
RESEARCH Open Access

Classical swine fever virus NS5A protein
changed inflammatory cytokine secretion
in porcine alveolar macrophages by
inhibiting the NF-κB signaling pathway
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Abstract

Background: Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of the pigs. A
number of studies have suggested that CSFV non-structural (NS) 5A protein is involved in CSFV-associated
pathogenesis, but its mechanism is still uncertain. The aim of this study was to investigate the roles of NS5A protein
in CSFV-associated pathogenesis in cultured porcine alveolar macrophages (PAMs).

Methods: After PAMs cultured in vitro were transfected with CSFV NS5A, the alterations in IL-1β, IL-6 and TNF-α
expression were determined by ELISA, the RIG-I signaling activity related to inflammatory cytokine secretion was
investigated by Western blot and Immunofluorescent staining.

Results: It was suggested that, the stable expressed CSFV NS5A solely had no influence on the expressions of
inflammatory cytokines IL-1β, IL-6 and TNF-α in PAMs Moreover, NS5A protein could suppressed IL-1β, IL-6 and
TNF-α expression induced by poly(I:C). It was also showed that NS5A protein did not impair the expressions of RIG-I,
MDA5, IPS-1, NF-κB and IkBα in cells without poly(I:C) stimulation. Protein expressions of RIG-I, MDA5, IPS-1, NF-κB
were not disrupted by NS5A protein in poly(I:C)-stimulated cells, while poly(I:C)-induced NF-κB nuclear translocation
and activity was obviously suppressed by this protein. A suppression in poly(I:C)-induced IkBα degradation in
NS5A-expressing cells was also observed.

Conclusion: These data indicated that CSFV NS5A protein could inhibit the secretion of inflammatory cytokine
induced by poly(I:C) through the suppression of the NF-κB signaling pathway, indicating the participation of CSFV
NS5A protein in the pathogenesis of CSFV.
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Background
Classical swine fever virus (CSFV), the member of
Flaviviridae family, causes heavily economic losses in
pig industries [1]. The CSFV genome consists of a
single large open reading frame (ORF) encoding a
polyprotein of about 4,000 amino acids that is co-
and posttranslationally processed by cellular and viral
proteases, leading to at least 12 mature proteins- the

structural proteins-core (C), Erns, E1 and E2, and the
non-structural proteins -p7, NS2, NS3, NS4A, NS4B,
NS5A and NS5B [2, 3]. Among these proteins, NS5A
protein is receiving an increasing attention as a po-
tential target for anti-CSFV therapy.
CSFV NS5A protein comprises 497 amino acids, and

plays an important role in CSFV growth, viral RNA syn-
thesis [4], induction of oxidative stress and inflammatory
responses [5]. Furthermore, previous reports provided
an insight into the mechanism by which CSFV NS5A
could alter intracellular events associated with the viral
infection. It was demonstrated that CSFV NS5A de-
creased internal ribosome entry site (IRES)-mediated

* Correspondence: willertang@163.com
1College of Yingdong Agricultural Science and Engineering, Shaoguan
University, Daxue Road, Zhenjiang District, Shaoguan 512005, China
2North Guangdong Collaborative Innovation and Development Center for
Swine Farming and Disease Control, Shaoguan 512005, China

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Dong and Tang Virology Journal  (2016) 13:101 
DOI 10.1186/s12985-016-0545-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12985-016-0545-z&domain=pdf
mailto:willertang@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


