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Abstract

Background: Small mammals such as bats and rodents have been increasingly recognized as reservoirs of novel
potentially zoonotic pathogens. However, few in vitro model systems to date allow assessment of zoonotic viruses
in a relevant host context. The cotton rat (Sigmodon hispidus) is a New World rodent species that has a long-
standing history as an experimental animal model due to its unique susceptibility to human viruses. Furthermore,
wild cotton rats are associated with a large variety of known or potentially zoonotic pathogens.

Methods: A method for the isolation and culture of airway epithelial cell lines recently developed for bats was
applied for the generation of rodent airway and renal epithelial cell lines from the cotton rat. Continuous cell lines
were characterized for their epithelial properties as well as for their interferon competence. Susceptibility to
members of zoonotic Bunya-, Rhabdo-, and Flaviviridae, in particular Rift Valley fever virus (RVFV), vesicular stomatitis
virus (VSV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV) was tested. Furthermore, novel arthropod-
derived viruses belonging to the families Bunya-, Rhabdo-, and Mesoniviridae were tested.

Results: We successfully established airway and kidney epithelial cell lines from the cotton rat, and characterized
their epithelial properties. Cells were shown to be interferon-competent. Viral infection assays showed high-titre
viral replication of RVFV, VSV, WNV, and TBEV, as well as production of infectious virus particles. No viral
replication was observed for novel arthropod-derived members of the Bunya-, Rhabdo-, and Mesoniviridae
families in these cell lines.

Conclusion: In the current study, we showed that newly established cell lines from the cotton rat can serve
as host-specific in vitro models for viral infection experiments. These cell lines may also serve as novel tools
for virus isolation, as well as for the investigation of virus-host interactions in a relevant host species.
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Background

Infectious diseases are a major threat to human health and
remain among the leading causes of death and disability
worldwide [1]. In the last decade, a variety of viruses such
as Ebola virus, Hendra virus, Nipah virus, West Nile virus
(WNV), and severe acute respiratory syndrome (SARS)-
and Middle East respiratory syndrome (MERS)-corona-
viruses have emerged or re-emerged, all of which are of
zoonotic origin [2—5].

There have been a large number of novel, potentially
zoonotic viruses that have been shown to be associated
with small mammals, especially those of the orders Chir-
optera and Rodentia, [4—14]. However, the isolation and
propagation of these novel viruses has been unsuccessful
in most instances, which limits further evaluation of
their zoonotic risk.

Upon characterizing these novel viruses, it has become
clear that most available animal models such as the domes-
tic mouse or rat are of limited use, as they do not reflect the
evolutionary conserved pathogen-host interaction that is a
key trait of many reservoir-restricted viruses. In light of the
large species range in which novel and potentially zoonotic
viruses have been discovered, there remains a need for suit-
able in vitro models to understand virus-host interactions,
interspecies spillover, and general viral pathogenicity [15].
Additionally, many of the natural reservoir hosts are pro-
tected or cannot be held in captivity, which limits in vivo
studies in relevant hosts. Therefore, species-specific cell
culture models may serve as acceptable surrogates [16—19].

The cotton rat (Sigmodon hispidus) is a unique example
of a rodent species that is a well-established animal model
to study viral pathogenesis and is also associated with a
large range of zoonotic viruses in the wild [20-22].
Experimental studies in cotton rats have been performed
for a large variety of human viruses, including important
respiratory pathogens such as influenza or parainfluenza
viruses, respiratory syncytial virus, and human metapneu-
movirus [23-33]. Furthermore, in the wild, cotton rats are
associated with a variety of known or potential zoonotic
viruses, such as classical rodent-borne viruses from the
genera Hantavirus and Arenavirus, as well as members of
the family Flaviviridae, such as WNV and St. Louis en-
cephalitis virus (SLEV) [34-52].

To evaluate whether the broad viral susceptibility seen
in both animalmodel and wild cotton rats was also
reflected in in vitro cell culture models, we generated con-
tinuous cell lines from the respiratory and renal tracts of a
cotton rat, and assessed their use for virus replication
studies of known and potentially novel zoonotic viruses.

