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Abstract

Background: Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of
sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides
advantages over traditional sequencing methods and allows detection of unsuspected variants and co-infecting
agents. However, NGS is not widely used for small RNA viruses because of incorrectly perceived cost estimates
and inefficient utilization of freely available bioinformatics tools.

Methods: In this study, we have utilized NGS-based random sequencing of total RNA combined with barcode
multiplexing of libraries to quickly, effectively and simultaneously characterize the genomic sequences of multiple
avian paramyxoviruses. Thirty libraries were prepared from diagnostic samples amplified in allantoic fluids and their
total RNAs were sequenced in a single flow cell on an Illumina MiSeq instrument. After digital normalization, data
were assembled using the MIRA assembler within a customized workflow on the Galaxy platform.

Results: Twenty-eight avian paramyxovirus 1 (APMV-1), one APMV-13, four avian influenza and two infectious
bronchitis virus complete or nearly complete genome sequences were obtained from the single run.
The 29 avian paramyxovirus genomes displayed 99.6% mean coverage based on bases with Phred quality scores of
30 or more. The lower and upper quartiles of sample median depth per position for those 29 samples were 2984
and 6894, respectively, indicating coverage across samples sufficient for deep variant analysis. Sample processing
and library preparation took approximately 25–30 h, the sequencing run took 39 h, and processing through
the Galaxy workflow took approximately 2–3 h. The cost of all steps, excluding labor, was estimated to be
106 USD per sample.

Conclusions: This work describes an efficient multiplexing NGS approach, a detailed analysis workflow, and
customized tools for the characterization of the genomes of RNA viruses. The combination of multiplexing
NGS technology with the Galaxy workflow platform resulted in a fast, user-friendly, and cost-efficient protocol
for the simultaneous characterization of multiple full-length viral genomes. Twenty-nine full-length or near-
full-length APMV genomes with a high median depth were successfully sequenced out of 30 samples. The
applied de novo assembly approach also allowed identification of mixed viral populations in some of the
samples.
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Background
Conventional laboratory methods like enzyme-linked
immunosorbent assay, nucleic acid hybridization tech-
nique, and polymerase chain reaction (PCR) are all
common and inexpensive diagnostic and research tools
utilized in virology [1]. However, as these assays are
highly dependent on reagents (primers, probes, anti-
bodies) developed from previously known and character-
ized viruses, they might be ineffective for the identification
of new viral variants, new pathogens or a mixed popula-
tion of pathogens that have high genetic divergence from
those described previously [1, 2]. Next-generation sequen-
cing (NGS) technologies enable large numbers of samples
to undergo parallel sequencing, and can be used for the
detection and characterization of multiple agents from
one sample. The use of sequence-independent amplifica-
tion of viral nucleic acids eliminates the need for prior
knowledge of genomic sequences and provides advantages
over traditional methods such as PCR amplification or
microarray hybridization dependent on target-specific
primers [2, 3]. NGS technologies allow screening of
clinical and environmental samples for the presence of
viral pathogens, including previously unknown viruses [4].
This has led to the discovery of numerous viral pathogens
[4–6], including 2009 pandemic influenza A, a novel pegi-
virus, Canine bocavirus 3, and a novel hepacivirus [7–10].
The majority of previously employed techniques used

virus enrichment prior to cDNA synthesis and library
preparation, or used specific primers for amplification.
Virion enrichment steps such as centrifugation, poly-
ethylene glycol precipitation, ultrafiltration, chloroform
treatment or nuclease treatment have been used for
RNA viruses [3, 11, 12]. Other techniques, such as
gDNA depletion and host RNA depletion to enrich for
viral RNA [13] and DNase pretreatment of the allantoic
fluid to enrich for viral particles, have also been
described [14]. Different methods have been employed for
producing cDNA following enrichment, including se-
quence-independent single primer amplification
(SISPA) and universal primers which have been used
for sequencing RNA viruses [4, 15] including Newcas-
tle disease virus (NDV) [11] and avian paramyxovirus
(APMV) 4 and 6 [16].
The genus Avulavirus of the family Paramyxoviridae,

order Mononegavirales, consists of 14 known avian para-
myxovirus serotypes (APMV 1 – 14) [17–19]. Of these,
APMV-1, synonymous with Newcastle disease virus, is
the most widely characterized and studied due to the
economic importance of Newcastle disease (ND) caused
by virulent strains of the virus. Newcastle disease is one
of the most significant poultry diseases and infects both
wild and domestic avian hosts. NDV has a single-
stranded, non-segmented, negative-sense RNA genome
consisting of six genes in order of 3’ to 5’: nucleocapsid