CSFV translation in a dose-dependent manner, indi-
cating that CSFV NS5A might play an important role
in the switch from translation to replication in CSFV
[6]. CSFV NS5A could contribute at least partially to
modulation of CSFV replication through binding to a
5′untranslated region (UTR) or FKBP8 [7–9]. Our
previous study also suggested that CSFV NS5A protein
was involved in CSFV replication [10]. Hepatitis C virus
(HCV) also belongs to the family of CSFV, and its
protein NS5A has been intensely investigated. The
mature HCV NS5A protein, generated by the action
of the NS3/NS4A serine protease, is a phosphoprotein
that exists in a basal or in a hyperphosphorylated
state (p56 and p58) [11]. It has shown that HCV
NS5A is an essential replicase component that can be
complemented in trans [12, 13]. Mutations in HCV
NS5A affected the rate of HCV replication, suggesting
a role of HCV NS5A in modulating viral expression
and replication [14]. Moreover, HCV NS5A was able
to interfere with cellular proteins such as PI3K, p53,
or Raf-1, enabling cell signal transduction in host to
be regulated [15]. In the transgenic mouse model, it
was discovered that HCV NS5A could impair both
the innate and the adaptive immune response to pro-
mote chronic HCV infection [16]. The reports even
suggested that HCV NS5A regulated cell cycle pro-
gression by modulating the expression of cell cycle
regulatory genes [17].
Retinoic acid-inducible gene I (RIG-I) and melan-

oma differentiation-associated gene 5 (MDA5) are
cytoplasmic DEx(D/H) box helicases that can detect
intracellular viral products and transmit the signaling
through interferon promoter-stimulating factor 1 (IPS-1)
adaptor protein [18], which serves to activate multiple
evolutionarily conserved signaling pathways, such as
Interferons (IFNs), Nuclear Factor kB (NF-κB) and
IFN-regulatory factors 3 (IRF3) [19]. Activation of
these pathways often culminates in the induction of
an array of antiviral and inflammatory cytokines,
which are widely considered as crucial components of
innate antiviral immunity [20, 21]. Although the sig-
naling pathways such as MEK/ERK, PKR-p38 and
p38MAPK regulated by HCV NS5A have been exten-
sively characterized, so far little is known as to how
CSFV NS5A may be linked with the NF-κB signaling
and inflammatory cytokine expression. Therefore, in
this paper, we took an investigation in the regulation
mechanism of CSFV NS5A in poly(I:C)-induced in-
flammatory secretion in PAMs. The results provided
for the first time evidence supporting the inhibitory
role of CSFV NS5A in poly(I:C)-induced inflammatory se-
cretion through the suppression of NF-κB translocation
and activity, and IkBα degradation, which highlighted a
potential mechanism of CSFV pathogenesis.

Results
CSFV NS5A protein down-regulated the secretion of
inflammatory cytokines induced by poly(I:C) in PAMs
The expression of the CSFV NS5A protein was analyzed
by Western blot in PAMs. The results showed that,
compared to the control without expressing NS5A gene
(N1), CSFV NS5A protein was detectable after 24 h
plasmid transfection in PAMs, and the size of protein
was consistent with the expected size. Moreover, the ex-
pression of CSFV NS5A protein reached a maximum at
60 h (Fig. 1a).
At 24 h post-transfection, 100 μg/mL poly(I:C) was

added into the cells for another 24 h and the impact of
CSFV NS5A on endogenous inflammatory cytokine ex-
pression was examined using ELISA. It was suggested
that 100 μg/mL poly(I:C) could significantly stimulate
the secretion of IL-1β (Fig. 1b), IL-6 (Fig. 1c) and TNF-α
(Fig. 1d) in PAMs. However, the over-expression of
CSFV NS5A could significantly impair the secretion of
IL-1β, IL-6 and TNF-α induced by poly(I:C) in the cul-
ture supernatant (P < 0.01). In addition, there was no dif-
ference in IL-1β, IL-6 and TNF-α expression between
the control expressed vector and the CSFV NS5A-
expressed treatment (P > 0.05), indicating that cytokine
secretion was not affected in cells without poly(I:C) in-
duction. Taken together, the results above suggested that
CSFV NS5A protein had a strong inhibitory effect on
the inflammatory responses induced by poly(I:C).

