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Abstract

Background: Aedes aegypti is a competent arthropod vector of chikungunya virus (CHIKV). The rate at which the virus
disseminate in the vector is limited by temperature of their environment which can be an important determinant of
geographical and seasonal limits to transmission by the arthropods in the tropics. This study investigated the vector
competence of Ae. aegypti for CHIKV at ambient temperature of 32 and 26 °C (Coastal and Western Kenya respectively)
reared at Extrinsic Incubation Temperature (EIT) of 32 and 26 °C that resembles those in the two regions.

Methods: Ae. aegypti eggs were collected from coastal and Western Kenya, hatched in the insectary and reared to F1
generation. Four-day old mosquitoes were exposed to CHIKV through a membrane feeding. They were then incubated
in temperatures mimicking the mean annual temperatures for Trans-Nzoia (26 °C) and Lamu (32 °C). After every 7, 10
and 13 days post infection (DPI); one third of exposed mosquitoes were sampled and assayed for virus infection and
dissemination.

Results: The midgut infection rates (MIR) of Ae. aegypti sampled from Coastal Region was significantly (p < 0.05) higher
than those sampled from Western Kenya, with no statistical differences observed for the coastal Ae. aegypti at EIT 26
and at 32 °C. The MIR of Ae. aegypti from the Western Region was significantly (p < 0.05) affected by the EIT,
with mosquito reared at EIT 32 °C exhibiting higher MIR than those reared at EIT 26 °C. There was a significant
(p < 0.05) interactive effects of the region, EIT and DPI on MIR. The disseminated infection rates for the CHIKV in
Ae. aegypti in the legs (DIR-L) was higher in mosquitoes sampled from Coast regardless of the EIT while those
from Western Kenya, dissemination rates were significantly higher at higher EIT of 32 °C.

Conclusions: Vector competence was higher in mosquito populations reared under high temperatures which
weakens the midgut infection barrier. Hence, suggesting Lamu population is more susceptible to CHIKV therefore
having a weaker mid gut infection barrier than the Trans Nzoia population. These underscores importance of
examining the course of infection at various ambient temperatures and EIT between regions mosquito populations.
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Background
Chikungunya fever is a self-remitting febrile viral illness
caused by Chikungunya virus (CHIKV). The CHIKV is
an arthropod-borne virus (arbovirus) of alphavirus genus
in the family Togaviridae. The term “Chikungunya” was
derived from the African dialect Swahili or Makonde
and translates as “to be bent over and refers to the
“stooped-over posture” exhibited by individuals with the
disease [1]. The roots of this viral illness date back to
1953, when it was first detected in a Makonde Village in
the Newala District of Tanzania [2, 3]. CHIKV infection
is usually characterized by an acute onset of fever, rash,
and arthralgias, and is often accompanied by headache,
joint swelling and conjunctivitis [4–8]. Chikungunya
disease is rarely fatal but is associated with significant
morbidity. Although frequent outbreaks have been re-
ported in the tropical countries of Africa and Southeast
Asia, there are recent concern in Western countries and
temperate zones around the world [9, 10]. In Africa, high
prevalence of the CHIKV has been reported with first case
being isolated in Tanzania in 1953 [1, 2], Union of the
Comoros in 2005 [11], Congo (DRC) during 1998–2000
[12, 13], Central African Republic in 1999–2000 [14] and
Mauritius and Madagascar in 2005 and 2006 respectively
[15]. The dynamics attest to overall varying outbreak
trends being observed in East/South/Central Africa and
western Africa countries [11]. Kenya has experienced two
outbreaks of chikungunya fever in 2004 [16] with the
latest outbreak occurring in May 2016 in Northern Kenya
(see Additional file 1) due to close proximity of mosquito
breeding sites to human habitation and heavy rainfall [17].
Large variations in prevalence within these countries have
also been reported such as the 59 % seroprevalence of the
CHIKV infection in Busia District and 24 % in Malindi in
Kenya [18].
The vectors principally responsible for transmission of