(NP), phosphoprotein (P), matrix (M), fusion (F),
hemagglutinin-neuraminidase (HN), and polymerase (L),
coding for these six structural proteins and at least one
additional V protein [20–22]. Newcastle disease viruses
have three genome sizes – 15186, 15192 and 15198 nucle-
otides, and are genetically grouped into two divergent
classes that are further classified in genotypes [23–25].
Newcastle disease viruses are constantly evolving

and different genetic groups undergo simultaneous
evolutionary changes in different geographical loca-
tions [22, 26] making the available genetic makeup
information outdated. These evolutionary changes
present challenges for prompt diagnosis. Some currently
validated methods are target-oriented and might fail to de-
tect new viral genetic variants [27–29]. Lack of complete
genetic information for many NDV isolates further ham-
pers the better understanding of Newcastle disease evolu-
tion and epidemiology. Furthermore, mixed viral infection
are not uncommon in animals, and in the case of poultry,
they are quite frequent [30]. Efficient and accurate identi-
fication of these pathogens is essential for the develop-
ment of adequate disease control strategies. These
challenges require an approach that provides de novo,
rapid and high-quality genetic characterization of full-
length viral genomes.
Until recently, genome sequencing of small RNA

viruses, including NDV, has been performed using over-
lapping genome amplification with primer pairs. This
approach is laborious, depends on preexisting informa-
tion, and produces very low depth. NGS advances pro-
vide tools for deep sequencing of multiple viral strains in
a short time. However, the simultaneous cost- and time-
effective sequencing and characterization of a large
number of NDV genomes has not yet been reported.
The aim of the current study was to utilize sequence-
independent NGS technologies applied to viral nucleic
acids for the simultaneous and rapid characterization of
multiple NDV genomes. We demonstrate a straightfor-
ward, efficient protocol for multiplexed sequencing using
a single flow cell on the Illumina MiSeq platform
coupled with a detailed customized Galaxy workflow for
de novo assembly that allows for quick and accurate
generation of near-full-length, or full-length, genome se-
quences of dozens of isolates, simultaneously. Further-
more, we report the efficient detection and complete
sequencing of contaminant RNA viruses.

Methods
Virus propagation
Twenty nine NDV and one APMV-13 isolates were sub-
mitted to the Southeast Poultry Research Laboratory of
the USDA in Athens, Georgia, USA. The viruses were
isolated in Pakistan (n = 15), Nigeria (n = 9) and Ukraine
(n = 6) between 2003 and 2015. Viruses were propagated
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in 9-to-11-day-old specific-pathogen-free (SPF) embryo-
nating chicken eggs [31]. The background information
of the 30 isolates used in the study is summarized in
Additional file 1: Table S1.

RNA isolation
RNA from each sample was extracted from allantoic
fluids. Two milliliters (equal volumes of 0.25 ml) of each
sample were aliquoted into 8 microtubes, each contain-
ing 0.75 ml of TRIZOL LS (Invitrogen, USA). After
5 min of incubation, 0.2 ml of chloroform was added to
each tube and shaken vigorously. After 10 min of
additional incubation at room temperature, tubes were
centrifuged at 12000 × g for 15 min at 4 °C. The aqueous
phase from all eight tubes was removed and pooled for
each sample. Two milliliters of aqueous layer of each
sample were treated with 4 μl Turbo DNase 2U/μl
(Ambion, USA) for 15 min at 37 °C and then placed on
ice. The extraction proceeded using the QIAamp® Viral
RNA Mini Kit (Qiagen, USA) according to the manufac-
turer’s instructions. Briefly, DNase-treated aqueous
phase was passed through a spin column for RNA ab-
sorption on the QIAamp silica membrane followed by
washing with 2 ml of provided buffers AW1 and AW2
using the QIAvac 24 Plus vacuum manifold (Qiagen,
USA). The RNA was eluted in 50 μl buffer AVE. Eluted
RNA was quantified using a Qubit® RNA HS Assay Kit
in a Qubit® fluorometer (ThermoFisher Scientific, USA)
and stored at -20 °C until further use.

