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Abstract

HSV-1 replication process.

Background: Replication of viral genome is the central event during the lytic infectious cycle of herpes simplex
virus 1 (HSV-1). However, the details of HSV-1 replication process are still elusive due to the limitations of current
molecular and conventional fluorescent microscopy methods. Stimulated emission depletion (STED) microscopy is
one of the recently available super-resolution techniques allowing observation at sub-diffraction resolution.

Methods: To gain new insight into HSV-1 replication, we used a combination of stimulated emission
depletion microscopy, fluorescence in situ hybridization (FISH) and immunofluorescence (IF) to observe the

Results: Using two colored probes labeling the same region of HSV-1 genome, the two probes highly
correlated in both pre-replication and replicating genomes. In comparison, when probes from different
regions were used, the average distance between the two probes increased after the virus enters replication,
suggesting that the HSV-1 genome undergoes dynamic structure changes from a compact to a relaxed
formation and occupies larger space as it enters replication. Using FISH and IF, viral single strand binding
protein ICP8 was seen closely positioned with HSV-1 genome. In contrast, ICP8 and host RNA polymerase |I
were less related. This result suggests that ICP8 marked regions of DNA replication are spatially separated
from regions of active transcription, represented by the elongating form of RNA polymerase Il within the viral
replication compartments. Comparing HSV-1 genomes at early stage of replication with that in later stage, we
also noted overall increases among different values. These results suggest stimulated emission depletion
microscopy is capable of investigating events during HSV-1 replication.

Conclusion: 1) Replicating HSV-1 genome could be observed by super-resolution microscopy; 2) Viral
genome expands spatially during replication; 3) Viral replication and transcription are partitioned into
different sub-structures within the replication compartments.

Keywords: HSV-1 replication, STED, IF, FISH, RNA Pol I, ICP8

Background

HSV-1, a virus of the Herpesviridae family [1], possesses a
linear double-stranded 152-kbp genome with three origins
of DNA replication and approximately 75 open-reading
frames [2]. HSV-1 is a common but important human
pathogen, infecting more than 80 % of the population,
resulting in life-long recurrent disease in a third of
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infected individuals [3, 4]. The HSV-1 genome consists of
unique and repeated sequences (Fig. 1a), with two cova-
lently joined segments, L and S, each comprises a unique
region (Up, and Us) flanked by a set of inverted repeats
(TRy and IRy, TRg and IR, respectively) [1]. Following
viral infection and entry of epithelial cell in vivo, the
HSV-1 genome is released into the host nucleus and
initiates lytic infection (productive infection), after
which virus can infect innervating axons of sensory
neurons and establish latent infections in the peripheral
nervous system [5, 6]. The former is characterized by
active expression of almost all viral genes in a highly
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Fig. 1 Resolution of STED microscopy is higher than confocal microscopy. All cells were infected with HSV-1 17+ strain for 6 h, then prepared for
FISH. In first line, signals are captured from red channel, which were hybridized with Biotin labeled probe; Second line, signals are captured from
green channel, which were hybridized with DIG labeled probe; Third line, images are merged to examine colocalization situation of two color
signals; Fourth line, partial enlarged detail of figures in the third line are shown; Fifth line, images from the third line were analyzed, which were
done with Image-Pro Plus 6.0 software (USA). a: A brief description of HSV-1 genome structure. Relative to HSV-1 genome, probe locates at the
two terminus, which contains TR, IR., IRs, TRs, Us and partial U, region. The same probe is labeled with either DIG or Biotin to generate two
different colors. b-e, f-k: Cells were infected at a MOI of 0.1 PFU/cell. At early stage of HSV-1 replication, images are captured with confocal
microscopy and STED microscopy, respectively, and then analyzed. I-o, p-u: Cells were infected at a MOI of 5 PFU/cell. At late stage of HSV-1
replication, images are captured with confocal microscopy and STED microscopy, respectively, and then analyzed. Host cell nucleus are indicated
with white dotted lines. i, j, s, t: Higher zooms of regions inside the white rectangles are shown. Scale bars, 2.5 um. Rr: correlation coefficient;

R: overlapping coefficient; k: antigen contribution
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ordered temporal cascade, while the latter is character- The HSV-1 genome contains three origins of DNA
ized by restricted viral gene expression, the absence of  replication: one copy of oril. (purple oval) located at the
viral DNA synthesis and infectious virus. center of the Up region and two copies of oriS (orange
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oval) located in repeated sequences flanking the Ug
region (Fig. 1a) [7]. Upon entering the cell nucleus, the
linear viral genome circularizes and DNA replication
initiates at these origins. Two competing hypotheses
exist to account for the mode of replication. In the linear
replication model, circular genomes do not form wild-
type virus, which is supported by a study using the
Gardella gel method [8]. The circular model proposes
that the replication initially proceeds by a theta mechan-
ism and subsequently switches to a sigma or rolling-circle
form to yield long head-to-tail concatemers. This model is
supported by restriction enzyme digestion experiments
[1, 2, 9, 10]. Electron microscopy detected extensive
regions of single-stranded DNA, DNA replication forks,
loops, and branched DNA structures [11-13].