the virus are Aedes mosquitoes [19, 20] where the virus
actively replicates but the viral transmission occurs
through the mosquitoes involved if the virus overcomes
a series of anatomical barriers, i.e. the midgut and the
salivary glands. In the past, large epidemics were related
to the presence of the primary vector Ae. aegypti, which
is also the main vector of the dengue virus [6, 21, 22].
Ae. aegypti was established in southern parts of conti-
nental Europe until the mid-1900s but subsequently dis-
appeared for reasons that are yet to be completely
understood [21]. In Africa, CHIKV apparently is main-
tained in a sylvatic transmission cycle involving primates
and forest-dwelling Aedes mosquitoes [23]. Sylvatic
vectors that have been implicated in transmission
include Ae. africanus and Ae. aegypti in East Africa
[24, 25]. Ae. aegypti predominantly breeds in stored fresh
water, such as desert coolers, flower vases, water-tanks,
etc., and in peri-domestic areas (discarded household

junk items like vehicular tyres, coconut shells, pots, cans,
bins, etc.) in urban and semi urban environments [26, 27].
Adult mosquitoes rest in cool and shady areas and bite
humans during the daytime.
In mosquito infected by CHIKV, the extrinsic incu-

bation period (EIP), the time from initial acquisition of
pathogens until transmission is possible [28, 29], ranges
from 2 to 9 days, with an average of 3 days [30, 31].
CHIKV is transmitted by Aedes mosquitoes, mainly by
Ae. aegypti. The Ae. aegypti, is well distributed and is
highly anthropophilic [32–34], thus increases the risk of
CHIKV transmission. Mosquito vectors display different
degrees of vector competence for different CHIKV
isolates [35]. However, the invasive species Ae. albopic-
tus has played a major role in most of recent epidemics
since its last emergence in Kenya in 2004 [34, 36, 37].
Furthermore, recent studies have shown that transmission
and spread of CHIKV in Africa and Asia is related to the
CHIKV phylogroup and mosquito species [11, 14, 38, 39].
In the present study, CHIKV strain isolated from the
2004–2005 outbreak in Lamu Island was considered, the
East/South/Central Africa and Indian Ocean genotype
[14, 38]. Although the establishment of an arbovirus infec-
tion in a mosquito following ingestion of a virus is
dependent on the amount of viral particles ingested by the
mosquito and the susceptibility of the mosquito to infec-
tion by the virus [40], the vector competence is a complex
trait involving an interplay between vectors, pathogens
and environmental factors [35, 41, 42]. Temperature is
regarded as one of the most important abiotic environ-
mental factors affecting biological processes of mosqui-
toes, including interactions with arboviruses. Seasonal and
geographic differences in temperature and anticipated
climate change undoubtedly influence mosquito popu-
lation dynamics, individuals’ traits related to vector
biology (lifespan and vector competence for arboviruses),
and disease transmission patterns. Extrinsic incubation
temperature (EIT) has been shown to influence the repli-
cation and dissemination of arboviruses in vectors [43]
thus altering the Extrinsic Incubation Period (EIP)
[28, 29]. In the tropics, areas of high prevalence of the
mosquitoes, with reported occurrence of CHIKV have
variable temperature ranging between 25 and 34 °C
throughout the year as part of climate characteristics. Yet
information on the vector transmission of different popu-
lations of this species for CHIKV at different EIT is
limited. Therefore the aim of this study was to compare
the vector competence of coastal and Western Kenya Ae.
aegypti populations for CHIKV under varying EIT. The
coastal and western regions of Kenya have mean annual
ambient temperature of 32 and 26 °C respectively. The
information generated from this study provides data on
competence factors that would influence epidemiological
patterns of chikungunya fever.
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Methods
Study setting
This study was conducted in Western Kenya and at the
Coast. In Western Kenya, samples were obtained from
Kiminini and Sasuri village in Trans Nzoia County while
Lamu and Shela Village in Lamu County represented the
Coastal region. Trans Nzoia has a latitude of 1.0567° N,
and a longitude of 34.9507° E and a temperature range
between 10 and 27 °C with an annual precipitation
ranging between 1000 and 1200 mm, with the wettest
months being experienced between April and October.
The elevation of Kitale is about 1900 m. Meanwhile,
Lamu County is situated in Kenya’s former Coast
Province, at a longitude of 040°S´E and a latitude of 02°
17´S, and is headquartered in Lamu town. The county
covers a strip of northeastern coastal mainland and the
Lamu Archipelago. It has a population of 101,539, and
its land area is 6,167 km2. Lamu has a tropical savannah
climate with average annual temperatures ranging be-
tween 13.6 and 40.9 °C. The county receives annual
precipitation ranging between 900 and 1100 mm, with
the rainy season experienced between May and June.
From July the environment gradually gets hotter and
dryer until March/April when it reaches 40 °C. Shela
Village on Lamu Island is a tangle of narrow sandy lanes
some smaller thatched dwellings and mosques. It is
about 3.2 km south of Lamu Town. An additional file
shows Map of the study areas in more detail (see
Additional file 2).

