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Abstract
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Background: Dengue is the most prevalent arboviral disease in tropical and sub-tropical areas of the world. The
incidence of infection is estimated to be 390 million cases and 25,000 deaths per year. Despite these numbers,
neither a specific treatment nor a preventive vaccine is available to protect people living in areas of high risk.

Results: With the aim of seeking a treatment that can mitigate dengue infection, we demonstrated that the quinic
acid derivatives known as compound 2 and compound 10 were effective against all four dengue virus serotypes
and safe for use in a human hepatoma cell line (Huh7.5). Both compounds were non-virucidal to dengue virus
particles and did not interfere with early steps of the dengue virus life cycle, including binding and internalization.
Experiments using a replicon system demonstrated that compounds 2 and 10 impaired dengue virus replication in
Huh7.5 cells. Additionally, the anti-dengue virus effects of the quinic acid derivatives were preserved in human

Conclusions: Taken together, these data suggest that quinic acid derivatives represent a novel chemical class of
active compounds that could be used to combat dengue virus infection.

Background
Among all human arthropod-borne viral diseases, den-
gue is the most prevalent, representing a health threat in
tropical and sub-tropical areas of the world [1, 2]. There
are approximately 2.5 billion people living in endemic
areas, and 390 million dengue cases are estimated per
year including 25,000 dengue-related deaths [1, 3].
Dengue virus (DENV) belongs to the Flavivirus genus
(Flaviviridae family) and comprises four distinct sero-
types: DENV-1, -2, -3 and -4. The virus is transmitted
to humans by female Aedes spp. mosquitoes during their
blood meals [2, 4]. The DENV serotypes are genetically
distinct despite having a similar epidemiology, and they
are all able to cause the same disease in humans [5, 6].
Each ~50 nm viral particle is surrounded by a lipid
bilayer that is derived from the host cell. The
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single-stranded positive RNA genome is approximately
10.7 kb in length and presents a single open reading frame
(ORF) [5, 6] that encodes three structural proteins that
are related to particle formation: C (capsid), pre-M/M
(membrane and its precursor) and E (envelope). It also en-
codes seven non-structural proteins (NS) that are involved
in RNA replication and immune evasion: NS1, NS2A,
NS2B, NS3, NS4A, NS4B and NS5 [5-9].

After a prodromal period of 4—10 days, patients who
are infected with dengue will either remain asymptom-
atic or present with the following clinical forms: (i)
dengue without warning signs (vomiting, rash, achiness,
leucopenia, positive tourniquet test), (ii) dengue with
warning signs (abdominal pain, persistent vomiting, fluid
accumulation, mucosal bleeding, lethargy, liver enlarge-
ment, increasing hematocrit with decreasing platelets) or
(iii) severe dengue (SD; severe plasma leakage, severe
bleeding, or organ failure) [1].

It is noteworthy that despite the vast number of
dengue cases that have been identified and despite their
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severity, to date neither a specific dengue treatment nor
an approved vaccine to prevent infection has been devel-
oped. Hence, the recognition of dengue signs and the
local epidemiological conditions that are associated with
medical care are important for reducing the mortality
that is associated with the disease [1, 10]. The develop-
ment of a specific dengue therapy has been challenging.
Each structure/protein that is involved in the viral life
cycle can serve as a target for the development of novel
antiviral agents, and the use of compound libraries
appear to be the most effective strategy in searching
for active compounds against flaviviruses [11].

Quinic acid (Table 1) is a carboxylated cyclohexanepo-
lyol that is found in several vegetables (potato, carrot,
tomato, coffee) and exists either in free form or as esters
[12]. It is widely used as an optically-active synthetic
precursor in multistep chemical synthesis [13], and it is
the starting material that is used for the synthesis of
Tamiflu, a drug used in the treatment of influenza A and
B [14]. Additionally, quinic acid derivatives are found in
propolis produced by Apis mellifera (European honey
bee) in the south and southeast regions of Brazil [15].
Furthermore, it has been shown that quinic acid deriva-
tives possess antiviral activities against Human Immuno-
deficiency Virus (HIV) [16-18], Hepatitis B Virus (HBV)
[17, 19], and Herpes Simplex Virus 1 (HSV-1) [20, 21].