Replication of viral genome is a central, well orches-
trated event of HSV-1 lytic infection, which leads to the
development of viral replication compartments or cen-
ters—structures consisted of replicating viral genomes
and many viral proteins (UL5, UL8, UL9, UL29, UL30,
UL42 and UL52) and cellular proteins [5, 14-18]. In
particular, HSV-1 single-strand DNA-binding protein or
infected cell protein 8 (ICP8) [19] encoded by the UL29
gene [20-22], interacts with host cell nuclear matrix and
viral single strand DNA in its maturational process, and
is required for viral replication [23]. Approximately half
of the HSV-1 genomic DNA becomes soluble at 2 h
post-infection and most of HSV-1 DNA is in unstable
nucleosome-like complexes throughout the lytic replica-
tion stage, suggesting a dynamic nature of viral genome
during replication [5, 18, 24, 25].

Though extensive studies were conducted on HSV-1
replication [1, 2, 5, 7-13, 17, 18, 24, 26-28], there is still
a lack of direct and effective method to observe the
structural changes of viral genome during replication.

STED microscopy is one of the recent techniques that
accomplish super-resolution microscopy with optimal for
lateral and axial resolutions at 16—40 nm and <80 nm in
the focal plane, respectively [29-31]. It is developed by
Stefan W. Hell and Jan Wichmann in 1994 [32], and firstly
applied in experiments in 1999, that is implemented by
Thomas Klar and Stefan W. Hell. Hell was awarded the
Nobel Prize in Chemistry in 2014 for his contribution to
the STED microscopy. STED microscopy creates super-
resolution images by the selective deactivation of fluoro-
phores, minimizing the area of illumination at the focal
point, and thus enhancing the achievable resolution for a
given system [33].

Here we used FISH or IF-FISH technique with STED
microscopy to visualize HSV-1 genome and interacting
proteins during viral replication. We found that the viral
genome appeared to become relaxed, as it occupied
larger space after it initiated DNA synthesis in the host
nucleus, with the average distance between the two
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probes designed to hybridize to neighboring regions of
the viral genome increased by 2.7-fold. Using FISH and
IF, we showed that the ICP8 protein interacted with the
viral genome with high colocalization coefficient (m2),
and it appeared to be organized in different sub-structures
from that of RNA polymerase II (RNA Pol II) based on
staining patterns and its distance from RNA Pol II,
suggesting that DNA replication and transcription are
likely carried out in distinct regions within the repli-
cation compartments.

Results

STED microscopy can reliably detect the viral genome

To examine how STED and confocal microscopy differ,
we labeled DNA probes designed towards the terminal
regions of the viral genome (Fig. 1a) with either DIG
(green) or Biotin (red) to generate two different colored
probes to the same region of the viral genome to deter-
mine. The human primary fibroblast cells (BJ cells) were
infected with the 17+ strain of HSV-1 at multiplicity of
infection (MOI) of 0.1 or 5 PFU/cell for 6 h. Due to the
heterogeneity of cells and variation in the number of
incoming viruses in each cell, viral replication time
varies from one cell to another, and as a result, progres-
sing from small but distinct early replication compart-
ments to large fused late replication compartments
occupying most of the host nucleus took about 6 h post-
infection. At a lower MOI (0.1 PFU/cell), we observed
more smaller replication compartments, while at a high
MOI of 5 PFU/cell infection, larger fused compartments
were typically observed [14].

Confocal microscopy was developed to offer greater
resolution than regular fluorescent microscopes by rejec-
tion of out-of-focus noise [34, 35]. Fig. 1b-d were cap-
tured with confocal microscopy to show BJ cells at early
stage of replication. Fig. 1b, ¢ were from red and green
channels, respectively. Figure 1d is an overlay of Fig. 1b
and ¢, while Fig. le stands for the analysis results of
Fig. 1d. Correlation coefficient (Rr), also known as Pear-
son’s correlation coefficient, ranges from -1.0 to 1.0. 0
indicates no correlation between two signals and -1.0
represents complete negative correlation. Overlapping
coefficient (R) represents the colocalization frequency of
two selected signals [36]. The Rr and R of Fig. 1d are
0.733 and 69.1 %, respectively (Fig. le), suggesting a
moderate correlation between the two probes.