Mosquito eggs collection
Eggs of Ae. aegypti were collected using oviposition
traps that consisted of black plastic cups lined with
oviposition paper and half-filled with water. A total of
25 ovitraps were placed at least 50 m apart in each of
the study setting. These ovitraps with oviposition papers
were left in the peridomestic areas for four days. On the
4th day, all the ovicups were collected and the eggs
transported to the biosafety level-2 (BSL-2) laboratory
where they were dried on damp cotton wool to quies-
cent state as earlier described [44, 45] and stored in an
air tight container at room temperature in the insectary.

Mosquito rearing
Mosquitoes were reared in the insectary, maintained at a
temperature of 28 °C and 80 % relative humidity (RH),
with a 12:12-h (Light:Dark) photoperiod. The eggs were
hatched and the larvae fed on TetraMin® fish food until
pupation. Pupae were transferred to small plastic cups
half-filled with water, placed in 4-l plastic cages screened
with netting material on top and allowed to emerge into
F0 adult mosquitoes. The emerging adults were then
morphologically identified under a dissecting microscope
using taxonomic keys of Edwards [46], to confirm that

only Ae. aegypti mosquitoes were used in the subsequent
experiments. The identified female Ae. aegypti were
returned to experimental cages, blood fed on clean
laboratory-bred mice and provided with oviposition
papers to lay F1 eggs. The F1 eggs were hatched and
reared as outlined and only adult female mosquitoes
were used in the succeeding experiments [47].

Preparation of virus stock
CHIKV strain isolated from the 2004–2005 outbreak in
Lamu Island (Lamu001) was used in this study, the East/
South/Central Africa and Indian Ocean genotype (group
III), subgroup: East/South/Central African subgroup
(IIIa and b) [14, 38]. The working stock virus was
prepared by propagating CHIKV in Vero cells in T25
culture flasks. The infected cells were incubated at 37 °C
and 5 % CO2 and observed daily for cytopathic changes
before the virus was harvested. The virus stock titer was
determined [log10 7.2 plaque-forming units (pfu)/mL]
by plaque assay and aliquoted in cryovials and stored at
−80 °C until usage [48].

Oral infection of mosquitoes with the virus
Infection was performed in BSL2 insectary using four-
day old mosquitoes after they were deprived of sucrose
solution and water 24 h prior to exposure to the infec-
tious blood meal using a membrane feeding apparatus
[49]. A Hemotek membrane-feeding system (Discovery
Workshops, Accrington, U.K.) which employed an elec-
tric heating element to maintain the temperature of the
blood meal constant at 37 °C, was used. The infectious
blood meal (log10 5.9 pfu/mL) was prepared by mixing
500 μl of the working virus with 500 μl of defribrinated
sheep blood. The blood-virus mixture was pipetted into
each membrane unit which was screwed onto the
heating chamber and placed on top of mosquito cages
each containing between 50–350 mosquitoes which were
allowed to feed for 45 min [50–52]. Fully engorged
mosquitoes were aspirated and transferred to empty 4-l
plastic cages and maintained on 10 % glucose solution.
These mosquitoes were reared for up to 13 days at low
and high EITs of 26 °C or 32 °C respectively, mimicking
the mean annual temperatures for Trans-Nzoia and
Lamu counties respectively.