In this study, we demonstrated that the amides of qui-
nic acid derivatives present anti-dengue virus activity in
vitro in Huh7.5 cells and human PBMCs. Furthermore,
we revealed that quinic acid derivatives impair dengue
virus replication in Huh7.5 cells.

Results and discussion

Cytotoxicity of quinic acid derivatives

Both quinic acid (Table 1) and several of its derivatives
have been shown to protect human lymphocytes from
damage induced by X-ray [22] and from cell death in-
duced by tetrahydropapaverolin [23]. Table 1 shows the
quinic acid derivatives that were tested in the present
study. Recently, it has been demonstrated that the amides
of quinic acid derivatives exhibited anti-inflammatory ac-
tivities both in vitro and in vivo and therefore they may
serve as attractive options for therapeutic use [24, 25].
Furthermore, one of these amides was found to enhance
the survival of C57/Bl6 mice that were exposed to lethal
radiation by 45 % [26]. Additionally, a quinic acid ester
(QAE) prolonged cell survival by reducing replication
in S-phase cells, indicating that it protects cells from
damage by allowing time for cellular DNA damage re-
pair to occur [27].

In addition to their individual protective potentials,
the safe concentrations of each compound were deter-
mined in Huh7.5 cells. To accomplish this, the in vitro
toxicities of the quinic acid derivatives were determined
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by MTT, which is a tetrazolium salt that is metabolized
by cellular reductases only in cells with viable mitochon-
drial activity [28]. An assessment of Neutral Red (NR)
uptake, which demonstrates a cell’s ability to incorporate
red dye into lysosomes that maintain physiological pH
[29], was performed simultaneously with the MTT assay
in the same cell cultures [30]. Based on the results from
both assays, it was possible to determine a non-toxic
concentration (NTC) of each compound for Huh7.5 as
well as the cytotoxic concentration for 50 % of the
culture (CCsp; Table 1). The data show that quinic
acid derivatives presented a wide range of cytotoxicity
in Huh7.5 cells, with CCsy values varying between
1.56 and >1000 pM.

Antiviral activity

The quinic acid derivative 3,5-dicaffeoyl-muco-quinic
acid has been shown to impair HIV integrase activity
and inhibit viral replication in vitro [31]. Quinic, chloro-
genic and caffeic acids exhibited anti-HBV activity in
vitro in HepG2.2.15 cells. Crude extracts of regular and
decaffeinated coffee also inhibited HBV replication [19].
Additionally, 3,5-dicaffeoylquinic acid exhibited specific
activity against respiratory syncytial virus (RSV). However,
this compound was not able to inhibit influenza A and B
subtypes or herpes simplex 1 and 2 [32].

It is notable that, to the best of our knowledge, the
current study is the first to evaluate the activity of quinic
acid derivatives against flavivirus replication. When
screened in Huh7.5 cells using an in situ ELISA assay
[33], two of the quinic acid derivatives, called com-
pounds 2 and 10, that were included in this study dem-
onstrated anti-dengue virus activity at varying levels by
reducing cell infectivity for all four dengue serotypes
(Figs. 1 and 2). These data suggest that the presence of a
lipophilic chain could contribute for the observed anti-
viral activity, as the compounds that did not possess this
moiety were either less active or not active.

To confirm the antiviral activity of compounds 2 and
10, a flow cytometry assay was employed [34]. Data from
FACS analysis confirmed that these compounds were
able to reduce the percentage of cells infected with
DENV (Fig. 2a). Furthermore, a titration of culture su-
pernatants led to a notable reduction in virus titers
(Fig. 2b), which corroborated the previous results.