CSFV NS5A protein showed no effects on the RIG-I/MDA5
signaling pathway in PAMs
To study the effects of CSFV NS5A protein on the RIG-I
signaling pathway in greater detail, the protein expressions
of RIG-I, MDA5 and IPS-1 were analyzed using Western
Blot (Fig. 2b). It was indicated that, CSFV NS5A protein
expression in PAMs was not changed by poly(I:C) stimu-
lation (Fig. 2a). Compared to the control, a moderate
higher expression of RIG-I, MDA5 and IPS-1 was ap-
peared in NS5A transfected cells, but the effect was not
significant (P > 0.05). Furthermore, the changes of RIG-I
(Fig. 2c), MDA5 (Fig. 2d) and IPS-1 (Fig. 2e) expression
were investigated after poly(I:C) stimulation. It was shown
that poly(I:C) challenge significantly elevated RIG-I,
MDA5 and IPS-1 production, and this effect was not af-
fected by over-expression of CSFV NS5A (P > 0.05). Our
results suggested that the CSFV NS5A had no influence
on the RIG-I/MDA5 signaling pathway in PAMs with or
without poly(I:C) stimulation.

CSFV NS5A protein suppressed IkBα degradation induced
by poly(I:C) PAMs
Western Blotting was performed to detect the expres-
sion of IkBα which can keep NF-κB in inactivity in the
cytoplasm (Fig. 3a). The results in Fig. 3b demonstrated
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Fig. 1 (See legend on next page.)
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that there was no significant change appeared in IkBα
expression in CSFV NS5A-expressed PAMs in compari-
son with the control (P > 0.05), suggesting that CSFV
NS5A protein did not alter the expression of IkBα. In
contrast, cells treated with poly(I:C) showed a significant
reduction of IkBα expression compared to that of a basal
amount of IkBα in the control, suggesting that degrad-
ation of IkBα had occurred. Furthermore, IkBα degrad-
ation induced by poly(I:C) was rapidly suppressed in
CSFV NS5A protein-treated cells (P < 0.01). The results
above indicated that CSFV NS5A protein could inhibit
poly(I:C)-induced IkBα degradation in PAMs.

CSFV NS5A protein inhibited the activation of NF-κB/p65
in PAMs
The production of pro-inflammatory cytokines and cel-
lular adhesion molecules is controlled by the transcrip-
tion factor NF-κB. To investigate whether the changes in
IL-1β, IL-6 and TNF-α secretion induced by CSFV
NS5A protein were associated with the activation of NF-
κB signal, Western blot and Immunofluorescent staining
assays were carried out to measure the expression and
activity of the 65 kDa subunit of NF-κB, the results were
shown in Fig. 4. As shown in Fig. 4a, a higher expression
of NF-κB induced by poly(I:C) was not changed in CSFV
NS5A-treated cells (P > 0.05). In addition, in control
experiments, cells failed to signal NF-κB nuclear trans-
location, showing typical cytoplasmic staining of NF-κB.
However, nuclear accumulation of NF-κB occurred
within a larger frequency when cells were stimulated by
poly(I:C) for 24 h, and these effects were obviously
inhibited by CSFV NS5A, indicating that CSFV NS5A
protein suppressed NF-κB nuclear translocation gener-
ated by poly(I:C) (Fig. 4b). Additionally, there was no
difference in NF-κB luciferase activity between the
control and CSFV NS5A-treated group (P > 0.05). But
poly(I:C)-induced NF-κB Luciferase activity was signifi-
cantly down-regulated by CSFV NS5A protein (P < 0.01)
(Fig. 4c).

