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Abstract

Background: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are
recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-β in many cell types. Poly (I:C) is the most
potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-α/β production and
natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against
many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine
cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7–10 days postinfection
before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance.

Results: The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were
studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence
of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much
lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the
production of IFN-β and increased the expression of anti-viral genes, including IFN-α, IFN-β, MxA, and OAS. Both
Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells.

Conclusions: CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV
replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other
anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.
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Introduction
Chikungunya virus (CHIKV), the causative agent for
Chikungunya fever, was first described in 1952 during an
epidemic in Tanzania, East Africa [1,2]. CHIKV is a
positive-sense single-strand RNA virus belonging to the
genus Alphavirus of the family Togaviridae, and it is
maintained in two distinct transmission cycles, a sylvatic
cycle and a human-mosquito-human cycle. The scale of
epidemics of the former is smaller and is mainly con-
fined within African countries, involving primates such
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as monkeys and forest-dwelling Aedes mosquitoes [3].
CHIKV is mainly transmitted by Aedes aegypti and
Aedes albopictus. CHIKV epidemics have often been
characterized by long interepidemic (more than 10 years)
periods in many parts of Southern and Southeast Asia
[4-7]. During the past 8 years, major outbreaks have oc-
curred among islands in the Indian Ocean, with Reunion
Island being one of the most severely hit islands. One-
third of its population were infected, and more than 240
people died [8-12]. The symptoms of Chikungunya gen-
erally start 4–7 d after the bite. Acute infection lasts 1–
10 days and is characterized by a painful polyarthralgia,
high fever, asthenia, headache, vomiting, rash, and myal-
gia [13,14]. CHIKV infection has affected as many as
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3–4 million people in the Indian Ocean zone, and it
spread to Europe in 2005–2007. This disease has recently
received considerable attention in Thailand [15-19].
CHIKV transmission is rapid and extensive; however,

humans are not defenseless, and in fact, CHIKV is effi-
ciently cleared within 4–7 days after infection in vivo
[20-22]. As a typical adaptive immune response, such as
CHIKV-specific B-cell and T-cell activation, requires at
least 1 week for development, the innate immune system
seems to control CHIKV infection [23]. CHIKV is
known to infect many different cell types, including
fibroblasts and epithelial and endothelial cells in vitro
[24] and fibroblast cells in vivo [25]; however, epithelial
cells are armed with various mechanisms that are able to
sense viral components and initiate intracellular signal
transduction to respond rapidly to viral infections [26].
Polyinosinic: polycytidylic acid [Poly (I:C)], a synthetic
double-stranded RNA (dsRNA) analog, is an immunosti-
mulant that acts as the most potent interferon (IFN) in-
ducer [27]. In in vivo mouse studies, intraperitoneal
injection of Poly (I:C) elicited IFN-α/β production and
natural killer (NK) cells activation [28,29]. Poly (I:C) is
known to interact with toll-like receptor 3 (TLR3),
which is expressed in the membrane of B-cells, macro-
phages, and dendritic cells.
TLRs are a member of the family of host innate im-

mune receptors, and they are essential for detecting
pathogen-associated molecular patterns. TLRs are trans-
membrane signaling proteins designed to specifically
recognize various proteins, carbohydrates, lipids, and
nucleic acids of invading microorganisms. When a TLR
is activated, it triggers immune and inflammatory
responses to infectious agents [30]. The TLR3 pathway
contributes to an innate immune response against many
viruses, including influenza virus [31], respiratory syn-
cytial virus [32], herpes simplex virus 2 [33], and murine
cytomegalovirus [34]. The detection of viral dsRNA and
Poly(I:C) in the cytosol is mediated through the helicase
family members retinoic-acid-inducible gene I (RIG-I)
and melanoma-differentiation-associated gene 5 (MDA-
5), thus allowing the host to sense directly an intracellu-
lar viral infection in a TLR3-independent way [35,36]. In
vitro studies have shown that RIG-I and MDA-5 are
both capable of responding to Poly(I:C) and RNA viruses
[37].
In this study, Poly (I:C) was used to examine the in-

nate immune response in vitro. We found that Poly (I:C)
suppressed the cytopathic effect (CPE) induced by
CHIKV infection and inhibited the replication of CHIKV
in human bronchial epithelial-derived cells, BEAS-2B, by
inducing the expression of IFNs and interferon-inducible
intracellular antiviral factor genes, including OAS and
MxA. Based on our results, we concluded that the
CHIKV was sensitive to IFNs and that the innate
immune response plays an important role in the clear-
ance of CHIKV.