Test for infection and dissemination rates of CHIKV
Mosquito sampling and dissections
A third of the fed mosquitoes were randomly sampled
on day 7, 10, 13 post exposure (pe) and were dissected
into abdomen, head and legs [25, 28, 53–55]. The
abdomens of each mosquito were individually triturated
in 1 mL of Eagle’s Minimum Essential Medium (MEM)
(Sigma Aldrich) diluents and frozen at −80 °C until
assayed for CHIKV by plaque assay on Vero cell
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monolayers. The dilutions were inoculated on confluent
Vero cell monolayers in 12-well plates. Each plate was
labeled with sample and dilution descriptions and for
each virus stock serial dilutions (100, 10−1, 10−2, 10−3,
and 10−4) were made.

Virus assay in mosquito bodies
To demonstrate virus infection, 10 fold serial dilutions
of the abdominal homogenates were made in Minimum
Essential Medium Eagle (MEM), with Earle’s salts and
reduced NaHCO3 (Sigma- Aldrich, St. Louis, MO)
supplemented with 15 % FBS (Sigma-Aldrich), 2 % L-
glutamine (Sigma- Aldrich) and 2 % antibiotic/antimyco-
tic solution (Sigma-Aldrich) with 10,000 μl penicillin,
10 mg streptomycin and 25 μg amphotericin B per
milliliter and tested for the presence of virus on Vero
cell monolayers, by plaque assay, in 12-well plates. One
hundred microliters of the appropriate dilutions of the
abdominal homogenates was added to each of ten wells
of the 12-well plate to infect the cells and the remaining
two wells were used for controls. This was repeated to
all the corresponding plates and dilutions. The plates
were incubated at 37 °C and gently rocked every 15 min
for 1 h to allow for virus adsorption. One milliliter of
methyl cellulose solution (1.25 % Methylcellulose in
MEM with 2 % FBS) was added gently to each well, and
the plates incubated at 37 °C in a humidified 5 % CO2

incubator for 3 days. On the 3rd day, methylcellulose
was removed from the wells using disposable plastic
pipette in bio-safety cabinet. The plates were fixed by
adding 1 ml of 10 % formaldehyde in PBS (1/10 diluted
Formalin with PBS) over night and stained using 0.5 %
crystal violet (0.5 g of powder form Crystal Violet in
100 mL of 99.5 % Ethanol) and after 1 h they were
washed gently with tap water and left to dry at room
temperature.
For the CHIKV positive abdomens, the corresponding

legs and heads were homogenized and assayed as
described to determine the dissemination status of the
mosquitoes. Detection of the virus in the mosquito
abdomen and not its legs or head was an indication
that the mosquito had a non-disseminated infection
(limited to its midgut), while detection of the virus in
the legs and/or head was an indication of a dissemi-
nated infection [56–58].

Ethical considerations
KEMRI Animal Care and Use Committee (ACUC),
Scientific Steering Committee (SSC) and Ethical Re-
view Committee (ERC) approved all the procedures
used in this study. The guidelines were strictly ad-
hered to during the research.

Statistical analyses
The collected data were analyzed using SPSS version
20.0 software package. Differences in mosquito counts
due to differences in treatments were analyzed using
chi-square test. A logit model was utilized in showing
the nominal main effects of the region, temperature, EIP
and their interactions on the infection rates of CHIKV.
MIR was computed as (Number of positive midgut
infections divided by Total number of mosquitoes
tested) × 100 % [59, 60] for day 7, 10 and 13 in the order.
We defined the midgut infection rate as the percentage
of mosquitoes tested that contained the virus in their
abdomen/midgut and the dissemination rates in the legs
and heads as the percentage of infected (abdomen/
midgut positive) mosquitoes that contained virus in
their legs and/or heads respectively. The differences
between these groups were deemed statistically signi-
ficant at p < 0.05.