STED microscopy results were shown in Fig. 1f-h.
Figure 1f, g were from red and green channels, re-
spectively, Fig. 1h is overlay of Fig. 1f and Fig. 1g.
While Fig. 1i, j are details with enlargement of partial
Fig. 1h, which are indicated by white rectangles. Figure 1k
stands for the analysis results of Fig. 1h. Unlike confocal
microscopy, there is a much better overlap between red
and green signals from STED (Fig. 1h). The center sections
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of the two color signals overlapped tightly (Fig. 1i, j). The
Rr of the two signals is 0.910, and R is 90.2 % (Fig. 1k).
Values are much higher than that from confocal results.
The visual colocalization and the high values of Rr and R
from STED analysis demonstrate that STED is able to
detect viral genomes.

To determine how these probes behave at the late
stage of viral replication compartments development,
when individual replication compartments merges into
large ones occupying most of the host nucleus, we
infected BJ cells at a high MOI of 5 PFU/cell for 6 h and
examined the signals by confocal (Fig. 11-n) and STED
microscopy (Fig. 1p-r). Figure 11 (red signal), 1 M (green
signal) are merged in Fig. 1n and related parameters are
shown in Fig. lo. Though the Rr and R of confocal
image Fig. 1n are 0.650 and 77.5 % (Fig. 10), respectively,
there is still no macroscopic overlapping between two
signals under the confocal microscopy, indicating that
confocal microscopy again failed to convincingly colocalize
the two signals.

In contrast, Fig. 1p (red probe) and 1Q (green probe)
exhibite stronger correlations when merged in Fig. 1r
and analyzed in Fig. 1u. Figure 1s, t are details with en-
largement of partial Fig. 1r (white rectangles) to show
overlapping red and green signals. In Fig. 1s, two color
signals overlapped completely, and in Fig. 1t, just part of
the signals overlapped. Under the STED microscopy,
about 76.1 % of the two color signals overlapped (Fig. 1r).
The Rr of Fig. 1r is 0.637 (Fig. 1u). Comparing Fig. 1h
and Fig. 1r, both Rr and R decrease with the develop-
ment of replication compartments.

As each DNA strand of the viral genome stochastic-
ally hybridize to red or green probes, the chances of
a perfect overlap between red and green signals is ap-
proximately 25 % when there is abundant amount of
probes present, such as at early stage of replication
compartments development. In cells where viral repli-
cation compartments are well developed, there are a
larger number of viral genomes, and a limited amount of
probes present, which would result in an increased possi-
bility of only one colored probe hybridizing to a single
viral genome, thus the observed reduction of overlapping
signals, and hence the decrease in Rr and R from STED
imaging. The lack of changes in the Rr and R values from
confocal imaging suggests that the confocal microscopy is
intrinsically unreliable to describe the details needed for
HSV-1 genomes.

Replication renders compact HSV-1 genomes into relaxed
structures

When HSV-1 DNA enters the host nucleus, it assumes a
condensed structure, with a diameter of 35—40 nm and a
length of 130-160 nm [37]. The interaction between
HSV-1 genome and host core histones occurs as early as
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1 h post-infection, and the viral genome forms a
nucleosome-like structure. Unlike the viral genome at the
pre-replication stage, most of the replicating HSV-1 gen-
ome is in a nucleosome-free state [24], and likely assumes
a less condensed structure. The nucleosome-like HSV-1
genome is unstable and the accessibility to micrococcal
nuclease (MNase) changes throughout the replication
process. HSV-1 DNA is quantitatively recovered in com-
plexes fractionating as mono- to polynucleosomes from
nuclei harvested at 2, 5, 7, or 9 h post-infection. At 1 h
post-infection, the whole HSV-1 genome is in nucleo-
somal stage and, at 2, 5, 7, or 9 h post-infection the viral
genome lose nucleosome in different levels, suggested the
stability of HSV-1 DNA nucleosomal complexes changes
throughout the lytic infection cycle [5, 18, 24, 25]. To dir-
ectly observe the dynamic structural changes in the HSV-
1 replication process, probes were designed to recognize
the termini of the viral genome (Fig. 2a). The two probes
were labeled with either DIG or Biotin to give them two
different colors.

BJ cells were infected at a low MOI of 0.1 PFU/cell
and were processed for STED microscopy at the early
stage of viral replication. Figure 2b (red) and 2C (green)
are merged in Fig. 2d to show how the two colored
signals relate. Pearson analysis of Fig. 2g shows that
most of signals overlapped under STED microscopy
(Fig. 2d), The Rr and R are 0.622 and 62.7 % (Fig. 2g),
respectively. Parts of Fig. 2d (white rectangles) are
enlarged to reveal two typical examples (Fig. 2e, f),
where the red and green signals are directly connected
or overlap. As Fig. 2e shows, the green signal is con-
nected with the red oblong signal, but in Fig. 2f, the two
colors sit right on top of each other. This is likely a
result of differences in viral genome orientation. Com-
pared with the correlation between two colored probes
directed to the same region of the viral genome, the two
probes directed toward different regions of the viral
genome shows significantly lower correlation than the
probes from the same region (compare Fig. 1h, k and
2d, g). The average distance between the two color
signals from the same probe is 41.9 nm, but that of
different probes is 111.9 nm, 2.7-fold higher (Fig. 3).
These results suggest that STED microscopy is able
to distinguish different regions of the viral genome at
early stage of replication.