NDV RNA capture
A set of three biotinylated oligonucleotides designed
from consensus of alignment of 330 available NDV
genomes were used for NDV RNA capture (Oligo 1 –
5’- AGA GAA TCT GTG AGG TAC GA/3Bio -3’ at
nucleotide position 8; Oligo 2 – 5’ -TTC TCA AGT
CAT CGT GAC AG/3Bio -3’ at position 5905; Oligo 3 –
5’ - CCC TGC ATC TCT CTA CAG/3Bio -3’ at position
12226) (GenBank accession number AF431744). RNA
capture reactions were performed using 50 μl RNA incu-
bated with 167 μl 6X saline-sodium phosphate-EDTA
buffer (900 mM NaCl, 60 mM NaH2PO4, 60 mM
Na2EDTA), 2 μl RNaseOUT 40 U/μl (Invitrogen, USA)
and 1.5 μl 100 μM mix of the three primers. Reactions
were performed at 70 °C for 5 min, followed by 15 min
at 55 °C. Two hundred fifty microliters of 1X binding
and wash buffer solution (2 M NaCl) containing 12.5 μl
(0.05%) Sera-Mag beads (magnetic streptavidin-coated
beads, GE Healthcare Life Sciences, USA) was prepared
for each sample and mixed with the capture reaction
products for binding. Washing was done on a magnetic
stand with 500 μl of 0.5X binding and wash buffer one
time and twice with bead wash buffer (5 M NaCl, 1 M
Tris-HCl [pH 7.5], 0.5 M EDTA, and 0.01% Tween® 20)

to remove unbound RNA. Viral RNA was recovered by
adding 19 μl of 10 mM Tris-HCl (pH 7.5) to the bead
mixture and incubating at 65 °C for 5 min followed by
cooling on ice until the next step. In a separate experi-
ment, a comparison with three known NDV was per-
formed and the libraries were prepared side-by-side with
and without the capture step, while all remaining steps
of the library preparation were identical.

Reverse transcription
Reverse transcription reactions were performed using
the M-MLV Reverse Transcriptase (Moloney Murine
Leukemia Virus Reverse Transcriptase, Invitrogen, USA)
and 10 μl RNA (concentration varied from below
250 pg/μl to 55 ng/μl), 1.0 μl Random Primers mix
(3 μg/μl) (Invitrogen, USA) and following manufacturer’s
instruction. The cDNA products were purified using
60 μl Agencourt® RNAClean® XP beads (Beckman
Coulter, USA) as per manufacturer’s instructions. Puri-
fied cDNA were recovered in 15 μl of 10 mM Tris-Cl
(pH 7.5) and quantified using a Qubit® ssDNA Assay Kit
(ThermoFisher Scientific, USA) on the Qubit®
fluorometer.

Library preparation, quality and quantity assessment
DNA libraries (n = 30, one library for each sample), were
prepared for deep sequencing using 1 ng purified cDNA
(0.2 ng/μl in molecular grade water) and the Nextera XT
DNA Library Preparation Kit (Illumina, USA) following
the manufacturer's protocol. The resulting dsDNA prod-
ucts were purified with 30 μl Agencourt® AMPure® XP
beads (Beckman Coulter, USA) by incubating at room
temperature for 5 min followed by two washes with
200 μl 80% ethanol on a magnetic stand. The tubes with
the beads were air dried for 10 to 15 min at room
temperature and the library products were recovered in
52.5 μl of Resuspension Buffer. The quality and fragment
length distribution for each library was assessed using
the Agilent High Sensitivity DNA Kit (Agilent Technolo-
gies, USA) on the Agilent 2100 Bioanalyzer (Agilent
Technologies, Germany). The Qubit® fluorometer and
the Qubit®dsDNA HS Assay Kit were used for measuring
the concentration of the libraries.