Methods

Generation of epithelial cell lines

Tissues from a laboratory-bred 3-month-old male cotton
rat (S. hispidus) were kindly provided by the Institute for
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Medical Microbiology, Immunology and Parasitology
(IMMIP), University of Bonn Medical Centre, Bonn,
Germany. Ethical clearance was obtained from the respect-
ive authorities (No. AZ 84-02.05.20.13.114). The trachea
and both kidneys of the euthanized cotton rat where re-
moved in toto. All subsequent steps were then performed
under sterile conditions using a laminar flow hood. Briefly,
organ specimens were cleaned from surrounding tissue
and then either sliced or roughly chopped with a sterile
blade. Tissue slices were placed in 6-well cell culture plates
at 37 °C in primary cell media. For tracheal cells, airway
epithelial cell growth medium was used containing the
following supplements: 0.004 mL/mL bovine pituitary
extract, 10 ng/mL recombinant human epidermal
growth factor, 5 pug/mL recombinant human insulin,
0.5 pg/mL hydrocortisone, 0.5 pg/mL epinephrine,
6.7 ng/mL triiodo-L-thyronine, 10 pg/mL human holo-
transferrin, and 0.1 ng/mL retinoic acid (Promocell,
Heidelberg, Germany). For kidney cells, renal epithelial
cell growth medium was used containing the following
supplements: 0.05 mL/mL foetal calf serum (FCS), 10 ng/
mL recombinant human epidermal growth factor, 5 ug/mL
recombinant human insulin, 36 ng/mL hydrocortisone,
0.5 pg/mL epinephrine, 4 pg/mL triiodo-L-thyronine, and
5 pg/mL human holo-transferrin (Promocell). Both media
were supplemented with 1 % penicillin/streptomycin
(Life Technologies GmbH, Darmstadt, Germany), 0.5 % of
ofloxacin (Tarivid, Sanofi-Aventis, Frankfurt, Germany)
and 1 % amphotericin B (PAA, Pasching, Austria) to avoid
bacterial and fungal contamination during primary cell
isolation and growth.

After the outgrowth of primary cells from organ speci-
mens, the medium was changed every 2 days, and cell out-
growth was regularly observed. When nearly confluent,
cells were immortalized by lentiviral transduction of the
large T antigen of SV40 as described previously [17, 19, 53].
After immortalization, cells were passaged and stock-frozen
until further use. All cell cultures were genotyped by poly-
merase chain reaction (PCR) amplification and sequencing
of the mitochondrial cytochrome ¢ oxidase subunit I and
cytochrome b oxidase subunit I genes [54, 55]. To obtain
single cell clones, cells were subcloned by end-point-
limiting dilution and adapted to Dulbecco’s modified Eagle’s
medium (DMEM) (PAA, Colbe, Germany) with 4.5 g/L
glucose (PAA), supplemented with 10 % FCS (PAA),
2 mM L-glutamine, 1 mM sodium pyruvate (PAA), nones-
sential amino acids (NEAA), 1 % penicillin/streptomycin
(100X concentrate contains 10,000 units/mL penicillin
and 10 mg/mL streptomycin) (Life Technologies),
and 1 % amphotericin B as described previously [17, 19].

Immunofluorescence assay
Cells were seeded on glass slides, and were washed the
next day with PBS and fixed with acetone-methanol (1:1)
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for 5 min. Then, the acetone-methanol was removed and
cells were washed again with PBS. Each slide was subse-
quently incubated overnight at 4 °C with 250 pL primary
mouse monoclonal antibodies against pan-cytokeratin
(Abcam ab7753, Cambridge, UK) and rabbit polyclonal
antibodies against zonula occludens-1 (ZO-1 Mid)
(Invitrogen 40-2200, Carlsbad, CA, USA) diluted 1:500 in
PBS. Cells were washed and then incubated for 30 min at
25 °C with 125 pL cyanine 3 (Cy3)-labelled donkey-anti-
mouse and Cy2-labelled donkey-anti-rabbit secondary
antibodies (Dianova, Hamburg, Germany) diluted 1:500 in
PBS. Cells were washed and then nuclei were counter-
stained with DAPI diluted at 1:1000 in PBS for 1 min. All
images were obtained with a 207 Motic AxioVision micro-
scope (Zeiss, Jena, Germany).

