiltration medium
only, plant leaf tissue infiltrated with strain LBA4404
only, plant leaf tissue infiltrated with strain GV3101::
pMP90RK only and plant leaf tissue co-infiltrated with
both strains.

Protein extraction and western blot analysis
For expression optimisation studies leaf discs were har-
vested at 1, 3, 5 and 7 days post infiltration (DPI). The
plant material was prepared into a fine powder using a
micro-pestle and liquid nitrogen. One hundred microlitres
of extraction buffer (50 mM Tris, 100 mM NaCl, 10% gly-
cerol and 1 mM dithiothreitol at pH 7.5) per leaf disc was
added and the leaf material was vortexed. The suspension
of leaf tissue was clarified by centrifugation at 1500 g for
3 min and the supernatant representing the crude leaf
extract was collected for further analysis. These were
incubated at 90° C for 10 min in sample application
buffer prepared for analysis by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) [47].
The proteins were resolved on 10% SDS polyacryl-

amide gels and an equal volume of crude plant extract
or equal amount of total soluble protein (TSP) were
loaded into each lane. After gel electrophoresis the pro-
teins were transferred onto nitrocellulose membranes at
15 V for 1 h using a Trans-blot®SD semi-dry transfer cell
(Bio-Rad, CA, United States of America). The mem-
branes were probed overnight at 4° C with 1:2000 anti-
His tag mouse IgG antibody (AbD Serotec, NC, United
States of America), and subsequently incubated in a
1:10,000 dilution of anti-mouse IgG (whole molecule) al-
kaline phosphatase antibody produced in goat affinity
isolated antibody (Sigma-Aldrich). Membranes incubated
in secondary antibody were washed four times with 1×
PBST, with 15 min for each wash. Detection was per-
formed with 5-bromo, 4-chloro, 3-indolylphosphate
(BCIP) and nitroblue tetrazolium (NBT) phosphatase
substrate (KPL, MD, United States of America).
Vacuum infiltrated plant leaves were harvested on day

3 post-infiltration and approximately 25 g of leaf tissue
was used for the extraction of expressed recombinant
BFDV CP. Leaves were rinsed in water to remove soil
particulates and dried with paper towel to remove excess
water, after which the plant material was ground into a
fine powder in liquid nitrogen using a mortar and pes-
tle. The plant material was then combined with PBS

Fig. 3 Plant expression and localisation cassettes and Agrobacterium plant expression vectors used in this study. BFDV cp (purple); P35SS, CaMV
35S promoter with duplicated transcriptional enhancer; CHS, chalcone synthase 5′ untranslated region; pA35S, CaMV 35S polyadenylation signal;
6xHis, 6 His tag sequence; LPH, signal peptide sequence from the murine mAb24 heavy chain; SEKDEL, ER-retention signal sequence; rbcs1-cTP,
chloroplast-transit peptide sequence of a Rubisco small-subunit gene (rbcS1) from S. tuberosum

Fig. 4 Acrylic seal used to enclose soil during vacuum infiltration of
N. benthamiana. The acrylic sheet (130 × 130 mm) prevented soil
from upturned plants from falling into the infiltration medium

Regnard et al. Virology Journal  (2017) 14:174 Page 5 of 12



containing cOmplete™ Mini, EDTA-free protease in-
hibitor (Roche) using a ratio of 1:2 (w/v) of plant mater-
ial to extraction buffer. PBS has previously been used
as a buffer for the extraction of BFDV virions from
whole tissue of diseased psittacines [48]. The mixture
was then homogenised for 5 min at 10000 rpm and 4° C
using a T 25 digital ULTRA-TURRAX® (IKA® Works Inc.,
NC, United States of America). The homogenate was cen-
trifuged at 4000 g for 10 min at 4° C using a JA-14 rotor
(Beckman Coulter, CA, United States of America). The
supernatant was then filtered through two layers of
Miracloth (Merck, Germany) in preparation for sucrose
cushion centrifugation.

Sucrose cushion centrifugation
Sucrose cushion centrifugation was based on the tech-
nique for purification PCV-2 capsid particles described by
Wu, et al. [42]. A 40% w/v sucrose solution (470.6 mg/mL
of solution) was prepared in water and confirmed using a
R5000 hand refractometer (Atago, Japan). A 2 mL 40% su-
crose cushion was prepared in 5 mL Ultra-Clear™ centrifu-
gation tubes (Beckman Coulter) and layered with
supernatant derived from the slow speed centrifugation
step. The tubes were centrifuged in a SW 55 Ti rotor
(Beckman Coulter) at 40500 rpm (RCFmax ≈ 200,000 g)
for 6 h at 4° C. The pellet was resuspended in 500 μL of
PBS and further analysed by transmission electron micros-
copy (TEM).