Equimolar dilution and pooling of the NGS libraries
All libraries for NGS were diluted to a 4 nM concentra-
tion, based on their determined concentrations and frag-
ment sizes. Equal volumes of 5 μl of each library were
pooled and denatured with NaOH (0.2 N final concen-
tration) for 5 min. The pooled mixture was vortexed and
spun briefly and incubated at room temperature for
5 min. The pool was further diluted to 20 pM concen-
tration with chilled HT1 hybridization buffer (Illumina,
USA). Using the same buffer, the final concentration of
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the library pool was diluted to 10 pM. Control library
(3% PhiX library, Illumina, USA) was added and the pool
was snap-chilled on ice. The library pool (600 μl) was
loaded in the flow cell of the 500 cycle MiSeq Reagent
Kit v2 (Illumina, USA) and pair-end sequencing (2 ×
250 bp) was performed on the Illumina MiSeq instru-
ment (Illumina, USA). After automated cluster gener-
ation in MiSeq, the sequencing reads were processed
and all statistical data generated by the instrument were
collected and summarized.

Genome assembly
A workflow was designed to perform pre-processing and
assembly of the raw sequencing data as diagrammed in
Fig. 1 using the Galaxy platform interface [32]. Process-
ing was carried out via Galaxy and PBS/Torque on a
local dual node 128-core cluster. Briefly, raw read quality
was assessed using FastQC [33] and residual adapter
sequences were trimmed using Cutadapt v1.6 [34].
Trimmed reads were mapped against the Gallus and
PhiX174 reference genomes using BWA-MEM v0.2.1 in
order to identify host and control library read contamin-
ation [35, 36]. Host and control library reads were fil-
tered using the Filter sequences by mapping v0.0.4 tool
in Galaxy [37]. The forward and reverse files, which
were no longer synchronized due to adapter trimming
and filtering, were re-synchronized using in-house tool.
Overlapping read pairs were joined with PEAR v0.9.6.0

[38]. Chimeric Nextera reads were removed by an in-
house tool which discarded single reads with partial
mappings in opposite orientations. Digital normalization
via median k-mer abundance was performed using the
Khmer package v1.1-1 (cutoff = 100, kmer size = 20,
number of tables to use = 4, table size = 1e9) [39, 40]. De
novo assembly was performed using the MIRA assem-
bler v3.4.1 [41]. The following parameters and settings
were specified for the assembly step: assembly method =
de novo, assembly quality grade = accurate, use read
extension = yes, minimum reads per contig = 100, mini-
mum overlap = 16, mark repeats = yes, maximum mega-
hub ratio = 0.2, spoiler detection = yes, with default
settings for the rest of the parameters. Reference-based
orientation and scaffolding of the contigs produced by
the assembler were performed using V-FAT v1.0.0
(Broad Institute, Cambridge, MA, USA). The consensus
sequence was then re-called based on BWA-MEM map-
ping of trimmed but un-normalized read data to the
genome scaffold and parsing of the mpileup alignment
using in-house software. As a final step, LoFreq [42] was
used to estimate variant frequencies in the obtained gen-
omic data. A graphic representation of all major steps
included in the sample preparation and analyses is pro-
vided in Additional file 2: Figure S1. The obtained se-
quences were phylogenetically analyzed with closely
related sequences of isolates deposited in GenBank using
MEGA6 [43], as previously described [25].

Fig. 1 Customized Galaxy workflow used in the current study. Double arrows indicate steps where the read pairs were processed in parallel.
Blue shading indicates pre-processing steps; green shading indicates assembly/post-processing steps; output is shaded purple. “In” indicates
input filetypes; “out” indicates output filetypes
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Results
Nucleic acids quantification and libraries fragment size
The nucleic acid concentrations obtained at different
steps throughout the preparation of the libraries for se-
quencing are summarized in Additional file 3: Table S2.
The lowest detected RNA concentration was 2 ng/μl and
the maximum was 55 ng/μl. After RNA purification, the
RNA concentrations of five samples were below the de-
tection limit of Qubit (250 pg/μl); however, these sam-
ples resulted in sufficient cDNA quantity to be further
processed in library preparation. The generated libraries
had a relatively narrow combined distribution of mean
fragment lengths (mean 351 bp, standard deviation
30 bp, with 26 of 30 libraries within the range of 334 to
371 bp) (see Additional file 3: Table S2). It was observed
that the true fragment length distributions observed
post-sequencing were shorter than expected based on
Bioanalyzer reports, even after counting for adapter
length (Table S2). As a result, a large proportion (more
than 90% in nearly all libraries) of read pairs overlapped
at the ends. The source of the discrepancy with the Bioa-
nalyzer estimates is still unclear.