Virus infection assays

Immortalized S. hispidus cells were seeded in 24-well
plates at a density of 4x10° cells/mL and grown in
DMEM containing 5 % FCS and supplements as de-
scribed above. The following day, cells were infected
with vesicular stomatitis virus (VSV) strain Indiana or
Rift Valley fever virus (RVFV) clone 13 at multiplicity of
infections (MOIs) of 0.1 and 0.001 for both viruses. Cells
were infected with WNYV strain New York or tick-borne
encephalitis virus (TBEV) strain K23 with MOIs of 0.01
and 0.001. Infectious units of the viral stocks and in the
supernatant at the end of each experiment were deter-
mined by plaque-assays with Avicel overlays for RVFV
and VSV as described previously [56], and with agarose
overlays for WNV and TBEV as described previously [57].

For virus infection experiments, the medium was re-
moved and cells were inoculated with virus diluted in
Optipro serum-free medium (Life Technologies) for 1 h at
37°C. Then, cells were washed twice with PBS. Growth
medium was added and supernatants were harvested 0, 12
and 24 h after infection (hpi) for VSV; 0, 24 and 48 hpi for
RVFV and 0, 6, 24 and 48 hpi after infection for WNV
and TBEV. All virus infection experiments were per-
formed in three individual replicates.

Viral RNA was extracted from cell culture superna-
tants with the Nucleospin RNA Virus kit according to
the manufacturer’s instructions (Machery-Nagel, Diiren,
Germany). PCR was performed using the SuperScript III
One-Step RT-PCR System with Platinum Taq DNA
Polymerase (Invitrogen). Cycling conditions for VSV and
RVFV quantitative reverse-transcription (qRT)-PCR
were as follows: reverse transcription for 15 min at 55 °C,
initial denaturation for 2 min at 95 °C, and 45 cycles of de-
naturation for 15 s at 95 °C and primer annealing/elong-
ation for 30 s at 58 °C. Cycling conditions for WNV qRT-
PCR were as follows: reverse transcription for 30 min at
45 °C, initial denaturation for 5 min at 95 °C, and 45 cycles
of denaturation for 5 s at 95 °C and primer annealing/
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elongation for 35 s at 57 °C. qRT-PCR was carried out
using the LightCycler 480 Real-Time PCR System (Roche,
Basel, Switzerland). Primers and probes are available upon
request.

To test the susceptibility of the S. hispidus cell lines to
a variety of novel arthropod-derived viruses, cells were
seeded in 24-well plates at a density of 4 x 10° cells/mL.
The following day, cells were infected with a titrated C6/
36 cells-generated virus stock of Ferak [58], Moussa
[59], or Cavally [60] virus at an MOI of 1.0. After infec-
tion, cells were observed daily for the presence of cyto-
pathic effects (CPE). Supernatants from all infected cells
were passaged onto fresh cells every 7 days for a total of
three passages. Viral RNA was extracted from cell cul-
ture supernatants, and the presence of specific viral
RNA was evaluated by qRT-PCR as described above.

Assessment of interferon competence

To assess the interferon (IFN) competence of the cells,
cells were seeded in 24-well plates at a density of 4 x 10°
cells/mL and grown in DMEM containing 10 % FCS and
supplements as described above. The following day, cells
were either transfected in triplicates with 1 ul of total
RNA from VSV-infected cells (VSV-RNA) using the X-
treme GENE siRNA transfection reagent (Roche, Basel,
Switzerland) to stimulate the IFN response of the cells
[61] or cells were left untreated as control. Eight hours
after transfection, all cells were infected with the IFN-
sensitive RVFV clone 13 carrying a Renilla luciferase
[62]. 16 h after infection, cells were treated with lysis
buffer and Renilla luciferase activity was measured in a
microplate reader.

Results

S. hispidus and associated viruses

In order to assess the role of cotton rats as an experi-
mental animal model for viral diseases and as a reservoir
of zoonotic viruses in the wild, a review of the literature
was performed. All studies that described cotton rats as
experimental animal models for viral research, and all
studies that described an association between viruses
(via direct detection by PCR, or viral isolation in cell
culture and antibody findings) and wild cotton rats were
included (Table 1).