Transmission electron microscopy
Analysis of BFDV CP particle assembly was done using
TEM. Copper grids (mesh size 200) were made hydro-
philic by glow discharging at 25 mA for 30 s using a
Model 900 SmartSet Cold Stage Controller (Electron
Microscopy Sciences, PA, United States of America).
The grids were then placed on a 1:100 dilution of the
samples for 5 min and then washed three times in sterile
water. The grids were negatively stained on uranyl acet-
ate for 10 s and again for a further 20 s and viewed using
a Tecnai™ F20 Scanning Transmission Electron Micro-
scope (FEI, OR, United States of America).

CsCl density gradient centrifugation
CsCl density gradient centrifugation was performed
based on a protocol modified from Ritchie, et al. [49].
Leaves containing expressed recombinant BFDV CP
were extracted as described above using a 50 mM Tris
at pH 7.6 buffer at a ratio of 3:1 (v/w) buffer to plant
material. The sample together with a 5 mL sucrose cush-
ion (45% w/v sucrose solution; 541.1 mg/mL of solution)
was centrifuged in a SW 32 Ti rotor (Beckman Coulter)
at 32000 rpm (RCFmax ≈ 175,000 g) for 2 h at 4° C. The
resulting pellet was used for CsCl density gradient
fractionation.

The pellets were resuspended in Tris buffer contain-
ing CsCl at a density of 1.406 g/cm3. CsCl density was
confirmed using a R5000 hand refractometer (Atago).
The resuspended pellets were centrifuged using a SW
55 Ti rotor (Beckman Coulter) at 48000 rpm
(RCFmax ≈ 280,000 g) for 20 h at 20° C. The CsCl gradi-
ent was fractionated using a Foxy® Jr. Fraction Collector
(Teledyne Isco, NE, United States of America). The re-
fractive index for each fraction was determined using
the refractometer; 10 μL of each fraction was spotted
onto nitrocellulose membrane and western blot analysis
was performed as described above. The BFDV CP present
on the nitrocellulose membrane was then quantified using
a Syngene Gene Genius imaging system and GeneTools
software (Synoptics Inc., United Kingdom). In addition to
quantifying the BFDV CP in each fraction, a ND-1000
Spectrophotometer (NanoDrop®, DE, United States of
America) was used to determine the TSP (Protein A280
module) and total DNA (Nucleic acid module).
Fractions containing the greatest concentration of

BFDV CP were pooled and dialysed using dialysis tubing
cellulose membrane (Sigma-Aldrich) against 50 mM Tris
at pH 7.6. Dialysed pooled fractions were analysed using
western blotting as described above.

Results
Optimisation of BFDV CP expression in N. benthamiana
To determine the best conditions for expression, various
densities of Agrobacterium suspensions were tested by
plant syringe infiltration, and leaves were harvested on
days 1, 3, 5 and 7. The optimum optical density for
Agrobacterium suspension infiltration was determined to
be 0.50 and 1.00 for the expression of BFDV CP and
0.25 for the expression of the silencing suppressor NSs,
while the optimum day post-infiltration to harvest was
determined by western blotting to be day 3 (data not
shown). The effect of targeting the full-length BFDV CP
to different organelles - chloroplast and ER, and secretion
to the apoplast - was assessed together with gene amplifi-
cation due to the replicating expression vector.
The CP was expressed by each plant expression vector

(Fig. 5a). Additional proteins with higher molecular
weights than the CP were detected in the SDS-PAG elec-
tropherograms. The cytoplasm was the most favourable
location for accumulation, followed by the chloroplast and
the ER, while accumulation of CP in the apoplast was the
lowest. Gene amplification had a mixed effect on ex-
pression: accumulation in the cytoplasm and chloro-
plasts appeared to be improved; however, accumulation
in the ER decreased, and there was no change when the
CP was secreted to the apoplast. Overall, expression in
the cytoplasm with gene amplification was determined
to be the most favourable.
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Vacuum infiltration of N. benthamiana for the expression
of BFDV CP
A comparison was made between the two methods of
infiltration using the replicating pRIC 3.0 vector without
a localisation signal (cytoplasm, Fig. 5b): the 30.1 kDa
CP was successfully expressed in N. benthamiana using

both methods. The silencing suppressor evidently im-
proved expression of the CP, as an increase in band in-
tensity was apparent for the CP co-expressed with NSs.
The pellet deriving from the sucrose cushion centrifu-

gation of clarified plant extract was resuspended and
analysed by TEM (Fig. 6). This analysis showed regular