The concentration-response curves starting from
the NTCs of compounds 2 and 10 showed different
SIs for each dengue virus serotype (Table 2 and Additional
file 1: Figure S1).

Dengue virus replication is impaired by compounds 2

and 10

After confirming the antiviral activity of compounds 2
and 10, we aimed to define which stage(s) of the viral
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Table 1 Molecular structures of quinic acid derivatives and cytotoxicity evaluations in Huh7.5 cells
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Compound

Quinic acid

Molecular structure

OH
HOL.C OH

CCS() (},lM)a

MTT

NT

>1000

>1000

>1000

>1000

>1000

>1000

>1000

8.5

17.4

NR

NT

>1000

25.1

>1000

>1000

>1000

>1000

>1000

>1000

12.5

29.2

NTC? (uM)

NT

12.5

12.5

100

100

500

>1000

100

500

1.56

12.5

9CC50: cytotoxic concentration in 50 % of cells
®NTC: non-toxic concentration in Huh7.5 cells
NT: not-tested
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Fig. 1 Antiviral screening. Huh7.5 cells were infected and treated during and after infection. After 72 h, the results from the in situ ELISA assay
indicated the most promising substances (*p < 0.05 compared to DENV control). Data represent the mean + standard error (SE) from three

DENV-2

1204

1004

80

604

40-

% of Infection

204

DENV-4

% of Infection

X XNV D K6 0 A DO
@ﬁ;\“ Pig

Qé

&

infection cycle was being affected by these compounds.
First, virucidal effects were assessed as previously de-
scribed [35], as it has been demonstrated that dicaffeoyl-
quinic acid exhibited a virucidal effect against RSV at
high concentrations that was dependent on temperature
[36]. The results indicated that the compounds did not
destroy viral particles, as demonstrated by the amplifica-
tion of RNA after RNase treatment (Fig. 3).

Furthermore, we evaluated whether the compounds
could affect the early steps of viral infection in host cells.
The treatment of cells with compounds 2 and 10 was
performed during virus binding and internalization in
independent assays. The results demonstrated that nei-
ther compounds reduced the percentage of infected cells
in comparison to controls (Fig. 4). There, it could be
suggested that they interfere with other steps in the den-
gue virus life cycle. Li et al., [36] showed that dicaffeoyl-
quinic acid does not affect viral attachment to host cells;
however, it did inhibit virus-cell fusion during the early
stages of viral infection, as well as cell-to-cell fusion dur-
ing the final step of the RSV replication cycle.

Our next goal was to evaluate whether compounds
2 and 10 would affect later steps of the dengue virus
life cycle, such as viral replication. To perform this
assay, a replicon system for dengue virus serotypes
-1 and -3 (RepDV1 and RepDV3, respectively) was
used [37, 38]. In this system, a subgenomic RNA

contains the non-structural viral proteins that are re-
quired for RNA replication and translation but does
not contain the structural proteins and therefore
viral particles are not assembled. Employing RNA
replicons enables the study of antivirals that specifically
inhibit steps during viral replication and/or translation.
Ng et al,, [39] had developed a Renilla luciferase-reporter
dengue virus type 2 replicon and a stable BHK-21 cell har-
boring the replicon and used them to test nucleoside in-
hibitors of NS5 and siRNA against NS3.