We next measured the distance between the different
regions of HSV-1 genome in fully developed replication
compartments. Signals in Fig. 2h (red) and Fig. 2i (green)
are merged in Fig. 2j, and Pearson analysis is shown in
Fig. 2m. Unlike the early stage of replication, viral
genomes in advanced replication compartments do not
show overlap and display very low correlation between
the red and green signals (Fig. 2j). The Rr and R of Fig. 2j
are 0.121 and 21.6 % (Fig. 2m), respectively, indicating
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Fig. 2 Replication renders compact HSV-1 genomes into relaxed structures. All cells were infected with HSV-1 17+ strain for 6 h, then prepared
for FISH. In first line, signals are captured from red channel, which were hybridized with Biotin labeled probe; Second line, signals are captured
from green channel, which were hybridized with DIG labeled probe; Third line, images are merged to examine the colocalization situation of two
color signals; Fourth line, partial enlarged detail of figures in the third line are shown; Fifth line, images from the third line were analyzed, which
were done with Image-Pro Plus 6.0 sofrware (USA). a: A brief description of HSV-1 genome structure. Relative to HSV-1 genome, red probe labeled
with Biotin locates at the right terminal, which contains IRs, TRs and Us region (according to NC_001806.2 127235-131131, 132647-133909,
134056134931, 135225-136670, 136747-137463, 138423-139607, 139789-140961, 141247-142899 and 147066-150962). Green probe labeled
with DIG locates at the right terminal, which contains TR, IR. and partial U, region (according to NC_001806.2, 513-1259, 2262-2318, 3084-3750,
3887-5490, 9338-10012, 10991-11665, 12484-15132, 151131-17161, 18225-20477, 20705-23260, 120884-122487, 122624-123290, 124056-124112
and 125115-125861). b-g: Cells were infected at a MOI of 0.1 PFU/cell. At early stage of HSV-1 replication, images are captured with STED microscopy
and then analyzed. h-m: Cells were infected at a MOI of 5 PFU/cell. At late stage of HSV-1 replication, images are captured with STED microscopy and
then analyzed. Host cell nucleus are indicated with white dotted lines. e, f, k, I: Higher zooms of regions inside the white rectangles are shown. Scale

bars, 2.5 um. Rr: correlation coefficient; R: overlapping coefficient; k: antigen contribution

very low correlations. Parts of Fig. 2j, which are indicated
by white rectangles, are enlarged to reveal two typical
examples (Fig. 2k, 1), where we could see that the red and
green probes detected elongated, fiber like structures.

In Fig. 3, the average distance between the two
color signals from the same probe is 41.9 nm with a
range from 22.6 nm to 70.8 nm, where as that of
different probes is 111.9 nm with a range from
81.4 nm to 167.6 nm. At the pre-replication stage or
early stage of replication, both the distances between
the two color probes directed towards the same
region, and the two probes, directed to different
regions are relatively small. But, as viral replication
progresses, these distances become greater. These
results (Figs. 1, 2 and 3) suggest that pre-replication
and early replication HSV-1 genomes exist as compact
structures, while viral genomes in later replication com-
partments assume relaxed structures occupying signifi-
cantly large space.

The ICP8 signals is highly related to the replicating
HSV-1 genome

ICP8 interacts with the replicating parts of the viral
genome and is used as a marker of HSV-1 replication. It
also possesses multiple functions to facilitate viral repli-
cation and regulate viral genes expression [20, 22, 38,
39]. We therefore examined the distribution of ICPS8
during replication to reveal the dynamic changes in the
HSV-1 genomes.

Again, BJ cells were infected at a high MOI of 5 PFU/
cell for 6 h and HSV-1 genomes were detected by FISH
using labeled BAC clone probe covering the entire HSV-
1 genome. As shown in the analysis in Fig. 4, ICP8 IF
signals are tightly colocalized or associated with HSV-1
genome at both early (Fig. 4c) and late stages of rep-
lication (Fig. 4i). Colocalization coefficient (m2) de-
scribes contribution of positive staining pixels from each
selected channels [36]. The value of m2 in Fig. 4c and
Fig. 4i are 0.999 for both (Fig. 4f, 1), indicating that
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Fig. 3 Average distances of the same probe and different probes.
Distances of the same probe and different probes were calculated
under STED microscopy. The average distance of the same probe is
41.9 nm and that of different probes is 111.9 nm, which is 2.7-fold
higher than the same probe, p value < 0.001 (***). The data were
evaluated with the Students’ t-test