Fig. 5 Western blot analysis of BFDV CP expression. a Analysis of the effect of targeted BFDV CP localisation and BFDV cp gene amplification on
expression. Protein was extracted on day 3 from N. benthamiana leaves. Expression of the CP in the cytoplasm (30.1 kDa), the chloroplast
(36.0 kDa), ER (33.0 kDa) and secretion into the apoplast (32.3 kDa). Expression in the presence (+) or absence (−) DNA amplification of the cp was
assessed in all cases. An equal amount of TSP was loaded into each lane and the CP was detected using anti-histidine antibody. M – prestained
protein marker, P – positive control. b Analysis of BFDV CP expression comparing syringe versus vacuum infiltration of Agrobacterium. Negative
controls were non-infiltrated plant leaves, leaves infiltrated with medium and NSs only. The presence (+) or absence (−) of each component is
specified. TSP was extracted from leaf tissue harvested on day 4 post-infiltration. An equal volume of each sample was loaded into the lanes

Fig. 6 Transmission electron micrographs of the partially purified BFDV VLPs (indicated by white arrows) after sucrose cushion centrifugation.
a Resuspended pellet from leaf tissue expressing the BFDV CP with C-terminal histidine tag together with the silencing suppressor NSs. b Resuspended
pellet from leaf tissue expressing only the silencing suppressor NSs which served as a negative control
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particles ranging between 13 and 23 nm in diameter in
the pellet deriving from leaf tissue expressing the BFDV
CP together with the silencing suppressor NSs (Fig. 6a).
The predominant size detected was ~17 nm in diameter.
Analysis of the pellet from leaf tissue expressing the si-
lencing suppressor NSs only showed nothing consistent
with VLPs (Fig. 6b).
The BFDV CP/NSs co-expression and the NSs control

pelleted material were further analysed by CsCl density
gradient centrifugation. Fractions of the CsCl density
gradients were collected for western blotting, and spec-
trophotometric analysis (Fig. 7): the fractions represent a
CsCl density gradient that ranged from 1.29 g/cm3 to
1.58 g/cm3. Dot blot analysis using anti-histidine anti-
body on gradient fractions indicated a peak in staining
intensity at fraction 6 for samples containing the BFDV
CP co-expressed with the NSs silencing suppressor, and
a shoulder peak in fraction 8 (Fig. 7a). These peaks were
absent in the NSs-only samples. The peak fraction 6 for
the CP/NSs sample corresponded to a CsCl density of
1.38 g/cm3. The shoulder peak (fraction 8) had a CsCl
density of 1.34 g/cm3. Fractions 5–7 of for each density
gradient were pooled, dialysed and analysed by Coomas-
sie blue staining and western blotting of SDS-PAGE gels
(Fig. 7b). The BFDV CP was undetectable when gels
were stained with Coomassie blue (data not shown). How-
ever, bands corresponding to the histidine-tagged 30.1 kDa
CP and a protein of approximately 60 kDa were detected
in the CP/NSs sample, while no histidine-tagged proteins
were detected for the pooled fractions of the NSs silencing
suppressor expressed on its own.
Further CsCl density gradient fraction analysis included

spectrophotometry for protein (280 nm) and DNA
(260 nm) concentrations. Three BFDV CP/NSs gradients
were analysed (Fig. 8) by dot blot analysis using anti-
histidine antibody compared to CsCl density, and by TSP
and total DNA concentration determination. The CsCl
density gradient ranged from 1.29 g/cm3 to 1.55 g/cm3.

Again, a dot blot intensity peak was observed between
fraction 5 and 6, corresponding to CsCl densities between
1.41 g/cm3 and 1.44 g/cm3 (Fig. 8a). The shoulder peak
seen in the previous results was absent. A peak in TSP of
0.92 mg/mL was seen in fraction 5 (Fig. 8b). A second
smaller peak for TSP was observed in fraction 9 (CsCl
density of 1.34 g/cm3), while a final peak was present at a
density of 1.55 g/cm3. Similar peaks were detected for
total DNA concentration (Fig. 8c).