Results
Midgut infection rates for Coastal and Western Kenya Ae.
aegypti population
The 7, 10 and 13 days post infection (DPI) midgut infec-
tion rates of Ae. aegypti population for CHIKV in
Coastal and Western Kenya Ae. aegypti reared at EIT of
26 and 32 °C is shown in Table 1 with temporal midgut
infection rate vis-a-vis temperature ranges trends shown
in Fig. 1. A binary logistic regression model showing the
nominal effects of the region, EIT, DPI and their interac-
tions on the Midgut infection rates (MIR) for CHIKV is
presented in Table 2 (Model summary: −2 Log likeli-
hood = 458.345, Nagelkerke R2 = 0.5323). Regardless of
the EIT, the MIR of Ae. aegypti sampled from Coastal
Region was significantly (p < 0.05) higher than those
sampled from Western Kenya, with no statistical diffe-
rences observed for the coastal Ae. aegypti at EIT 26
and at 32 °C. Meanwhile the MIR of Ae. aegypti from
the Western Kenya Region (26 °C) was significantly (p <
0.05) affected by the EIT, with mosquito reared at EIT
32 °C exhibiting higher MIR than those reared at EIT
26 °C. The 2 way interactions between region, EIT and
DPI significantly affected the MIR (p < 0.05). We also
established a significant (p < 0.05) interactive effects of
the region, EIT and DPI on MIR.

Dissemination rates of CHIKV in Coastal and Western
Kenya Ae. aegypti population
The dissemination rates of infected Ae. aegypti for
CHIKV from the Coastal Region and Western Kenya
at 7, 10 and 13 DPI and at EIT of 26 and 32 °C is
shown in Table 3. The disseminated infection rates
for the CHIKV in Ae. aegypti in the legs (DIR-L) was
higher in mosquito sampled from higher ambient
temperature setting (Coastal Region) regardless of the
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EIT while those from ambient temperature of 26 °C
(Western Kenya) dissemination rates was significantly
higher at higher EIT of 32 °C. There were no signi-
ficant interactions (p > 0.05) between region and EIT
on the dissemination of CHIKV from the midgut to
the head, indicating that the trends in the infection
rates by CHIKV remained similar at the coastal and
Western region regardless of the EIT. Notably, there
were no significant (p > 0.05) interaction between region,
EIT and DPI on DIR on the legs and head.

Discussion
Arboviruses are ecologically complex, and interactions
between larval mosquitoes and their aquatic environ-
ment can influence adult transmission dynamics. More-
over, due to the impact of climate on vector ecology,
competence and their risk of transmitting viruses may
be sensitive to projected changes in global temperatures.
In this study, we evaluated the effect of ambient tem-
peratures and changes of EIT on the risk of vector trans-
mission and competence of the Ae. aegypti for CHIKV.
We provide evidence that the incubation temperatures of
vector directly impact virus transmission by influencing
the likelihood of infection and dissemination of CHIKV.
We established that the MIR of Ae. aegypti sampled from
the coastal area with ambient temperature of 32 °C was
higher than those sampled from the western Kenya that

Table 1 Midgut infection rates of 7, 10 and 13 DPI of CHIKV in Coastal and Western Kenya Ae. aegypti reared at EIT of 26 and 32 °C

Region Number midgut tested (n) EITa DPIb Number of midgut infections MIRc (%)