99.9 % green (ICP8) colocalize with red pixels (HSV-1
genome) in these figures. Figure 4d and e show local
enlargements of the two white squares (Fig. 4c) to reveal
visually the red and green signals are closely associated.
As viral replication compartments became larger, ICP8
positive areas also grew with the compartments to even-
tually occupy the whole host nucleus (Fig. 4h). While
the Rr and R of early stage of replication are 0.273 and
59.1 %, respectively, those of late stage of replication are
0.339 and 51.5 %, respectively. From a comparison
between Fig. 4d and j, we could note an increase of viral
genome signals and a reduction of ICP8 signals. This is
because, at the early stage of replication, the infected
nucleus has a large reserve of ICP8 proteins to prepare
for replication, and viral genomes are in a smaller num-
ber. While, at the late stage of replication, the situation
is reversed, with a huge number of viral genomes and a
relative smaller amount of ICP8 proteins in the host cell
nucleus. Consequently, at the early stage, the Rr value is
lower than that at late stage of replication. With the
development of replication compartments, the structure
of the viral genome becomes more and more relaxed,
and the average distance between ICP8 protein and the
HSV-1 genome changes from 132.4 nm to 183.6 nm,
p value < 0.001 (Fig. 7). Thus, R decreases with the replica-
tion progress from early to late stage.

ICP8 occupies sub-structures within the viral replication
compartments distinct from host RNA Pol Il

Molecular and immunofluorescent studies suggest that
HSV-1 replication and viral gene transcription are both
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occurring within the viral replication compartments
[40]. However, transcription and DNA replication are
two incompatible processes, i.e. the same region of the
genome is difficult to replicate and transcribe at the
same time [41]. Viral proteins for HSV-1 replication and
viral genes are all transcribed by host RNA Pol II
[42, 43]. RNA Pol II is regulated by phosphorylation
of its carboxyl-terminal domain (CTD), with modifi-
cation occurring primarily on serine 2 and 5 of the
CTD. The serine 2 phosphorylated form of RNA Pol
II (RNA Pol II Ser2P) is mostly associated with
elongating form and active transcription, while the
serine 5 phosphorylated form (RNA Pol II Ser5P) is
more related to paused polymerase [44].

To determine how the ICP8 staining signals is related
to RNA Pol II, we firstly performed double immuno-
staining using anti-ICP8 monoclonal antibody (Fig. 5a,
d, i) and anti-RNA Pol II Ser2P polyclonal antibody
(Fig. 5b, e, j). The images are merged to examine the
colocalization of two color signals. As shown in Fig. 5f,
there is a slight but visible increase of the RNA Pol
II Ser2P colocalized with ICP8 marked early re-
plication compartments. Local enlargement (Fig. 5g)
shows that these two signals are related but do not
overlap. The Rr and R of Fig. 5f are 0.404 and
66.9 % (Fig. 5h), respectively.

To observe well developed replication compartments,
cells were infected at a high MOI of 5 PFU/cell for 6 h
prior to fixing for IF analysis. In these cells (Fig. 5i), RNA
Pol II Ser2P evenly distributed, with a slight enrichment
in areas overlapping with the ICP8 labeled replication
compartments (Fig. 5j). Again ICP8 and RNA Pol II Ser2P
do not show obvious overlap (Fig. 5k). The Rr value of
Fig. 5k is 0.268, and the R value is 60.1 % (Fig. 5m). The
average distances between ICP8 and RNA Pol II Ser2P at
early and late stages of replication are 262.2 nm and
283.0 nm, respectively, and the difference between these
two is not significant, p value > 0.05 (Fig. 7). These re-
sults suggest that ICP8 and RNA Pol II Ser2P do not
show significant association.

ICP8 and RNA Pol II Ser5P double staining were con-
ducted, but unlike RNA Pol II Ser2P, RNA Pol II Ser5P
showed stronger colocalization in the viral replication
compartments at 6 h post-infection at a low MOI of 0.1
PFU/cell and at the early stage of replication (Fig. 6f).
The Rr and R of Fig. 6f are 0.464 and 56.2 % (Fig. 6h),
respectively. When cells were infected at a high MOI of
5 PFU/cell and at the late stage of replication, RNA Pol
II Ser5P still colocalizes with ICP8 (Fig. 6k). The Rr and
R of Fig. 6k are 0.333 and 56.2 % (Fig. 6m), respectively.