The results showed that we succeeded in transfecting
Huh7.5 cell cultures with both replicons and that the
concentrations of compounds 2 and 10 that were
employed in this assay were non-toxic to Huh7.5 cells.
Figure 5 illustrates that compound 2 acted on dengue
virus replication (RepDV1 and RepDV3). Furthermore
compound 10 inhibited dengue virus replication only for
serotype-3 (RepDV3), not showing any effect against
replication of dengue virus serotype-1 (RepDV1). Data
suggests that for dengue virus serotype-1 another target
in the late stages of the viral life cycle (such as viral as-
sembly and/or release) could be inhibited. A serotype
dependence in anti-dengue virus activity has been previ-
ously demonstrated for sulfated polysaccharides from
marine seaweeds [40] and for kinase-binding-site com-
pounds [41]. Additionally, dicaffeoylquinic acid deriva-
tives have been shown to impair HIV-1 replication in
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Fig. 2 Antiviral activity confirmation by secondary assays. Huh7.5 cells were infected with DENV-1 through —4 and treated during and after
infection with each substance (NTC). After 72 h, the cells were submitted to FACS (a), and supernatants were used in focus-forming assays in
C6/36 cells (b). Data represent the mean + standard error (SE) from three independent experiments (*p < 0.05 compared to DENV control)
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Table 2 Concentrations that inhibit 50 % of infection and the
selective indexes of compounds 2 and 10 with respect to the
four dengue virus serotypes

2 10
ICs %+ SD (M) | ICs0 £ SD (M) Sl
DENV-1 69+36 36 6.5+02 45
DENV-2 104439 24 87+23 33
DENV-3 103£3.1 24 103£38 28
DENV-4 923+37 27 108+17 27

infected cells by disturbing anti-HIV-1 integrase activity
[18]. Also, chlorogenic, quinic and caffeic acid were able
to inhibit HBV-DNA replication in HepG2.2.15 [19].

Anti-dengue virus activity in human peripheral blood
mononuclear cells

After demonstrating that the antiviral activity of the
tested compounds occurs during DENV replication in
Huh7.5 cells, it was necessary to evaluate the effects of
compounds 2 and 10 in human PBMCs to simulate a
more physiologically relevant situation. The NTCs of
compounds 2 and 10 in human PBMCs were assessed
before performing antiviral assays. After treating PBMCs
with varying concentrations of each compound, cells
were incubated for 5 days and then stained with annexin
V and propidium iodide to detect apoptosis and/or cell
death. The compounds were more toxic to human
PBMCs than to Huh7.5 cells (data not shown).

DENV-1 DENV-2 DENV-3 DENV-4
M2 10 2 10 2 10 2 10 RNA
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Fig. 3 Virucidal activity. DENV serotypes 1 through 4 were incubated
with compounds 2 and 10 (NTC) in the presence or absence of
RNase. RNA samples were extracted and submitted to RT-PCR and
gel electrophoresis. Representative data from 4 independent assays.
M: 1 kb DNA ladder; RNA: viral RNA control; bp: base pairs
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After setting a non-toxic dose of 3.12 pM for PBMCs,
cells from six healthy human donors were infected with
DENV-4, as a proof of concept, and treated with com-
pounds 2 and 10 both during and after the infection.
DENV-4 (strain TVP360) was selected once it was the
most resistant tested-serotype to compounds 2 and 10
treatment (see Fig. 1). After 5 days in culture, the
compounds were demonstrated to be safe, and they ex-
hibited efficacy against dengue virus serotype 4 infection
(Fig. 6).

Conclusions

This study demonstrated that two different derivative
amides of quinic acid were effective against all four den-
gue virus serotypes when used in Huh7.5 cells in vitro.
Also it was shown that the two compounds are safe for
Huh7.5 cells and PBMCs. Importantly, the results from
experiments that were performed using a replicon
system suggested that compounds 2 and 10 inhibited
dengue virus replication. Both compounds were also
effective against dengue virus infection in human
PBMCs. To our knowledge, this is the first descrip-
tion of anti-dengue virus activity in quinic acid deriv-
atives. These findings offer a new perspective for the
development of anti-dengue virus therapy based on
quinic acid derivatives. Of note, there is currently no
approved antiviral treatment for dengue disease. We
are currently synthesizing novel derivatives in an at-
tempt to improve antiviral activity and to further
examine structure-activity relationships to improve SI
for compounds 2 and 10.