Summarized statistics of the sequencing run
A summary of the sequencing run statistics as estimated
by the MiSeq instrument is provided in Table 1. A clus-
ter density of 917 +/- 19 K/mm2 and 92.34% of the clus-
ters passing the chastity filter yielded a total of 8.4
Gigabases of data. Of 17.7 million total reads, 96.31%
passed the instrument quality control filter. Almost 80%
of the bases were assigned Phred quality scores equal or
greater to Q30 (Q30 score is equivalent to an expected
error rate of 0.001). The fraction of reads in the pool

assigned to each sample varied from 0.0007 to 7.16%
(mean 3.2 ± 1.4%).

Optimization of the assembly/analysis workflow
In order to take advantage of the overlapping reads, a
merging step was introduced to produce longer pseudo-
reads and to reduce complexity of the assembly task. An
essential optimization was made by reducing the esti-
mated coverage depth to a level that would still produce
optimal assemblies. Two techniques for data reduction
were investigated. Random sub-sampling resulted in loss
of specific regions in the genome with reproducibly low
coverage (data not shown). Digital normalization, which
aims to down-sample high-coverage regions while pre-
serving reads from low-coverage areas, provided means
for decreasing the number of used reads to an optimal
level without loss of data, and thus, was incorporated
into the customized Galaxy workflow prior to assembly.
In order to determine an optimal target depth for assem-
bly, preliminary test assemblies using the Velvet assem-
bler v1.2.10 [44] were performed on a geometric
progression of sampling depths from 10x to 10000x (the
approximate depth of the raw data) with an additional
optimization of the velvetg “cov_cutoff” parameter for
each depth (parameter used to low coverage nodes). The
results indicated that optimal (in this case, full-length)
assembly occurred over a range of approximately one
order of magnitude (100x to 1000x). Below and above
this range, fragmentation began to occur (Fig. 2).

Data analysis
The final outputs of the analysis workflow for each sam-
ple included a consensus genome scaffold (.fasta), a file
of all assembled contigs (.fasta), a variant frequency call
file (variant call format or .vcf ) and a set of summaryTable 1 Statistics of next-generation sequencing of 30 avian

paramyxovirus isolates in a single run

Data Results

Cluster density (K/mm2)a 917 +/- 19

Clusters passing filterb 92.34%

Total number of reads 17762176

Pass-filter readsc 16403251

Percentage of reads passing filter 96.31%

≥ Q30d 77.9%

Lowest representation for any indexe 0.0007%

Highest representation for any indexe 7.16%
a shows number of clusters per square millimeter (optimal cluster density is
1000–1200, can vary with chemistry)
b indicates the purity of the signals detected from the clusters (i.e. signals
passing chastity filter that is the ratio of the brightest base intensity divided
by the sum of the brightest and second brightest base intensities and the
filtration process removes the least reliable clusters from the image
analysis results)
c reads passing filter (about 15 million reads are expected from an optimally
clustered flow cell)
d percentage of bases with Phred quality score equal or greater to 30
e percentage of pass-filter reads assigned to any index