Establishment of S. hispidus cell lines

Outgrowth of primary airway and kidney epithelial cells
from cotton rat tissue samples was observed 3-5 days
after the initiation of the cell culture. Outgrowing cells
displayed a homogeneous, cobblestone-like morphology
typical of epithelial cells in both the airway and renal epi-
thelial cell cultures (Fig. 1). Successful immortalization
was achieved by lentiviral transduction of the large T
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Table 1 Viruses associated with S. hispidus as experimental animal models or natural reservoir hosts (adapted and supplemented

from that of Niewiesk et al. [22])

Virus family Virus genus

Virus species References

Experimental animal model

Adenoviridae Mastadenovirus Human adenovirus C [28, 30]
Herpesviridae Simplexvirus Herpes simplex virus type 1 [72]
Orthomyxoviridae Influenza virus A Avian and swine influenza viruses [23, 24, 73]
Influenza virus B [24, 73]
Paramyxoviridae Metapneumovirus Human metapneumovirus [25, 32, 33]
Morbillivirus Measles virus [20, 74-77]
Pneumovirus Respiratory syncytial virus [25, 29, 78]
Respirovirus Human parainfluenza virus type 3 [26, 27]
Coronaviridae Coronavirus Severe acute respiratory syndrome-associated coronavirus [31]
Picornaviridae Enterovirus Poliovirus [79, 80]
Retroviridae Lentivirus Human immunodeficiency virus type 1 [81]
Natural reservoir host
Arenaviridae Arenavirus Guanarito virus [47]
Pirital virus [38]
Tamiami virus [43-46]
Whitewater Arroyo virus [48]
Bunyaviridae Hantavirus Black Creek Canal virus [34, 35]
Bayou virus [37]
Muleshoe virus [39]
Orthobunyavirus Zegla virus [68]
Jutiapa virus [69]
Flaviviridae Flavivirus San Perlita virus [69]
St. Louis encephalitis virus [51, 71]
West Nile virus [52]
Cowbone Ridge virus [70]
Picornavirida Cardiovirus Encephalomyocarditis virus [50]
Rhabdoviridae Vesiculovirus Vesicular stomatitis virus [49]
Togaviridae Alphavirus Highlands J virus [51]
Venezuelan equine encephalitis virus [40-42]
Eastern equine encephalitis virus [36]

antigen of SV40 when the first patches of primary cells were
visible in the cell culture dishes. Both airway epithelial (sub-
sequently termed ShispAEC.B) and renal epithelial (subse-
quently termed ShispREC.B) cell lines showed rapid
increases in cell growth 1-2 weeks after immortalization.
To generate a homogeneous cell line, subclones were
obtained and further characterized. By endpoint-limiting di-
lution, single-cell clones were selected and two subclones
were used for further experiments, which were subsequently
termed ShispAEC.B-2 and ShispREC.B-6. Both of these cell
lines displayed epithelial cell morphology. The immortalized
cell lines and the subclones generated in this study showed

expression of pan-cytokeratin and zonula occludens 1 pro-
tein, confirming that the cells were of epithelial origin. Cyto-
chrome b PCR amplification and sequencing of the product
confirmed the host species (data not shown).

Interferon competence of S. hispidus cell lines

ShispAEC.B-2 and ShispREC.B-6 were tested for their
ability to respond to external stimulation of the inter-
feron system. In order to stimulate the IFN response
cells were transfected with total RNA from VSV-infected
cells which was shown to trigger the RIG-I and MDAS5-
dependent IFN signalling cascade [61]. In comparison to
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Fig. 1 a Laboratory-bred cotton rats. b Distribution range of S. hispidus (map adapted from IUCN Red List of Threatened Species,
http://www.iucnredlist.org). ¢ Light microscopy image of subclone ShispRECB-6. d Immunofluorescence staining for the following epithelial
cell markers: pan-cytokeratin (Pan-CK) (red) and zonula occludens-1 (ZO-1) (green). Nuclei were counterstained with DAPI (blue)
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untreated cells (Fig. 2, light column), VSV-RNA trans-
fected cells (Fig. 2, dark columns) showed a 10-fold
(renal cells) to 500-fold (airway cells) reduced replication
of a highly IFN-sensitive RVFV-Renilla reporter virus.
The pronounced decrease of RVFV-Renilla replication
reflects the efficient induction of an antiviral state in
both cell cultures. Overall, these data show that both
subclones harbour an intact IFN response to external
stimulation with airway cells showing a higher stimula-
tion than renal epithelial cells.