Discussion
Classical swine fever (CSF) caused by CSF virus (CSFV)
leads to severe economic losses in pig industry especially
in developing countries. The role of CSFV NS5A on the
molecular level has been well characterized, but much

less is known about the relevance of CSFV NS5A for
CSFV-associated pathogenesis. To gain more insight in
CSFV NS5A protein, this study was conducted to ex-
plore the effect of CSFV NS5A on inflammatory cyto-
kines and its mechanisms. Eventually, the results showed
that, CSFV NS5A could suppressed poly(I:C)-stimulated
inflammatory cytokine secretion by suppressing the NF-
κB signaling pathway.
Following recognition of viral RNA, RIG-I and MDA5

undergo conformational changes for signal propagation
to activate downstream through interactions with IPS-1
adaptor protein, which serves to activate downstream
IRF, NF-κB and other transcription factors [22]. In vitro
studies suggest that both RIG-I and MDA5 detect
poly(I:C), a synthetic dsRNA analogue [23]. NF-κB, a se-
quence specific transcription factor, can regulate the ex-
pression of numerous cellular and viral genes and plays
important roles in cell survival, tumorigenesis, inflam-
mation and innate immune responses. In resting cells,
NF-κB stays inactive in the cytoplasm combined with its
inhibitory subunit IkBα. After exposure to a variety of
agonists, the activation of NF-κB occurs through the
degradation of IkBα [24, 25]. CSFV NS5A protein has
shown to be involved in viral replication [7–9]. A closely
related functional viral protein to the CSFV NS5A is the
HCV NS5A protein while HCV belongs to the same Fla-
viviridae family. HCV NS5A is a remarkable protein as it
clearly plays multiple roles in mediating viral replication,
host-cell interactions and viral pathogenesis. Now, it is
regarded as a new target for antiviral drugs in the
treatment of HCV infection [26]. Recent reports have
demonstrated that HCV NS5A protein exerts its func-
tions through its regulation via cell signaling pathways
such as STAT1 pathway [27], MEK/ERK pathway [28], a
FoxO1-dependent pathway [29], and PKR-p38 pathway
[30]. Furthermore, HCV NS5A over-expression signifi-
cantly enhanced survivin transcription by increasing p53
degradation and stimulating NOS2A expression as well
as NF-κB relocation to the nucleus [31]. HCV NS5A
suppressed p53-mediated transcriptional transactivation
and apoptosis during HCV infection [32], blocked
poly(I:C) or interferon (IFN)-α-mediated IRF-7 nuclear
translocation [33] or inhibited TNF-α-induced NF-κB
activation in vitro [34]. Furthermore, HCV NS5A acti-
vated NF-κB through oxidative stress or tyrosine

(See figure on previous page.)
Fig. 1 CSFV NS5A protein attenuated the inflammatory cytokine production induced by poly(I:C). PAMs were transfected with plasmid expressing
NS5A (a). At indicated times, total cell lysates were immunoblotted with rabbit anti-CSFV sera and analyzed by Western Blot. To determine the
changes of the inflammatory cytokine production in PAMs, at 24 h following transfection of 1 μg CSFV NS5A, cells were untreated or treated with
100 μg/mL poly(I:C), and cultured for 24 h. Then cell culture supernatants were collected to analyze protein expression of inflammatory cytokines
IL-1β (b), IL-6 (c) and TNF-α (d) by ELISA. Data are expressed as mean ± SEM. Representative results are shown of one of three separate experiments.
An asterisk indicates a statistically significant difference from uninfected cells, *P < 0.05 and **P < 0.01
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phosphorylation of IkBα and its degradation by calpain
protease [35]. In the present study, we found that CSFV
NS5A did not disrupt the expressions of RIG-I, MDA5,
IPS-1 stimulated by poly(I:C) in PAMs. However, CSFV
NS5A protein inhibited poly(I:C)-induced NF-κB nuclear
translocation and activity, and IkBα degradation, which
resulted in the suppression of inflammatory cytokine IL-
1β, IL-6 and TNF-α secretion induced by poly(I:C).
Early detection of viruses by the innate immune sys-