Methods

Cell lines and viruses

Aedes albopictus mosquito cells C6/36 (ATCC: CLR-
1660) were maintained at 27 °C in Leibovitz’'s Medium
(L-15; Gibco-Invitrogen, USA) that was supplemented
with 0.26 % tryptose (Sigma-Aldrich, USA), 5 % Fetal
Calf Serum (FCS; Gibco-Invitrogen, South America) and
25 pg/mL gentamicin (Gibco-Invitrogen, China).

Huh7.5 human hepatoma cells (PTA-8561, U.S.
Patent Number 7455969) were grown in Dulbecco’s
Modified Eagle Medium - nutrient mixture F-12
(DMEM-F12, Gibco-Life Technologies, USA) that was
supplemented with 100 IU/ug/mL penicillin/streptomycin
(Gibco-Invitrogen, USA) and 10 % FCS. Upon project ap-
proval by the FIOCRUZ Committee of Ethics in Research
(#514/09), primary Peripheral Blood Mononuclear Cells
(PBMCs) were isolated from whole blood samples
taken from healthy volunteers with lymphocyte separ-
ation medium (Lonza, USA) by density gradient cen-
trifugation, in accordance with the manufacturer’s
recommendations. PBMCs were cultured in 24-well plates
with Roswell Park Memorial Institute medium-1640
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Fig. 4 Adsorption and internalization assays. Binding inhibition assay (a) and inhibition of virus internalization (b) for each DENV serotype. After
72 h incubation period the in situ ELISA was performed. Data represents mean + standard error of 3 independent assays (*p < 0.05 compared to
DENV control)
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Fig. 5 (See legend on next page.)
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(See figure on previous page.)

Fig. 5 DENV subgenomic replicon system. Huh7.5 cells were transfected with either dengue virus serotype-1 replicon RepDV1 or dengue virus
serotype-3 replicon RepDV3 RNA, and after one hour elapsed they were treated with compounds 2 and 10 at the NTC. After 72 h, the cells were
submitted to FACS analysis (anti-NS3 staining using the monoclonal antibody 1722). Pseudocolor plots (a) and histograms showing the mean
fluorescent intensity (MFI) (b) are representative of one experiment, and relative percentages as mean + standard error (SE) from three independent
experiments (). In parallel, cell viability was evaluated by neutral red assay (d). *p < 0.05 compared to the untreated control
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Fig. 6 Antiviral activity in PBMCs. PBMCs were infected with DENV-4 (MOI 10) and treated with each compound. After 5 days in culture, cells were
assayed for apoptosis (a, d) and infection (b, ¢ and e) by flow cytometry. The figure includes the pseudocolor plot data from one representative
blood donor and the mean from 6 healthy donors. *p < 0.05 compared to the untreated control
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(RPMI-1640, Lonza, USA) that was supplemented with
2 mM glutamine (Gibco-Life Technologies, USA), 100 1U/
pg/mL penicillin/streptomycin, 2.5 pg/mL amphotericin B
(Cristdlia, Brazil), 100 mM sodium pyruvate (Sigma-
Aldrich, USA) and 10 % FCS. Both Huh7.5 cells and
PBMCs were maintained in a humid 37 °C atmos-
phere with 5 % CO..

DENV-1/FGA/89 was isolated in 1989 from a South
American patient suffering from dengue fever (GenBank:
AF226687). DENV-2/ICC-265 and DENV-3/97 are
clinical isolates from Brazilian patients who had den-
gue fever in 2009 and 2004, respectively. DENV-4/
TVP360 is a laboratory strain that was kindly pro-
vided by Dr. Ricardo Galler (Fundagdo Oswaldo Cruz,
Rio de Janeiro, Brazil). Viruses were grown in insect
C6/36 cells, and culture supernatants were titrated
using a focus immunodetection assay [42].