Infection of S. hispidus cells with VSV and RVFV

ShispAEC.B-2 and ShispREC.B-6 were infected with
VSV and RVFV with two different MOIs, and the super-
natants were harvested at different time points (Fig. 3).
Vero E6 cells served as controls and were treated in par-
allel. Both cell lines exhibited a CPE and cell death after
VSV and RVEFV infection (data not shown). A 5.0 log in-
crease in VSV viral RNA genome equivalent (GE) copies
was seen after infection with an MOI of 0.1 for the air-
way epithelial cells, and a 4.1 log increase in GE copies

was observed for the renal epithelial cells (Fig. 3a). Vero
E6 cells showed an increase in GE copies of almost 6 log
with the same experimental set-up. Upon infection with
an MOI of 0.001, the maximum increases in log GE cop-
ies were approximately one log lower than those with an
MOI of 0.1, with the highest GE copy numbers reached
in Vero E6 cells (5.3 log increase), followed by the airway
epithelial cells (4.1 log increase), and the renal epithelial
cells (3.5 log increase). Production of infectious VSV
particles was assessed 24 h after infection by titration of
supernatants on Vero E6 cells, resulting in more than 8
log PFU/mL in all three cell lines after infection with a
MOI of 0.1 and 0.001 (Fig. 3b).

Upon infection with RVFV at an MOI of 0.1, a max-
imum increase of 2.2 log in viral RNA GE copies was
observed in the airway epithelial cells, and a 2.9 log in-
crease in GE copies was seen for the renal epithelial
cells. Vero E6 cells showed an increase of 2.7 log GE
copies. Infections with a lower MOI of 0.001 showed
comparable growth kinetics with slightly lower max-
imum increases in viral RNA (Fig. 3c). Production of
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infectious RVFV particles was assessed 48 h after infection
by titration of supernatants on Vero E6 cells. The highest
number of plaque-forming units was seen in Shis-
pREC.B-6 with 6.7 log PFU/mL, followed by Vero E6 and
ShispAEC.B-2 with 6.0 log and 4.5 PFU/mL after infection
with an MOI of 0.1. Comparable results were observed
after infection with a lower MOI resulting in 5.7; 5.1 and
3.7 log PFU/mL, respectively, for ShispREC.B-6, Vero E6
and ShispAEC.B-2 (Fig. 3d).

Infection of S. hispidus cells with WNV and TBEV

To assess S. hispidus cell susceptibility to viruses from the
Flaviviridae family, infection experiments with WNV
strain New York and TBEV were performed with two dif-
ferent MOIs, and the supernatants were collected at differ-
ent time points. Vero E6 cells served as controls and were
treated in parallel. Upon infection with TBEV, both S. hispi-
dus cell lines and Vero E6 cells showed a CPE and rapid
cell death within 48 h (data not shown). The maximum
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Fig. 3 Viral infection studies with VSV (a, b) and RVFV (c, d) in subclones of immortalized S. hispidus airway epithelial cells (subclone 2, designated
ShispAECB-2), S. hispidus renal epithelial cells (subclone 6, designated ShispREC.B-6), and Vero E6 cells. Viral replication was evaluated by gRT-PCR
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increase in viral RNA GE copies was 7.2 log for the airway
epithelial cells, 7.6 log for the renal epithelial cells, and 8.4
log for Vero E6 cells after infection with a MOI of 0.01.
Comparable growth kinetics were seen after infection with
a MOI of 0.001. Production of infectious TBEV particles
was assessed 48 h after infection by titration of superna-
tants on BHK-] cells. TBEV infectious particles were pro-
duced by all cell lines in comparable amounts of
approximately 6 log PFU/mL after infection with a MOI of
0.01 and 0.001 (Fig. 4b).