Discussion
The recombinant expression of BFDV CP in N. benthami-
ana was optimised by determining the optimum optical
density of Agrobacterium at infiltration, the optimum day
post infiltration for leaf harvesting, and the most
favourable localisation of BFDV CP inside various cellular
compartments (Fig. 5a). Localisation in the cytoplasm led
to the greatest accumulation of CP, on day 3 PI, when
compared to chloroplast, apoplast and ER localisation.
This corresponds well with what happens with the CP
during viral infection, when CP expressed in the cyto-
plasm is transported into the nucleus by means of the nu-
clear localisation signal (NLS) encoded in its sequence
[27]. While nuclear localisation was not investigated here,
it is possible that presence of the NLS may negatively
affect targeting to other cellular compartments: the NLSs
are located in the N-terminal region and could compete
effectively with other N-terminal signal tags. For example,
chloroplast signal-tagging of the CP in this work resulted
in the presence of an additional protein band of higher
molecular weight: this could result from the CP being
transported into the nucleus before the signal tag could be
cleaved and CP deposited into the chloroplast. In order to
confirm this, fluorescently labelled BFDV CP could be
used together with an inverted epifluorescence micro-
scope to trace the localisation of the protein in the plant
cell as has been demonstrated using insect tissue culture
by Heath, et al. [27]. Targeting the CP to the ER, with or

Fig. 7 CsCl density gradient centrifugation profile of BFDV CP. a The CsCl density (♦) and relative intensity of histidine tagged protein as determined
by dot-blot from leaf tissue co-expressing the BFDV CP and NSs silencing suppressor (■) or the NSs silencing suppressor alone (□). b Western blot
analysis of pooled fractions 5–7 after dialysis. M – Prestained protein marker, 1 – NSs control, 2 – BFDV CP and NSs. An equal volume of each
sample was loaded into the lanes and the CP was detected using anti-histidine
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without inclusion of the ER retention SEKDEL sequence,
resulted in a reduction in CP accumulation. It could be
suggested that retention in the ER resulted in the CP be-
ing diverted to proteolytic vesicles, which would reduce
the overall accumulation of CP in the plant cell. Alterna-
tively, secretion to the apoplast could also result in deg-
radation by abundant proteases in this compartment.
While accumulation in the cytoplasm was satisfactory, an
additional cellular compartment that could be investigated
is the vacuole: Thomas and Walmsley [50] reported the
accumulation of human epidermal growth factor was
greatest when targeted to the vacuole, when compared to
the ER and apoplastic space.
An increase in gene copy number had a variable effect

on protein accumulation, dependent on the protein local-
isation. Gene amplification increased the overall protein
accumulation in the cytoplasm and chloroplast, while a

decrease/no effect in accumulation was observed in the
apoplastic space and ER. As has been previously reported,
an increase in gene copy number by means of gene ampli-
fication based on BeYDV rolling circle replication (RCR)
could result in up to three orders of magnitude increase in
gene copy number, with only a marginal increase in
protein accumulation [45]. This could be as a result of
diversion of cell resources away from transcription and
protein translation to DNA replication. Analysis of mRNA
transcription from a non-replicating plant expression
vector has shown transcript levels to peak at three or-
ders of magnitude higher [51]. Gene amplification
would therefore probably compete with transcription
for cell resources. A solution to this would be to control
the level of gene amplification to much lower levels.
Although the various optimisations increased the ex-

pression level of BFDV CP, the protein was undetectable
by SDS-PAGE when stained with Coomassie blue. Coo-
massie blue dyes can detect as few as 25 ng per band for
most proteins: this would indicate that the concentration
of BFDV CP was below 625 ng/mL. The BFDV CP would
represent less than 0.00025% of TSP, and in terms of over-
all yield of BFDV CP per gram of fresh weight, this would
be less than 5 mg/kg. This is similar to recombinant ex-
pression levels seen for plant-produced HIV p17 ⁄ p24 of
5 mg/kg [45, 52], but far lower than the >500 mg/kg
achieved for HPV-16 L1 protein using the same vector
systems [44, 45]. For plant-produced BFDV to be viable,
yields approaching at least 50 mg/kg are required to com-
mercial production, as has been reported for influenza
VLPs [53].
Vacuum infiltration resulted in the same level of ex-

pression as when Agrobacterium suspensions are infil-
trated using a needleless syringe, and as has previously
been demonstrated, the co-expression of the silencing
suppressor protein NSs results in an increase in BFDV
CP accumulation (Fig. 5b). It could be suggested that the
larger proteins detected in this study are potentially CP
dimers, trimers and tetramers, and that these could poten-
tially be precursors to the pentameric subunits described
by Crowther, et al. [20].
TEM analysis of the sucrose cushion pellet revealed

negatively stained particles that were circular and feature-
less (Fig. 6). This description perfectly fits the infectious
BFDV particles seen by Crowther, et al. [20]. The plant-
produced BFDV particles ranged between 13 and 23 nm
in diameter, and were similar to putative BFDV VLPs pro-
duced in insect cell cultures, which ranged between 16
and 22 nm diameter [41]. The predominant diameter
measured was approximately 17 nm, which falls neatly
within the 10–22 nm range reported for infectious virions,
and is the same diameter as has been reported for the
solved atomic structure of BFDV VLPs [22]. These values
are similar to insect cell-produced PCV VLPs that