Fig. 2 Analysis of Newcastle disease virus genome assembly at
various read depths. Shown are the longest contig produced at
each read depth as a fraction of the full genome length. Subsamples
up to 200x were generated using digital normalization. Above 200x,
additional reads were added using random subsampling (due to
issues with high median cutoffs in the kh-mer package). At each
subsampling depth, the final velvetg assembly was optimized for
maximum contig length based on the “cov_cutoff” parameter
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statistics on the run and the assembly. An in-depth sum-
mary of the outputs from all samples is presented in
Tables 2 and 3, including detailed information on read
quality and depth distributions and genome coverage
per sample. A total of 29 full-length or near-full-length
APMV genomes (99.56% mean genome coverage) were
obtained from 30 libraries with only one sample (#1005)
having coverage below 99% and nine samples having
100% coverage (Tables 2 and 3). The lower and upper
quartiles of median depth per position of the sequencing
results were 2984 and 6894 respectively, allowing for ac-
curate detection of low-frequency single nucleotide vari-
ants. In fact, all but one NDV samples had a median
read depth of at least 2583 (the exception, sample 1005,
was found to consist of approximately 98% avian influ-
enza virus reads after host filtering). In addition to NDV
genome assembly, the de novo strategy allowed for the
detection of full-length and near-full-length genomes of
avian influenza virus (AIV) in libraries of isolates 998,
1005, 1009 and 1011 [45], as well as infectious bronchitis
virus (IBV) in samples 1003 and 1009. The coverage of
the two obtained IBV genomes was 85.78 and 99.37%,
while the sequenced AIV genes had coverages ranging
between 92.23 and 100%, and two complete AIV ge-
nomes were sequenced (see Table 3). The estimated me-
dian depths for the IBV (5 and 22) and AIV (from 35 to
1274) isolates were lower (Table 3), most likely reflecting
the lower titer of these viruses in the samples. Sample
959 was identified as a member of the novel APMV
serotype 13 and the median depth for this sample was
3484. The host reads were between 0.1 and 5.4% (aver-
age 1.3%) of all reads per sample. No data was obtained
from the library of sample 688 (only 0.0007% of the raw
reads were assigned to this sample). The results from
the comparison of the three NDV libraries prepared
side-by-side with and without the capture step showed
identical accuracy, not significantly affected overall
coverage and near full-length and full-length genomes were
obtained using both approaches. However, the number of
NDV-specific reads decreased by approximately 30% when
the capture step was not performed (see Table 4).
While the high-throughput workflow sometimes

resulted in short segments of missing data at the gen-
ome termini and/or at one short internal gap, complete
sequences for all coding regions of the 29 APMV posi-
tive samples were obtained directly from the workflow.
Nearly all of the short missing regions occurred at either
the termini (a common issue in viral NGS sequencing)
[46] or at one specific intergenic location in the genome
between genes N and P which displayed extremely low
coverage in all analyzed samples (possibly as a result
of high GC content – 76%). For the purpose of sub-
mitting full-length NDV sequences to GenBank, we
sequenced the termini using a previously described

protocol [47] and primers designed for the current
study (see Additional file 4: Table S3). The internal
gaps, where necessary, were sequenced using PCR
and Sanger sequencing (for primers sequences see
Additional file 4: Table S3). This additional work was
not included in the time/cost estimates, as it was per-
formed to submit complete NDV sequences to Gen-
Bank and would not be necessary for a full analysis
of the coding regions.

Time and cost estimates
The time and cost estimates for all steps are summarized
in Additional file 5: Table S4. Assuming the addition of
the first reagent as the start and the final dilutions of the
samples as the end of the procedure, the approximate
time taken for preparing 30 samples was 25 to 30
person-hours. The sequencing run (500 cycle kit) lasted
39 h. Submission of the raw data to the customized
Galaxy workflow and data analysis on the cluster took
an additional 2 to 3 h. The average cost of all steps,
including all reagents but excluding labor, depreciation
and maintenance of equipment, was estimated to be
approximately 106 USD per sample.

Discussion
Next-generation sequencing has been previously de-
scribed for whole-genome sequencing of NDV by our
team and others [48–55]; however, this study is the first
report that demonstrates robust simultaneous genomic
characterization of multiple NDV viruses in a single
NGS run. The study further demonstrates the added
benefit of conducting random non-targeted sequencing
with an optimized de novo assembly workflow for identi-
fication of mixed viral infections. In contrast to previous
work, here an optimized and customized workflow that
employs publically available tools and produced consist-
ently high quality assemblies of complete genomes is
described in details. This study also provides detailed
statistical and sequencing information that allows quality
and quantity assessment of the obtained results.
Our findings demonstrate that the described chemistry

and bioinformatics approach is sufficiently robust to ob-
tain and distinguish the complete genomes of completely
different types of RNA viruses during a mixed infection.
In addition to the conclusive results with NDV and
APMV-13 (family Paramyxoviridae), the complete or
near complete genomes of four avian influenza and two
infectious bronchitis viruses, which were co-infecting
five samples originally identified as Newcastle disease
viruses alone, were also obtained. Infectious bronchitis
viruses belong to the family Coronaviridae and are
single-stranded positive-sense RNA viruses with genome
size of approximately 27,5 to 28 kb, excluding the poly
(A) tail, which includes ten open reading frames [56].
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The avian influenza viruses belong to the family Ortho-
myxoviridae and have genomes containing eight seg-
ments of single-stranded, negative-sense RNA that code
for 10 or 11 proteins, depending on the strain [57].
Despite the diverse nature of the RNA present in sam-
ples with mixed populations, the procedure described
here successfully produced complete genomes of these
viruses.
Our results also demonstrate the capability of the