For WNYV, no increase in viral RNA was seen for the air-
way epithelial cells at either MOL For the renal epithelial
cells, a maximum increase of viral RNA GE copies of 2.2
log was observed, and a 4.0 log increase in GE copies was
seen for Vero E6 cells. Comparable growth curves were
seen for the lower MOI of 0.001 Production of infectious
WNV particles was assessed 48 h after infection by titration
of supernatants on BHK-] cells. The highest number of
plaque-forming units was seen in VeroE6 cells with ap-
proximately 6 log PFU/mL, followed by lower titers in Shis-
pREC.B-6 with 4.0 and 4.6 PFU/mL after infection with an
MOI of 0.01 and 0.001, respectively. No production of in-
fectious particles was seen in ShispAEC.B-2 cells (Fig. 4d).

Infection of S. hispidus cells with novel insect-derived viruses
To assess the susceptibility of S. hispidus cell lines to
members of the Rhabdo-, Bunya-, and Mesoniviridae
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families, further infection experiments were performed
with recent novel virus isolates from insects [58—60].
Both airway and renal epithelial cells were inoculated
with isolates of Moussa, Ferak, and Cavally viruses with
a MOI of 1. No CPE was seen with daily observation.
Supernatants were tested by viral specific qRT-PCR at the
end of each passage, which did not reveal an increase in
viral RNA, thus arguing against replication of these viruses
in the cell lines generated in this study (Fig. 5).

Discussion

In the work presented herein, we generated epithelial cell
lines from the respiratory and renal tracts of a cotton rat
due to its susceptibility to a broad range of human viruses,
as well as the association of multiple important and emer-
ging zoonotic viruses with this species.

S. hispidus is a rodent species with a long-standing
history as an experimental animal model for virus re-
search. Although the first animal experiments on cotton
rats date back to the 1940s, only two cell lines from cot-
ton rats are available to date. However, in contrast to ex-
perimental animals, cell lines are a less laborious model
system, less expensive, and can be used in large-scale
viral experiments such as in virus isolation trials without
the ethical considerations that are involved in animal ex-
periments. From the cotton rat, an osteoblastic cell line
was previously derived from an osteogenic sarcoma
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(CCRT), of which two lymphoid cell lines (CR-T 1 and
CR-T 2) were also derived [22]. However, these cell lines
are used for the induction of tumours and as hybridoma
cells to produce antibodies. No evaluation of these cells
for their use in virus research has been performed des-
pite a large range of viruses that have been investigated
in S. hispidus animal experiments. Moreover, these cell
lines are tumour cells that may not adequately resemble
cells in vivo to study virus-host interactions, and they
are not derived from target cells that are relevant to the
natural course of a viral infection, such as epithelial cells.
The value of species-specific cell lines has been shown
particularity in the field of bat-borne viruses, where the
use of bat cell lines has contributed significantly to stud-
ies of novel viruses, virus evolution, and virus adaptation
during cell culture as well as replicative capacity and ex-
pression of host receptors [16, 53, 56, 63—65] (for a re-
view see [18]). Cell lines derived from potential reservoir
and intermediate hosts can serve as a valuable surrogate
to study the replicative capacity of emerging zoonotic vi-
ruses, as has been demonstrated for the recently
emerged viruses MERS-CoV and Ebola virus by work
from our group [16, 56, 63, 66, 67].

In the current study, we evaluated the replicative cap-
acity of viruses belonging to the four families Bunyaviri-
dae, Rhabdoviridae, Flaviviridae, and Mesoniviridae in
S. hispidus epithelial cell lines. Several members of the
Bunyaviridae family were already shown to infect cotton
rats, including Black Creek Canal virus (BCCV), which
belongs to the genus Hantavirus. This virus was isolated
from the lungs and spleens of cotton rats, and it was fur-
ther shown by serologic analysis that S. hispidus was the
primary rodent reservoir of BCCV [34, 35]. Other hanta-
viruses associated with S. hispidus are Bayou virus and
Muleshoe virus [37, 39]. Additionally, from the genus
Orthobunyavirus, an isolate termed Zegla virus was ob-
tained from S. hispidus [68]. Here we showed that S. /is-
pidus epithelial cells are highly susceptible to RVFV, a
bunyavirus belonging to the genus Phlebovirus, with
comparable growth kinetics to interferon-deficient Vero
E6 cells. Furthermore, we tested the susceptibility of S.
hispidus cells to a recently isolated bunyavirus termed