Synthesis

Ten (1-10) amides of quinic acid derivatives were syn-
thesized as previously described [43]. Compounds were
prepared both with and without lipophilic chains to in-
vestigate the influence of lipophilicity on antiviral activ-
ity (Table 1). All compounds were recovered in 100 %
dimethyl sulfoxide (DMSO, Sigma-Aldrich, USA) and
stored at -20 °C. The maximum concentration of
DMSO that was used in cell culture assays was 0.5 %.
There were no difference in control treatments with or
without 0.5 % DMSO.

Cytotoxicity assays

Huh7.5 cells were treated with the compounds ranging
from 1000 to 0.5 puM, and cell viability was measured
after 72 h simultaneously by MTT [3-(4,5-Dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide] and Neu-
tral Red (NR) assays, as previously described [30]. Data
from three independent experiments were normalized
with the following equation: cell viability (%)= (OD
sample value - OD blank control)/(OD cell control - OD
blank control) x 100. The non-toxic concentration
(NTC) of each compound was determined using both
assays and defined as the highest concentration that did
not show significant differences from the non-treated
control (one-way ANOVA and Dunnett’s post-test).
CCs was calculated using a sigmoidal dose response
curve (variable slope).

To establish NTCs in PBMCs, serial dilutions of
compounds 2 and 10 were tested after 5 days of treat-
ment, using Annexin V-PE-Cy7 and 7-AAD (Apoptosis
Detection Kit, Becton & Dickinson, EUA) according to
the manufacturer’s instructions and were analyzed by flow
cytometry using a BD FACS Canto II (Flow Cytome-
try Facility RPTOSL PDTIS/Carlos Chagas Institute -
Fiocruz, PR-Brazil).

Page 10 of 13

Antiviral screening of compounds
The antiviral activities of ten quinic acid derivatives were
screened using in situ ELISA [33]. Briefly, Huh7.5 cells
(2x10* cells/well in 96-well plates) were infected with
DENV-1, -2 and -3 with a MOI of 4 and DENV-4 with
a MOI of 0.1. The NTCs of the compounds were used
to treat cells both during and after infection (to cover all
steps of the virus life cycle). After 72 h, cells were fixed
with methanol:acetone for 1 h at -20 °C, blocked with
2 % skim milk and 0.05 % Tween-20 in PBS for 30 min,
and then incubated with the 4G2 mouse monoclonal
antibody that is specific to flavivirus envelope protein for
1 h at 37 °C. Following this, cells were washed four times
with washing buffer (0.01 % Tween 20 in PBS) and a
secondary goat anti-mouse IgG HRP antibody (Sigma-
Aldrich, USA) was added. After 1 h incubation at 37 °C,
cells were washed four times, and TMB substrate (KPL,
USA) was added for 10 min under protection from light.
The reaction was stopped with the addition of 2 M
H,SO,. Absorbance was read at a wavelength of 450 nm
in a microplate reader (Synergy HI1M, Biotek, USA).
Data were normalized as % of infection compared to
controls; non-infected cells (mock) were considered to
represent 0 % infection, and untreated infected cells
were considered to represent 100 % infection. Recom-
binant IFN-a-2A (100 IU/mL) was used as a reference
control, and compounds were considered as active when
70 % of inhibition of at least one serotype was achieved.
Furthermore, concentration response curves were
obtained using serial dilutions of the active com-
pounds, starting from their NTCs. The concentration
that inhibited 50 % of virus infection (ICs,) was ob-
tained using nonlinear regression followed by sigmoidal
concentration-response (variable slope; GraphPad) and se-
lectivity index (SI = CCs0/1Cs50).