When viral replication switches from early to late stage,
the average distances between ICP8 and RNA Pol II Ser5P
change from 195.7 nm to 247.0 nm, with a p value < 0.001
(Fig. 7). This distance is smaller than the distance between
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Fig. 4 ICP8 signals is highly related to the replicating HSV-1 genome. All cells were infected with HSV-1 17+ strain and at a MOI of 5 PFU/cell for
6 h, then prepared for IF-FISH. a-c: At early stage of HSV-1 replication, images are captured with STED microscopy. d, e: Higher zooms of regions
inside C are shown, which are indicated by white squares. f: Analysis results of C is shown. g-i: At late stage of HSV-1 replication, images are
captured with STED microscopy. j, k: Higher zooms of regions inside | are shown, which are indicated by white squares. I: Analysis results of I is
shown. Host cell nucleus are indicated with white dotted lines. Scale bars, 2.5 um. Rr: correlation coefficient; R: overlapping coefficient; m2:
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ICP8 and RNA Pol II Ser2P (Fig. 7, p value < 0.05), suggest-
ing ICP8 is positioned closer to RNA Pol II Ser5P than
Ser2P. When comparing these values with average distance
between ICP8 and viral genome, we found that the distance
between ICP8 and HSV-1 genome is always closer than
that of ICP8 and RNA Pol II. These differences suggest that
viral replication and transcription are partitioned into dis-
tinct sub-structures within the replication compartments.

Discussion

In this study, HSV-1 replication was visualized using
super-resolution microscopy. Compared with confocal
microscopy, STED showed much better colocalization of
two differentially labeled DNA probes directed against
the same region of the viral genome. It also detected
structural changes from early to late stage of replication,
which could not be seen using the confocal method,
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Fig. 5 Double immunostaining of ICP8 and RNA Pol Il Ser2P. Experimental group cells were infected with HSV-1 17+ strain for 6 h, then fixed for
IF. In first line, signals are captured from red channel, which were stained with anti-ICP8 monoclonal antibody; Second line, signals are captured
from green channel, which were stained with anti-RNA Pol Il Ser2P polyclonal antibody; Third line, images are merged to examine colocalization
situation of two color signals; Fourth line, partial enlarged detail of figures in the third line are shown; Fifth line, images from the third line were
analyzed, which were done with Image-Pro Plus 6.0 software (USA). a-c: Cells were not infected, images are captured with STED microscopy. d-h:
Cells were infected at a MOI of 0.1 PFU/cell, images are captured with STED microscopy and then analyzed. i-m: Cells were infected at a MOl of 5
PFU/cell, images are captured with STED microscopy and then analyzed. Host cell nucleus are indicated with white dotted lines. g, I: Higher
zooms of regions inside the white squares are shown. Scale bars, 2.5 um. Rr: correlation coefficient; R: overlapping coefficient
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thus demonstrating that STED is able to discern the fine
structures and the dynamic nature of the HSV-1 genome
(Figs. 1 and 2). When STED imaging was applied to
analyze two probes directed against different, neighbor-
ing regions of the viral genome, dynamic changes were
observed during the development of viral replication
compartments, with viral genomes occupying a smaller
space at early stage while a larger space at later stage
(Fig. 2e, £, k, I). When the relationship between the viral
ICP8 protein and RNA Pol II were examined, we found
that ICPS8 is closely associated with the viral genome and
less associated with RNA Pol II, suggesting that viral
replication and transcription are likely portioned into
distinct sub-structures within the replication compart-
ments (Figs. 4, 5, 6 and 7). These results demonstrated
that STED imaging can reveal details previously unavail-
able in visualizing replicating HSV-1 genome.

The HSV-1 genome contains two copies of each
inverted repeat, TRy, IRy, TRg and IRg, probes located at
left hand side of the viral genome (green solid lines,
Fig. 2a) is constituted by TRy and IR;. As IR} is adjacent

to IRs, at least part of the signal from probe located at
right hand side of the viral genome (red solid line,
Fig. 2a) could be interfered by IRy (green) to give a tight
associated signal, resulting in higher Rr and R values.
Thus the data presented represented an underestimation
of the spatial expansion of the viral genome during repli-
cation. Another parameter k, important in colocalization
experiments, determines contribution of each antigen in
colocalization areas [36]. k2, the contribution of DIG, is
always higher than k1, Biotin’s contribution, which sug-
gested that the efficiency of DIG mixed into newly-
synthesized DNA chain may be higher than that of Biotin,
or titer of anti-DIG antibody may be higher than that of
anti-Biotin antibody. Hence, different mixture efficiencies
and various qualities of antibodies might affect signal pa-
rameters used to quantify colocalization.