tem is critical for host defense. Antiviral immunity is
first to be initiated by pattern recognition receptors
(PRRs) that recognize viral pathogen-associated molecu-
lar patterns (PAMPs). Intracellular PRRs then stimulate
the production of interferons and cytokines to orches-
trate immune responses. The key host factors that are
critical for antiviral immunity and for systemic inflam-
matory reactions include IL-1β, IL-6 and TNF-α [36].
TNF-a, IL-1 and IL-6 are three proinflammatory cyto-
kines that form part of a complex defence network that
protects the host against inflammatory agents, microbial
invasion and injury [37]. IL secretion is necessary to
stimulate immune cell responses and IL-1 is released
from CSFV-infected macrophages [38]. Recent studies
have demonstrated that the highly active proinflamma-
tory cytokine IL-1β is essential in antiviral host defense.
Despite its essential role in host defense, high levels of
IL-1β are also responsible for unwanted effects like fever,
vasodilatation, hypotension or acute lung injury by fluid
accumulation in response to viral infection [39]. In the
transgenic mouse model, HCV NS5A could impair both
the innate and the adaptive immune response to pro-
mote chronic HCV infection [16] through the blockade
of IFN-β induction by NS5B [40], the inhibition of
interferon-alpha signaling [41], the competed binding to
CypA [42], and a up-regulation of IL-8 [15]. The finding
in vivo suggested that CSFV infection promoted serum
levels of IFN-α, IL-8 and TNF-α in 6-month-old pigs, in-
dicating the involvement of these cytokines in the im-
mune response during CSFV infection with strains of
different virulence [43]. Our previous study in vitro re-
vealed that high virulent CSFV shimen strain could sig-
nificantly promote the secretion of IFN-α, IFN-β, IL-1β,

a
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Fig. 2 Changes of the RIG-I signaling pathway in CSFV NS5A-transfected
cells. In PAMs, 1 μg CSFV NS5A was transfected for 24 h, then cells were
untreated or treated with 100 μg/ml poly(I:C). After 24 h culture, extracts
of circa 20 μg total cells were prepared and subjected to Western
Blotting with antibodies specific for NS5A (a), RIG-I, MDA5 and
IPS-1 in PAMs (b). Anti-β-actin was served as an internal control.
Band ratio of RIG-I (c), MDA5 (d) and IPS-1 (e) was analyzed
using Image J software. The experiment was repeated three
times and the figure here shows a representative experiment.
An asterisk indicates a statistically significant difference from
uninfected cells, *P < 0.05 and **P < 0.01
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IL-6 and TNF-α through the activation of the RIG-I sig-
naling pathway [44]. The present study further demon-
strated that the stable expressed CSFV NS5A had no
influence on the expressions of inflammatory cytokines
IL-1β, IL-6 and TNF-α in PAMs without poly (I:C)
stimulation. Moreover, CSFV NS5A protein could sup-
press IL-1β, IL-6 and TNF-α expression induced by poly
(I:C).

Conclusion
In summary, these findings provided novel informa-
tion on the function of the poorly characterized CSFV
NS5A and provided an insight into the mechanism by
which CSFV NS5A could alter intracellular events as-
sociated with CSFV NS5A over-expression in vitro. It
was suggested that CSFV NS5A could regulate poly(I:C)-
stimulated inflammatory cytokine secretion by modulating
the NF-κB signaling, which might help to find new ap-
proaches to prevent the establishment of a chronic CSFV
infection.

Methods
Cell culture
Porcine alveolar macrophages (PAMs) were purchased
from Cell Resource Center of Shanghai College of Health
Sciences, Chinese Academy of Sciences (Shanghai, China).
PAMs were maintained in RPMI 1640 supplemented with
10 % (vol/vol) fetal bovine serum (FBS), penicillin (100
units/mL), and streptomycin (100 mg/mL). All cells were
cultured at 37 °C in a humidified 5 % CO2 incubator.

Plasmid transfection
Plasmid pEGFP-NS5A was constructed in our labora-
tory. Approximately 1 × 106 PAMs were plated into the
well of a six-well tissue culture plate 24 h prior to trans-
fection. Then cells were transfected with 1 μg pEGFP-N1
(the control without expressing NS5A gene) or pEGFP-
NS5A. The Lipofectamine™2000 transfection reagent
(Invitrogen, USA) was used for all transfection experi-
ments. After 24, 36, 48 and 60 h transfection, the expres-
sion of NS5A protein was determined by Western Blot.