Antiviral activity confirmation by supplementary assays

The active compounds that were obtained from the
initial screening were confirmed by two methods.
Huh7.5 cells were infected with DENV-1 through -4
and treated during virus inoculation. Following this,
media that contained compounds 2 or 10 was added
to the cells and incubated with them for 72 h. After
the incubation period, cell culture supernatants were
recovered to perform a foci-forming immunodetection
assay in C6/36 cells, as previously described [42].
Huh7.5 cells were recovered, blocked for 20 min at
room temperature (PBS, 5 % FCS), fixed with Cytofix/
Cytoperm™ (BD Biosciences) and stained with the
anti-Flavivirus 4G2 mouse monoclonal antibody in
Perm/Wash solution (BD Biosciences) for 20 min at
37 °C. After washing with Perm/Wash, the cells were
stained with rabbit anti-mouse IgG (H + L) Alexa-633
(Life Technologies) for 20 min at 37 °C. Finally, cells
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were washed two times with 1x PBS and analyzed
using a BD FACS Canto II (BD Biosciences).

Virucidal assay

A virucidal assay was performed as previously described
[35] with minor modifications. Briefly, samples of each
DENV serotype (2x10° ffu/mL) were treated with the
NTCs of the active compounds (2 and 10) in the pres-
ence or absence of 150 pg/mL RNase A (USB-Affymetrix
Inc.) for 1 h at 37 °C. After treatment, viral RNA was ex-
tracted using a QIAamp Viral RNA Mini Kit (QIAGEN).
The RNA was reverse-transcribed using 250 pmol of a
random primer (Invitrogen, USA) and Improm II Reverse
Transcriptase (Promega, USA). Amplification by PCR
was performed as described by Lanciotti et al. [44] with
some modifications. Briefly, cONA was amplified using D1
(5'- TCAATATGCTGAAACGCGCGAGAAACCG - 3')
and D2 primers (5'- ATTGCACCAGCAGTCAACGTC
ATCTGGTTC - 3’) with Taq DNA polymerase. Samples
were maintained at 94 °C for 3 min, followed by 35 cycles
of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min in a
GeneAmp PCR System 9700 (Applied Biosystems, USA).
Recently extracted DENV-3/97 RNA samples, that were ei-
ther treated or not treated with RNase, were used as the
positive and negative controls, respectively.

Viral binding and internalization assays
To perform a binding assay, Huh7.5 cells were seeded in
96-well plates (2x10* cells/well), infected with DENV-1,
-2, -3 (MOI 4) and -4 (MOI 0.1) and treated with the
active compounds. After 1 h at 4 °C, cells were washed
twice with cold PBS, and the viral inoculum was re-
placed with complete media. After incubation for 72 h at
37 °C and 5 % CO,, the in situ ELISA was performed.
An internalization assay was performed by infecting
Huh?7.5 cells as described above for 1 h at 4 °C. Follow-
ing this, cells were washed twice with cold PBS, and the
active compounds were added. After another hour of in-
cubation at 37 °C, the cells were washed and treated
with citrate buffer (citric acid 40 mM, potassium chlor-
ide 10 mM, sodium chloride 135 mM, pH 3.0) for 1 min
to remove non-internalized viral particles. After washing,
cells received complete media and were incubated at
37 °C, 5 % CO, for 72 h until analysis by in situ ELISA.
The mouse monoclonal 4G2 antibody (neutralizing anti-
body against flavivirus) and recombinant IFN-a 2A
(100 IU/mL) were used as controls for both assays.