It has been reported that ICP8 regulates viral tran-
scription in two ways: first, by repressing transcription
from parental viral genomes [45-47], and sencond by
interacting with RNA Pol II and stimulating late gene
transcription from progeny DNA templates [38, 39].
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Fig. 6 Double immunostaining of ICP8 and RNA Pol Il Ser5P. Experimental group cells were infected with HSV-1 17+ strain for 6 h, then fixed for
IF. In first line, signals are captured from red channel, which were stained with anti-ICP8 monoclonal antibody; Second line, signals are captured
from green channel, which were stained with anti-RNA Pol Il Ser5P polyclonal antibody; Third line, images are merged to examine colocalization
situation of two color signals; Fourth line, partial enlarged detail of figures in the third line are shown; Fifth line, images from the third line were
analyzed, which were done with Image-Pro Plus 6.0 software (USA). a-c: Cells were not infected, images are captured with STED microscopy. d-h:
Cells were infected at a MOI of 0.1 PFU/cell, images are captured with STED microscopy and then analyzed. i-m: Cells were infected at a MOI of 5
PFU/cell, images are captured with STED microscopy and then analyzed. Host cell nucleus are indicated with white dotted lines. g, I: Higher
zooms of regions inside the white squares are shown. Scale bars, 2.5 um. Rr: correlation coefficient; R: overlapping coefficient

ICP8 interacts directly or indirectly with a number of pro-
teins, such as TATA-binding protein-associated factor of
172 kDa (TAF172) and RNA Pol II [38, 48]. However,
STED imaging revealed no colocalization between ICP8
and RNA Pol II, and the average distance between ICP8
and RNA Pol II (both Ser2P and Ser5P modified forms) is
larger than the distance between viral genome and ICP8,
suggesting the primary role of ICP8 is involved in viral
genome replication.

We observed a weaker colocalization of the Ser2P modi-
fied form of RNA Pol II compared with the Ser5P form in
the replication compartments. This is likely due to the fact
that HSV-1 viral protein ICP22 rapidly triggers the select-
ive degradation of RNA Pol II Ser2P [49]. On cellular
genes, Ser5P levels remain high as RNA Pol II transcribes
the first few hundred nucleotides of genes, and as RNA
Pol II elongates further downstream, levels of Ser5P drop
and Ser2P increase [44]. RNA Pol II Ser2P represents
elongating transcription, while RNA Pol II Ser5P stands
for new starting transcription. When comparing the rela-
tionship between ICP8 and the two modified forms of

RNA Pol II, we observed a significant difference, i.e. ICP8
is located further away from the Ser2P than the Ser5P
form, suggesting that actively transcribed regions of viral
genome (or viral genomes committed to transcription) are
placed further away from replicating regions of the viral
genome (or replicating viral genomes) than the regions
where transcription is new started.

Conclusions

Here we reported a first observation of replicating HSV-
1 genome and its interaction with viral and host proteins
at sub-diffraction resolution. We found that the viral
genome expands spatially as it enters replication. Viral
protein ICP8 tightly interacts with the viral genome, and
is organized into sub-structures within the viral repli-
cation compartments distinct from host RNA Pol IL
These findings suggest that viral replication is a dynamic
process and viral genomes, or regions of viral genomes
committed to replication and transcription are portioned
into different structures within the replication compart-
ments. These findings also suggest that super-resolution
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Fig. 7 Average distances of ICP8 and RNA Pol Il Ser2P, ICP8 and RNA Pol Il Ser5P, HSV-1 genome and ICP8. At early stage of replication, average
distances of ICP8 and RNA Pol Il Ser2P, ICP8 and RNA Pol Il Ser5P, ICP8 and HSV-1 genome are 262.2 nm, 195.7 nm and 1324 nm, respectively.
Similarly, average distances of late stage of replication are 283.0 nm, 247.0 nm and 183.6 nm. Differences between early and late stages of replication
(ICP8 and RNA Pol Il Ser5P, ICP8 and HSV-1 genome) are significant (p valueicps rna pol 1i Sersp (early and late stage) < 0.001 (%), p valueicps Hsv-1 genomefearly
and late stage) < 0.001 (**¥)). Differences among ICP8 and RNA Pol Il Ser2P, ICP8 and RNA Pol Il Ser5P, ICP8 and HSV-1 genome are all significant
(p valueicps rNA Pol 1l Ser2P and ICPS RNA Pol I SersP (early and late stage) < 005 (¥), P Valu€icpg RNA Pol Il Ser2p and ICP8 HSV-1 (early and late stage) < 0.001 (**), p valuecpg
RNA Pol I SersP and ICP8 HSV-1 (early and late stage) < 0.001 (***)). The data were evaluated with one-way ANOVA method

HSV-1 was obtained from Professor Nigel W. Fraser in the
Department of Microbiology, Perelman School of Medicine,
University of Pennsylvania. The virus was grown and ti-
trated on Vero cells. Viral infections were done accord-
ing to standard protocols [5]. Briefly, cultured cells

microscopy, as represented here by STED, has the
potential to unravel much greater details of viral
replication process and viral host interactions during
lytic HSV-1 infection.