Results
Poly (I:C) suppressed CPE induced by CHIKV infection
BEAS-2B cells were seeded in 6-well plates (1x106 cells/
well) one day before Poly (I:C) treatment. One hour be-
fore infection at multiplicity of infection (MOI) 0.01, 1,
or 5, the cells were pre-treated with 4 μg/ml of Poly (I:
C) or left untreated. After adsorption, the cells were
maintained in the medium with or without Poly (I: C)
(4 μg/ml). The CPE was observed at 24, 48, and 72 h
postinfection (p.i.) under a microscope. No CPE was
found in Poly (I:C)-treated cells at 24 or 48 h p.i., even
when MOI 5 was used. Although CPE was found in the
Poly (I:C)-treated cells at 72 h p.i., it was less significant
compared with that of untreated cells (Figure 1), demon-
strating that Poly (I:C) treatment appeared to decrease
CPE induced by CHIKV infection. Because the protec-
tion of CPE was decreased at 72 h p.i., we conclude that
the protection is important in the early phase of
infection.

Poly (I:C) inhibited replication of CHIKV in BEAS-2B cells
Since the Poly(I:C) decreased CPE in BEAS-2B cells
induced by CHIKV infection, we supposed that Poly(I:C)
may inhibit the replication of CHIKV. To clarify the ef-
fect of Poly (I:C) treatment, we measured the virus titers
produced by Poly (I:C)-treated and mock-treated cells by
plaque assay (Figure 2). The supernatant was collected
at 24, 48, and 72 h p.i. at each MOI. The virus titers
from mock-treated cells were 1.5x106, 5.5x105, and
4.5x103 pfu/ml at MOI 0.01; 4.3x106, 1x106, and 5x104

pfu/ml at MOI 1; 3.5x108, 6.9x107, and 3x105 pfu/ml at
MOI 5 at 24, 48, and 72 h p.i., respectively. The virus
titers of the supernatant from Poly (I:C)-treated cells
were 2.5x102, 1.5x102, and 1x102 pfu/ml at MOI 0.01;
2.5x103, 2x103, and 6.3x102 pfu/ml at MOI 1; 2x106,
6x105, and 5.5x103 pfu/ml at MOI 5 at 24, 48, and 72 h
p.i., respectively, indicating that Poly (I:C) treatment sig-
nificantly lowers the virus titers. With either Poly (I:C)
treatment or non-treatment, the virus titers showed a
high peak at 24 h p.i. in the infections with the same
MOIs and a trend to decrease at 48 and 72 h p.i. These
results indicated that Poly (I:C) inhibited the replication
of CHIKV in BEAS-2B cells. This is probably because
IFN-β induced by Poly (I:C) treatment plays a role, as
described previously [31].