Coastal 156 26 °C 7 17.9

10 23.1

13 26.9

173 32 °C 7 17.3

10 26.0

13 16.2

Western Kenya 146 26 °C 7 5.5

10 4.1

13 13.7

156 32 °C 7 22.4

10 16.7

13 16.7

Within each population and temperature conditions, the number of tested mosquitoes is the same for all the days of sampling
aEIT = Extrinsic Incubation Temperature
bDPI =Days Post Infection
cMIR =Midgut Infection Rate
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Fig. 1 Proportion ± 95 % confidence interval of Coastal (a) and
Western Kenya (b) Ae. aegypti infected at day 7, 10 and 13
post-infection at temperature levels of 26 and 32 °C
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has ambient temperature 26 °C regardless of the EIT.
Meanwhile for Ae. aegypti emanating from lower ambient
temperature of 26 °C, there was increased MIR when EIT
was increased from 26 to 32 °C. This suggests that
virus transmission is likely to be affected more by higher
environmental temperature due to possible effects of the
temperature on the biological processes moderating the
vector competence [61]. It has earlier been noted that
temperature may limit virus transmission in areas where
the vectors is present noting that an increase in environ-
mental temperature for adult mosquitoes reduces the EIP
most likely due to an increase in the metabolism of the
adult mosquito and replication speed of the virus [28, 61,
62]. Equally, temperature changes experienced in the
immature stages of the mosquito development before
infection may affect vector virus interactions by changing

physical and physiological characteristics of mid-gut bar-
riers which would impact virus infection and transmission
[63, 64]. This is in agreement with previous studies which
have established that ambient temperature affect the
biological processes of mosquitoes and plays a key role in
modulating mosquito vector competence for pathogens
[65–67]. Previous studies have indicated that increases in
adult-holding incubation temperatures have usually been
associated with enhanced vector competence [62, 68–74].
However, some studies have identified reduced vector
competence and activity in nature associated with in-
creases in incubation temperature [64, 75–77]. It has
long been recognized that increases in incubation
temperature reduce the extrinsic incubation period
(the time from initial acquisition of pathogens until
transmission is possible) [28], which render virus trans-
mission more likely under such incubation period. Along
the same lines, increases in temperature reduce the adult
lifespan of mosquitoes and may impinge transmission
[69, 70, 78]. Temperature effects may drastically alter risk
of disease transmission, especially under conditions where
the extrinsic incubation period approaches the lifespan of
the mosquito. This result differs with other systems where
arboviral vector competence was reduced in female
mosquitoes that were reared at higher compared to lower
temperatures [68–70, 78]. However, vector capacity of a
mosquito population is a complex phenomenon that is
influenced by a number of factors such as host seeking
behavior and longevity of the infected mosquitoes apart
from temperature and inherent factors [79] and thus
further studies are recommended on how these factors
can combine to affect the MIR.
Mosquito susceptibility to arbovirus infection resides

primarily in the midgut and can vary greatly between
mosquito species and geographical strains of the same
species and even within individuals of the same popu-
lation [80]. Vector competence, which is the capacity of
an arthropod to acquire an infection and transmit it to a
subsequent host, can greatly vary among individuals and
between populations [56] and has been previously linked

Table 2 Logit model of the nominal main effects of the region, EIT and DPI and their interactions on the midgut infection rates of
CHIKV

Effects E Std Error df Wald Sig Chi-square EXP(B)

Intercept −0.742 4.7348 1 6.8119 0.0037 5.9431 0.476

Region 1.5207 5.2578 1 10.1012 0.0000 37.6654 4.5754

EIT 1.039 3.6764 1 −6.3544 0.0021 17.8042 2.827

DPI −0.602 4.3498 1 7.3677 0.0027 6.1545 0.548

Region*EIT 0.459 3.1241 2 8.4674 0.0004 9.1973 1.5825

Region*DPI 1.518 9.3498 2 −19.2382 0.0000 31.4455 4.563

EIT *DPI 0.690 6.0174 2 7.01305 0.0002 21.1073 1.994

Region* EIT *DPI −0.6027 2.1132 3 0.0065 0.0331 4.3053 0.5473

EIT = Extrinsic Incubation Temperature, DPI = Days Post Infection

Table 3 Dissemination rates of CHIKV to the legs and head in
Coastal and Western Kenya Ae. aegypti reared at Extrinsic
Incubation Temperature of 26 and 32 °C