Methods

Cells and virus

The human primary fibroblast cells (BJ cells) were obtained
from American Type Culture Collection. Cells were grown
in Dulbecco’s modified Eagle’s medium (DMEM; Gibco,
USA) supplemented with 10 % fetal bovine serum (FBS),
penicillin (100 U mL™"), and streptomycin (100 ug mL™) in
a humidified 5 % CO, atmosphere at 37 °C. 17+ strain of

were replaced with serum free DMEM, followed by
adding the virus and incubating for 1 h with occasional
rotation to get an even spread. The culture medium
was then replaced by regular DMEM with 10 % FBS
and 1 % antibiotics. The HSV-1 ¢cDNA clones and
HSV-1 whole genome BAC clone [50] were kindly pro-
vided by Professor Chunfu Zheng from the Institute of
Biology and Medical Science, Soochow University.
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In situ probes

Components of probes were cut from HSV-1 c¢cDNA
clones [51] and mixed equally, labeled with DIG or Biotin
in nick translation method. The HSV-1 whole genome
BAC clone was labeled with Biotin in nick translation
method [52]. Approximately 1 ug DNA was incubated
with DNase I and E. coli DNA polymerase I at 15 °C for
2 h. A mix of DIG-11-dUTP or Biotin-16-dUTP was
added to the reaction to be incorporated into the newly-
synthesized DNA chain. Finally the product was incubated
at 70 °C for 8 min to deactivate the enzymes.

Antibodies

RNA Pol II Ser2P polyclonal antibody, RNA Pol II Ser5P
polyclonal antibody and ICP8 monoclonal antibody
were obtained from Abcam Cambridge (UK). Antibodies
against DIG and Biotin were obtained from Roche
(Germany) and VECTOR LABORATORIES (USA), re-
spectively. Alexa Fluor® 594 Goat Anti-Mouse IgG (H + L)
antibody, Alexa Fluor® 488 Goat Anti-Rabbit IgG (H + L)
antibody and Alexa Fluor® 488 Goat Anti-Mouse IgG
(H + L) antibody were from Life Technologies (USA).

FISH

The BJ cells were seeded on glass coverslips in 24-well
plates one day before infection and infected at a multi-
plicity of infection (MOI) of 0.1 PFU/cell or 5 PFU/cell.
At 6 h post-infection, cells were fixed with 4 % parafor-
maldehyde at room temperature for 30 min, extracted
with 0.5 % Triton X-100 in PBS for 10 min, deprotei-
nized with 0.1 mol L™" HCI for 10 min and digested
RNA with 20 ug mL™" RNaseA for 20 min; Then cells
were incubated with probes in hybridization buffer at
95 °C for 4 min; Finally, cells were incubated with
antibodies at room temperature for 1 h. Images were
acquired using an Olympus FV1000 system (Japan) and
Leica TCS SP8 STED 3x (Germany). The distance meas-
uring software was Leica LAS X. Figures were analyzed
with Image-Pro Plus 6.0 software (USA).

IF-FISH

The BJ cells were seeded on glass coverslips in 24-well
plates one day before infection and infected at a MOI of
5 PFU/cell. At 6 h post-infection, cells were fixed with
4 % paraformaldehyde at room temperature for 30 min,
extracted with 0.5 % Triton X-100 in PBS for 10 min,
blocked with 5 % BSA in PBS for 1 h and incubated with
primary antibody and secondary antibody for 1 h, respect-
ively. Then cells were deproteinized with 0.1 mol L™ HCI
for 7 min, digested RNA with 20 pug mL™ RNaseA for
20 min and incubated with probes in hybridization
buffer at 95 °C for 4 min; finally, cells were incubated
with antibody at room temperature for 1 h. Images
were acquired using a Leica TCS SP8 STED 3x
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(Germany). The distance measuring software was Leica
LAS X. Figures were analyzed with Image-Pro Plus 6.0
software (USA).

IF

The BJ cells were seeded on glass coverslips in 24-well
plates one day before infection and infected at a MOI of 0.1
or 5 PFU/cell. At 6 h post-infection, cells were fixed with
4 % paraformaldehyde at room temperature for 30 min,
extracted with 0.5 % Triton X-100 in PBS for 10 min and
blocked with 5 % BSA in PBS for 1 h; Then cells were incu-
bated with primary antibodies for 1 h and secondary anti-
bodies for 1 h. Images were acquired using a Leica TCS
SP8 STED 3x (Germany). The distance measuring software
was Leica LAS X. Figures were analyzed with Image-Pro
Plus 6.0 software (USA).

Statistical analysis

The data were evaluated with the Student’s t-test and one-
way ANOVA method, p <0.05 and p <0.001 were con-
sidered statistically significant and extremely significant,
respectively.
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