Fig. 8 CsCl density gradient centrifugation profiles of BFDV CP,
protein and DNA concentration. Comparison of relative intensity
of histidine tagged protein as determined by dot-blot from leaf
tissue co-expressing the BFDV CP and NSs silencing suppressor
(■) with a CsCl density (♦), b TSP concentration (□) and c total
DNA concentration (□)
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averaged 20 nm in diameter, closely resembling the infec-
tious PCV virion that consists of a 1.7-kb genome encapsi-
dated within a 20.5 nm non-enveloped capsid [20]. The
addition of a histidine tag on the C-terminus, used for
immunodetection, did not appear to negatively affect
particle structure; however, the effect on the antigenic-
ity of the protein would need to be addressed before
immunogenicity studies.
Fractionation of CsCl gradients of the pellet produced

during sucrose cushion centrifugation produced two
peaks of BFDV CP. The major peak occurred at an ap-
proximate density of 1.38 g/cm3, while a shoulder peak at
1.34 g/cm3 was also detected (Fig. 7). A similar density of
1.365 g/cm3 has been reported for PCV VLPs produced in
Tn5 insect cells [54]. The higher observed density could
also be the result of the presence of the C-terminal 6xHis
tag. The absence of viral DNA has been seen to affect
the density of the VLPs. Infectious BFDV virions puri-
fied using CsCl have a density ranging between 1.35–
1.378 g/cm3, while intact VLPs range between 1.215–
1.325 g/cm3 [41, 48, 55]. A similar decrease in density
has been reported for PCV VLPs [40].
To further investigate the purification of BFDV VLPs

spectrophotometric analysis of protein and DNA con-
centrations were performed. The CsCl gradient fractions
from material made using the recombinant replicating
geminivirus-derived vector revealed coincident peaks
corresponding to the protein and DNA (Fig. 8). This
suggests that the BFDV CP could be packaging single-
stranded amplicon DNA, as the viruses have very similar
replication cycles. It could be that the major peak repre-
sents VLPs containing plant expression vector replicon
DNA generated from RCR, and the shoulder peak could
represent empty VLPs. Considering the BeYDV replicon
is approximately 3.3-kb it is questionable whether it could
be successfully packaged by the BFDV CP. A BeYDV repli-
con that was similar in size to the 2-kb BFDV genome
would be more suitable for encapsidation. Plant viral CPs
have been shown to effectively and spontaneously package
nucleic acids of mammalian viruses [56]. These pseudovir-
ions have then been shown to release their nucleic acids
into the cytoplasm of mammalian cells. This technology
has also been used successfully using a plant-produced
bamboo mosaic virus particles containing infectious bur-
sal disease virus antigens for the immunisation of chickens
[57]. Plant-produced CP derived from circoviruses could
similarly be used to package nucleic acids that have been
replicated in planta using the BeYDV replication system.
These pseudovirions could then potentially be used to
create a potent vaccine capable of eliciting a strong
humoral and cellular response in the target host. This
has previously been demonstrated in our group for
plant-made human papillomavirus pseudovirions used
in neutralisations assays [58].

Conclusions
In conclusion, BFDV CP has been shown to be success-
fully expressed in N. benthamiana via syringe or via vac-
uum infiltration. It has also been shown to self-assemble
into VLPs even when fused with a C-terminal histidine
tag that can be detected using electron microscopy and
purified using CsCl centrifugation. These plant-
produced BFDV VLPs resemble those produced in insect
cells and infectious virions; however the yield was low,
as the CP was undetectable when stained with Coomassie.
The detection of VLPs in plants allows for refinement of
the purification method, possibly by incorporating know-
ledge of the sedimentation coefficient determined for PCV
and CAV to improve isolation by centrifugation. It is
possible that the VLPs are spontaneously incorporating
amplicon DNA produced from the replicating BeYDV
plant vector. The putative pseudovirions could be used
to further the efficacy of vaccines against BFDV.
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