Number
infected(b)

Dissemination
rates (%) (c)

Region Number of midgut
infections (a)

EIT DPI Legs Head Legs Head

Coastal
Region

106 26 °C 7 19 11 17.9 10.4

10 27 3 25.5 2.8

13 18 3 17.0 2.8

103 32 °C 7 7 3 6.8 2.9

10 21 17 20.4 16.5

13 30 27 29.1 26.2

Western
Kenya

34 26 °C 7 9 9 26.5 26.5

10 4 6 11.8 17.6

13 7 7 20.6 20.6

87 32 °C 7 25 22 28.7 25.3

10 15 7 17.2 8.0

13 23 20 26.4 23.0

Dissemination rate (c) for legs or head in that order is provided as [(b dived
by a) × 100 %] where numerator b corresponds to number of infected legs
or head respectively
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to genetics [81] as well as by climate variables such as
temperature [70, 82]. Disseminated infection is generally
accepted as a measure of a mosquito’s ability to transmit
a virus through biting [56, 70]. The rate of dissemi-
nation, when expressed as a percentage of the number
of mosquitoes infected, may provide information about
the effect of a “midgut escape barrier” moderating
whether gut infections are able to disseminate into the
hemolymph. In the current study, the dissemination
rates of infected Ae. aegypti for CHIKV in the legs was
high at higher ambient temperature regardless of the
EIT. Notably, the disseminated infection rates for the
CHKV in Ae. aegypti in the legs was higher in mosquito
emanating from ambient temperature 32 °C (Coastal
Region) regardless of the EIT while those from ambient
temperature of 26 °C (Western Kenya) dissemination
rates was significantly higher at higher EIT of 32 °C.
These results suggest that the midgut barriers preventing
dissemination were strongly influenced by the ambient
and rearing temperature. Thus, it can be speculated that
there may be an increased midgut escape barrier in
mosquitoes derived from the higher rearing tempe-
ratures. At temperature of 26 °C during the adult stage
resulted in the lowest rates of viral dissemination. Rates
of dissemination were higher at 32 °C relative to cooler
holding temperatures of adults. These results corro-
borate observations found for laboratory studies exami-
ning susceptibility to dengue virus infection and length
of the extrinsic incubation period in Ae. albopictus and
Ae. aegypti [83–85]. However, we found no association
between vector dissemination in between the midgut
and the head. The explanation for these observed effects
of mosquitoes with disseminated infections is not
entirely clear, but it does suggest complex effects of
temperature on virus infection and dissemination and by
extension, mosquito competence.

Conclusion
The current study underscores the importance of the
environmental and incubation temperature in dictating
the vector epidemiological risk of the virus in the
human populations. Vector competence was higher in
mosquito populations reared under high temperatures
which weakens the midgut infection barrier. Hence,
suggesting Lamu population is more susceptible to
CHIKV therefore having a weaker mid gut infection
barrier than the Trans Nzoia population. This study
further demonstrates the importance of examining the
course of infection at various ambient temperatures
and EIT between the two mosquito populations. Vector
control measures should be triggered as an integral com-
ponent of climate change policies discourse to prevent
un-anticipated transmission transition of such vector ecol-
ogy dependent infectious pathogens. Although our results

show differences in vector competence, other factors
(mosquito densities, feeding behavior, mosquito survival
rates) composing the vector capacity, are needed to assess
more accurately the risk of CHIKV transmission alongside
virus titers in the context of dissemination. Future studies
should explore the connection between larval rearing
temperature-infection patterns observed in the laboratory
and patterns in the field, and how climate and climate
change related factors may continue to impact the
mosquito larval environment and the epidemiology of
CHIKV.

Additional files

Additional file 1: Auxiliary materials on CHIKV epidemics in Kenya.
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