Transient replicon assay

To quantify the inhibition of RNA replication by the ac-
tive compounds, two transient replicon assays were
used: RepDV1 generated from dengue virus serotype-1
BR/90 strain (GenBank AF226685) and RepDV3 gener-
ated from dengue virus serotype-3 BR DEN3 290-02
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strain (GenBank EF629369) [37, 38]. DNA plasmids
were purified from the Escherichia coli ToplO strain
using a Wizard Plus Midiprep DNA Purification System
(Promega, Madison, W1, USA) following manufacturer’s
recommendations. Plasmids were linearized with the
Swal restriction enzyme and submitted to phenol/
chloroform extraction and ethanol precipitation. An in
vitro transcription reaction using DNA templates was
achieved using a MEGAscript T7 High Yield Transcrip-
tion Kit (Ambion, Austin, TX, USA) in the presence of
an m’G(5 )ppp(5') RNA Cap analog (New England Bio-
labs, Ipswich, MA, USA). RNA purification was per-
formed with an RNeasy kit (QIAGEN, Valencia, CA,
USA). Finally, the resulting RNAs were used to transfect
Huh7.5 cells (2 ng RNA/ 2x10° cells) following the rec-
ommendations of the manufacturer of the Amaxa Cell
Line Nucleofector Kit T and Nucleofector II/2B device
(Lonza, Cologne, Germany).

After transfection, cells were plated in 24- (1x10° cells)
and 96-well (2x10* cells) plates. Treatments with the
NTCs of the active compounds were performed one
hour after transfection, and the plates were incubated
for an additional 72 h. After this period, the cells from
the 24-well plates were recovered, blocked for 20 min at
room temperature (PBS, 5 % FCS), fixed with Cytofix/
Cytoperm (Becton & Dickinson, San Jose, CA) and
stained with the 1722 mouse monoclonal antibody (anti-
NS3 recombinant protein from dengue virus serotype-1)
in Perm/Wash solution (Becton & Dickinson, San Jose,
CA) for 20 min at 37 °C. The mouse monoclonal anti-
body 1722 recognizes dengue virus serotypes 1, 2 and 3.
(data not shown). After washing with Perm/Wash, cells
were stained with anti-mouse Alexa-633 (Life Technolo-
gies) for 20 min at 37 °C. Finally, cells were washed two
times with Perm/Wash and analyzed using a BD FACS
Canto II (Becton & Dickinson, San Jose, CA). The cells
in the 96-well plates were submitted to a cell viability
neutral red assay [29].

Non-RNA-transfected and non-treated cells were used
as mock controls. Huh7.5 cells that were transfected
with RNA and that were not treated were used as a posi-
tive control for virus replication. Cells that were treated
with recombinant IFN-a 2A (100 IU/mL) and 20 uM ri-
bavirin were used as reference controls.

Antiviral effect in primary human cells

Peripheral blood mononuclear cells (PBMCs) were in-
fected with DENV-4 (MOI 10) for 2 h and treated with
the NTCs of the active compounds for five days at 37 °C
and 5 % CO,. After incubation, cells were analyzed for
DENV antigen quantification by FACS. Briefly, the cells
were blocked with PBS, 5 % FCS (Gibco-Invitrogen,
South America) and 1 % human serum type AB (Lonza,
Walkersville, MD) for 20 min at room temperature.
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Following this, the cells were fixed using Cytofix/Cyto-
perm (Becton & Dickinson, San Jose, CA), washed using
Perm/Wash, and stained with the 4G2 monoclonal (spe-
cific for flavivirus envelope protein) for 20 min at 37 °C.
After incubation, the cells were washed with Perm/Wash
and incubated for 20 min at 37 °C with the secondary
antibody (donkey anti-mouse conjugated with Alexa-488;
Life Technologies). Finally, cells were washed twice with
Perm/Wash and analyzed using a FACSCanto II (BD
Biosciences). Data were analyzed by two-way ANOVA
followed by the Bonferroni post test.

Data analysis

Statistical analyses were performed using Prism soft-
ware (GraphPad version 5.0, USA), with a significance
of p<0.05. Flow cytometry data were analyzed by
FlowJo version X software (Tree Star Inc., USA).

Additional file

Additional file 1: Figure S1. Concentration response curve for
compounds 2 and 10 in Huh7.5 cells infected with all four dengue virus
serotypes. Cells were infected with DENV and treated during and after
the infection in a range of concentrations. Mean + SE of three
independent experiments. ICsq was calculated using a sigmoidal dose
response curve (variable slope). (TIF 607 kb)
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