methodology to produce quality libraries and assem-
blies without any physical or mechanical enrichment.
The cDNA and dsDNA concentrations were not
found to be proportional to the initial total RNA con-
centrations. The introduced nuclease step aided diges-
tion of host nucleic acids resulting in low average
number (see Tables 2 and 3) of host-associated reads
per sample. The abundance of host nucleic acids may
pose a problem in obtaining sufficient numbers of
viral reads for optimal viral genome assembly [4]. To
avoid or decrease problems caused by contamination
with host sequences others have developed method-
ologies for enrichment of target viral RNAs. We have
not utilized any pretreatment or purification; however,
a target-specific capture step with biotinylated oligos
designed from three different conservative regions of
the NDV genome was tested. The comparison of re-
sults from samples with and without the RNA capture
step presented here demonstrates that the primary
tradeoff comes in the form of approximately 30% re-
duced depth of coverage, although the coverage was
still sufficient for proper consensus re-calling (see
Table 4). The ability of the capture step to reduce
host sequences and other non-target RNA and to im-
prove downstream assembly and analysis should be
further assessed on different sample types (e.g. clinical
samples, formalin-fixed paraffin-embedded samples)
that may contain less amounts of viral RNA. For egg-
grown viruses with high viral titers the observed de-
crease of reads without the RNA capture step was
not essential for obtaining complete coverage with
sufficient depth. In clinical diagnostic samples, how-
ever, the number of NDV sequencing reads is often
significantly lower, and introducing the RNA capture
step could improve the final results.

There is a clear difference between the presented
application of NGS and the use of this approach in diag-
nostics. Here we describe the use of high-titer egg-
grown viruses for production of high quality and deep
data useful for detailed genomic characterization and
rare variant analyses. However, the use of this NGS tech-
nology for diagnostics is more complex. It requires to
clearly establish sensitivity, specificity and limit of detec-
tion based on the nature of samples and these are be-
yond the scope of the current work. The described
methodology has been successfully transferred for use
with clinical samples and optimization studies are in
progress in our lab.
Prior to the production run, considerable time was

spent optimizing the assembly and analysis workflow for
the task at hand. While some of the steps in the work-
flow are fairly standard procedures in NGS analyses (QC
summarization, adapter trimming, contaminant read fil-
tering), others were tailored to the specific characteris-
tics of the data being generated. The most critical
optimization, however, was reducing estimated coverage
depth to a level that would produce optimal assemblies.
It has previously been shown that, past a certain level,
increasing read depth can decrease de novo assembly
quality [58]. This effect can have significant conse-
quences when working with massively deep sequencing
data such as viral population studies that can easily ex-
ceed 10000x sample coverage. Digital normalization has
been included in similar workflows by others [59, 60]
but is often overlooked in naïve approaches to high-
coverage de novo assembly. As the assembler used in
our workflow (MIRA) is relatively resource-intensive
overlap-layout-consensus (OLC) assembler, we chose a
target (100x) at the lower end of the empirically deter-
mined optimal range to incorporate as a cut-off into the
customized production workflow. Graph-based assem-
blers such as Velvet utilize de Bruijn graph algorithms
and assemble data by representing the genome by a set
of short k-mer sequences [44]. Notably, graph-based
assemblers are less resource-demanding and can be suc-
cessfully utilized with limited computational resources.
However, for graph-based assemblers, the k-mer size is
an essential parameter [44, 59, 60] and the optimal value
has to be determined depending on the characteristics of

Table 4 Comparison of differences in number of reads and genome coverage of three samples prepared with and without capture
of NDV RNA

Virus
designation

Number of reads % fewer reads
without capture

Identity of
consensus
sequences

Missing sequences at genome termini and internal gaps (in number of nucleotides)