Western Blot analysis
Western Blot analysis was carried out according to our
previous study (Dong et al., 2013). In brief, six-well
dishes of cells were transfected with pEGFP-N1 (the
control) or pEGFP-NS5A plasmid at concentration of
1 μg for 24 h. Then cells were treated with 100 μg/mL
poly(I:C). At indicated time periods, protein were ex-
tracted from cells, separated and transferred to the
membranes. Following the incubation with primary anti-
bodies monoclonal anti-MDA5 (1:1000, Sigma, USA),
monoclonal anti-RIG-I (1:1000, Imgenex, USA), poly-
clonal anti-IPS-1 (1:400, Abgent, USA), polyclonal
anti-NF-κB/p65 (1:1000, Thermo, USA), and poly-
clonal anti-IkBα (1:1000; Santa Cruz, USA), respectively,
the membranes were washed and incubated with HRP-
conjugated anti-rabbit secondary antibody (diluted 1/
100000, Bioworld, USA). Then the membranes were de-
veloped with enhanced chemiluminescence (ECL) sub-
strate (Beyotime, China) and exposed to X-ray film. As a

a

b

Fig. 3 Changes of IkBα degradation in CSFV protein NS5A transfected cells. Cells were treated as demonstrated in Fig. 2. Expression of IkBα in PAMs
was measured by Western Blotting with antibodies specific for IkBα (a), and analyzed using Image J software (b). The representative results are shown
of one of three separate experiments. An asterisk indicates a statistically significant difference from uninfected cells, *P < 0.05 and **P < 0.01

Dong and Tang Virology Journal  (2016) 13:101 Page 6 of 9



a

b

c

Fig. 4 (See legend on next page.)

Dong and Tang Virology Journal  (2016) 13:101 Page 7 of 9



control, gels were stripped and re-probed with antibody
against monoclonal β-actin (1:1000, Beyotime, China) in
this study. Band density was quantitated using Image J
software.

Immunofluorescent staining
In order to further verify the effects of NS5A on the nu-
clear accumulation of NF-κB, the subcellular localization
of NF-κB in NS5A-expressing cells with or without
poly(I:C) stimulation was examined by indirect immuno-
fluorescence staining as demonstrated in our published
article [44].

ELISA
PAMs were seeded in six-well plates one day prior to
virus infection and transfected with CSFV NS5A plas-
mid for 24 h. Then cells were treated with 100 μg/mL
poly(I:C) (Sigma, USA) for 24 h. Cell culture superna-
tants were collected and used to analyze the production
of IL-1β, IL-6 and TNF-α protein using enzyme-linked
immunosorbent assays (ELISAs) kits (Uscn Life Science
Inc, China) according to manufacturer’s protocols.

NF-κB luciferase reporter assay
NF-κB Luciferase reporter assay was done as described
in previous study [45]. To determine NF-κB luciferase
activities, cells were infected with pNF-κB-luc (Beyotime,
China) for 16 h. Then cells were transfected with NS5A
plasmid for 24 h with/without poly(I:C). Cell protein
were extracted using cell lysis buffer (Cell Signaling
Technology, Danvers, MA, USA), and luciferase assays
were performed using a Microplate Luminometer
(Promega, Madison, WI, USA). Extract protein concen-
trations were normalized using Bio-Rad protein assay
kits (Bio-Rad, Hercules, CA, USA).

Statistical analysis
Results of the present study were analyzed by one-
way analysis of variance and by Student’s t test with
Bonferroni correction. All numerical data were collected
from at least three separate experiments. Results were
expressed as means ± standard deviation of the means.
Results were considered statistically significant when a
P value of less than 0.05 was obtained.
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