Ferak virus that belongs to the sister taxon of the genus
Orthobunyavirus. Interestingly, no growth of this virus
was seen in the S. hispidus cell lines, suggesting an insect-
specific replication cycle for this virus [58]. The further
use of these cell lines for rodent-associated bunyaviruses
such as hantaviruses should be evaluated in light of the
promising findings for RVFV demonstrated herein.

For the Rhabdoviridae family, there have been sero-
logical findings in cotton rats that suggest a role for this
species in the natural cycle of these viruses. Specifically,
it was shown that neutralizing antibodies to both Indi-
ana and New Jersey serotypes were found in S. hispidus
in a VSV enzootic area in Costa Rica. Antibodies against
either one or both serotypes were only found in S. hispi-
dus, and not in exposed Mus musculus [49]. Our in vitro
results showed that VSV replicates readily in S. hispidus
cell lines with high replication titres of up to almost 11
log GE copies, which is approximately only one log
lower than that of the replication titres seen in Vero E6
cells. These findings suggest that the S. hispidus cell cul-
ture models could serve as suitable in vitro models for
further studies on VSV. To further assess the replication
capacity of other rhabdoviruses in S. hispidus cells, the
insect-derived Moussa virus was used [59]. Moussa virus
was isolated from mosquitoes that also feed on mam-
mals, but thus far, viral replication in human, hamster,
or porcine cells has not been successful [59]. However,
in line with the findings of a study by Quan et al., no
replication of Moussa virus was seen in our experiments
with S. hispidus cells. Additionally, another insect-derived
isolate of a novel virus family termed Mesoniviridae was
tested on our S. hispidus cell lines. Here, no replication of
Cavally virus on the newly generated cells was seen.

A strong association has been reported between the
cotton rat and several zoonotic flaviviruses, including
WNV, SLEV, San Perlita virus, and Cowbone Ridge virus
[51, 52, 69, 70]. Furthermore, cotton rats have been dis-
cussed as potential reservoir hosts in the wild for arbovi-
ruses, by which infected viremic cotton rats serve as a
reservoir for arthropods that feed on them. In our cell
culture experiments with TBEV and WNYV, we saw repli-
cation and production of infectious virus particles in
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both S. hispidus cell lines for TBEV and in the kidney
epithelial cells for WNV. Moreover, both replication ti-
tres were only one log lower than that for Vero E6 cells,
indicating a high susceptibility of these cell lines to flavi-
viruses. Additionally, we have used S. hispidus cell lines
for the evaluation of a novel sylvatic isolate of SLEV in
an earlier study [71]. Here, it was shown that the en-
demic strain of SLEV, termed MSI-7, replicated in S. his-
pidus kidney cells. In contrast, the novel sylvatic SLEV
isolate, termed Palenque strain, did not show any repli-
cation. As S. hispidus has been described as a natural
reservoir host for SLEV, these findings suggest that the
sylvatic isolate has not yet adapted to hosts that live out-
side the primary rain forest, whereas the endemic strain
has [71]. In line with the findings obtained for SLEV, our
results showed that WNV only replicated in kidney cells
but not in airway epithelial cells, suggesting that kidney
cells are more susceptible to this virus than airway cells.
Taken together, the multiple in vitro findings presented
herein for flaviviruses provide evidence that cotton rats
may be reservoirs for multiple members of Flaviviridae
in the wild. Therefore, S. hispidus cell lines, especially S.
hispidus kidney epithelial cells, may provide a useful
model for in vitro virus-host interaction studies.

Conclusions

Newly generated epithelial cell lines from S. hispidus are
able to support the replication of virus species from im-
portant zoonotic virus families, and may therefore serve
as valuable tools for studies focusing on the isolation of
novel viruses and virus-host interactions.
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