With
capture

Without
capture

With capture Without capture

5′ gaps 3′ 5′ gaps 3′

691 403515 283501 29.7 100% 20 0 0 26 0 0

698 363962 262452 27.9 100% 0 0 0 25 0 0

901 415661 285405 31.3 100% 0 94 0 22 84 0
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the sequence reads, while this is avoided using an OLC
assembler. In our hands, MIRA consistently produces
quality assemblies with minimal tuning needed. Add-
itionally, due to the potential skewing effects of digital
normalization and V-FAT scaffolding on the proportion
of nucleotide variant frequencies, the post-assembly step
to re-map the un-normalized data to the genome scaf-
fold allowed for proper consensus re-calling and precise
variant analysis.
One important aspect to the use of NGS approaches

in mainstream viral sequencing studies is the capacity to
multiplex samples in order to reduce costs. The time
and cost summary for all steps (summarized in
Additional file 5: Table S4) demonstrate that the simul-
taneous processing of 30 samples requires approximate
one hour of operator time per sample with a cost of ap-
proximately 106 USD per sample. Those values, although
still high for diagnostics purposes, are 15 to 20 times lower
(based on internal estimates) compared to the cost of
primer-based sequencing with Sanger technologies.
Furthermore, the demonstrated lower and upper quartiles
of median depth per position (2984 and 6894, respectively),
allow for accurate consensus re-calling and rare variant
analysis. The final output not only includes the consensus
genome sequence but also produced a variant call format
file (https://samtools.github.io/hts-specs/VCFv4.2.pdf) and
demonstrate that the protocol could be used for research
on viral quasispecies and evolutionary studies (Dimitrov et
al., in preparation). As previously reported by Gould et al.,
the 1998 Newcastle disease outbreak in Australia was pre-
ceded by several months of circulation of mutant quasispe-
cies of the virulent cleavage site [61]. These viral variants
were undetected in the Sanger consensus sequences but
could have been detected and properly quantified if the
methodology described here was available at that time. The
obtained genomic coverages (see Tables 2 and 3) illustrate
the ability of the described protocol in generating full-
length or near-full-length RNA virus genomes. Al-
though very short internal gaps were present due to
complete absence of coverage in the raw data and
short sequences at the genome termini were missing,
all coding sequences (commonly used in genetic stud-
ies) were obtained.
The total turnaround time for the entire testing (sam-

ple preparation, sequencing and analyses) was approxi-
mately 72 h, of which most of the time consisted of
library preparation and the sequence run. The duration
of the sequencing run could be reduced by approxi-
mately 15 h by using a 300-cycle configuration without
any anticipated drop-off in assembly quality based on
our observed fragment length distributions, although
this assumption is untested. The time taken for data
analysis may be expected to vary somewhat based on the
available computational resources in a lab, although in

our protocol this represents a small fraction of the total
turnaround time to begin with.
The obtained results were phylogenetically consistent

with preliminary studies of the tested viruses (data not
shown) and expectations based on previous research.
Almost all of the samples from Pakistan were of sub-
genotype VIIi which is currently circulating in Pakistan
and may be causing a new panzootic [25, 62]. Ukrainian
samples were of different sub-genotypes (II, VIg and
VIId) that have been reported to be isolated from
pigeons in Ukraine [25] and also in Europe [63]. The
Nigerian samples were of genotypes XIVb and XVIIa
which have been reported to circulate in Nigeria since
2006 [64] and previously un-sequenced full-length
genomes of these sub-genotypes have been reported by
us [48, 49]. In addition, and demonstrating the broad
applicability and the advantages of the de novo approach
described here, the first complete APMV-13 genome
was obtained [17] and avian influenza and infectious
bronchitis viruses populations were identified. Phylogen-
etic analyses of the obtained NDV and IBV sequences
are presented in Additional file 6: Figures S2 and S3).

Conclusion
In summary, a robust chemistry and bioinformatics
protocol utilizing publicly available tools to sequence
and analyze complete genomes from small RNA viruses
is described. Thirty-five full-length or near-full-length
avian RNA viral genomes with a high median coverage
depth were successfully sequenced out of 30 samples.
The applied de novo approach allowed identification of
mixed viral populations in some of the samples. The
combination of multiplexing NGS technology with the
customized Galaxy workflow platform enabled a quick
turnaround time and cost-efficient methodology for sim-
ultaneous characterization of multiple viral genomes.
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