Induction of IFN-β and stimulation of TLR3 expression in
BEAS-2B cells by poly (I:C) treatment or CHIKV infection
Poly (I:C) is a strong IFN inducer. The effects of Poly
(I:C) treatment on CHIKV infection in BEAS-2B cells
may be due to the production of IFNs. To elucidate
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Figure 1 Effect of Poly (I:C) treatment on CPE. BEAS-2B cells were
treated with 4 μg/ml of Poly (I:C) (+) or mock-treated (−) for 1 h,
and then infected with CHIKV at MOI 0.01, 1, and 5. At 24, 48, and
72 h p.i., CPE was observed under a microscope.
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the level of IFN-β, we treated BEAS-2B cells with
4 μg/ml of Poly (I:C) and measured the amount of
IFN-β by ELISA. The concentration of IFN-β in the
supernatant at 0, 2, 4, 8, 16, and 24 h p.i. was 490.60,
681.69, 984.61, 947.82, 736.91, and 710.54 pg/ml, re-
spectively, indicating that Poly (I:C) treatment induced
the secretion of IFN-β. The IFN-β level reached a peak
at 4 h during the treatment (Figure 3A). The IFN-β
was also induced by CHIKV infection (MOI 0.8) and
reached a peak at 24 hours p.i. The concentration at
0, 2, 4, 8, 16, and 24 h p.i. was 501.54, 526.67, 547.23,
907.43, 1585.95, and 2614.92 pg/ml, respectively,
(Figure 3B). TLR3 was known as a receptor for dsRNA
[38,39], and upon recognition of dsRNA, TLR3 trans-
mits signals that activate the transcript factors IFR-3,
NF-ҚB, and AP-1, leading to the induction of type I
IFN [40] [41]. The level of TLR3 expression examined
by PCR is shown in Figure 3C. The expression of
TLR3 mRNA was upregulated by both Poly (I:C) treat-
ment and CHIKV infection after 24 hours. The induc-
tion of IFN-β may be triggered through the
upregulated expression of TLR3.

Induction of IFN-α, IFN-β, MxA, and OAS genes
One unique feature of TLR3 is to trigger the induction
of the type I IFNs (IFN-α/β). In addition TLR3 is known
to induce the expression of interferon-inducible intracel-
lular antiviral factors including OAS and MxA [42,43].
We examined the expression of mRNA of these genes
using RT-PCR. As shown in Figure 4, Poly (I:C) treat-
ment stimulated the induction of IFN-β mRNA, and a
significant upregulation was observed at 2 h post treat-
ment. The expression level was still apparent, albeit at a
lower level, at 4 and 8 h post treatment. A significant
upregulation of IFN-α was observed at 16 h poststimula-
tion. Exposure of BEAS-2B cells to Poly (I:C) induced
time-dependent expression of MxA and OAS mRNA;
however, unlike IFN-α/β, the levels of these two tran-
scripts remained elevated 4, 8, 16, and 24 h poststimula-
tion (Figure 4.) These results indicated that Poly (I:C)
induced the anti-viral genes that may contribute to the
inhibition of CHIKV replication.

Discussion
The innate immune response is the first barrier against
the viruses [44], initiated within hours after the viruses
bind to the receptor, and it plays a central role in the
detection of invading pathogens. The innate immune
system responds through activating inflammatory and
antiviral defense mechanisms against the infectious
agents [45]. Innate immunity involves the induction of
many factors, including IFNs-α/β, which induce a
range of antiviral processes. In infected cells, it is
believed that the proximal inducer of IFNs-α/β is intra-
cellular dsRNA generated as an intermediate during
viral replication [38].
During virus replication, not only dsRNA but also

single-stranded RNA (ssRNA) molecules are recognized
as intermediate by TLRs expressed in dendritic cells,
natural killer cells, and macrophages, as well as in epi-
thelium [46]. The dsRNA triggers a series of events
culminating in the activation of PKR and other
kinases. Phosphorylation of the substrates of these
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Figure 2 Effect of Poly (I:C) treatment on CHIKV growth. BEAS-2B cells were treated with 4 μg/ml of Poly (I:C) (□) or mock-treated (■) for 1 h,
and then infected with CHIKV at MOI 0.01, 1, and 5. At 24, 48, and 72 h p.i., the virus titer in the supernatant was measured by a plaque assay.
*P< 0.01 by Student’s unpaired t-test.
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enzymes results in the translocation of transcription
factors, NF-ҚB and IRF-3, from the cytoplasm to the
nucleus, where they bind to the IFN-β promoter to
form a transcription complex that ultimately drives
IFN-β production [47,48] [49,50]. Several in vitro stud-
ies have demonstrated that Poly (I:C), a TLR3 agonist,
induces antiviral responses through the induction of
IFN-β [51].
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Figure 3 Induction of IFN-β and expression of TLR3 in BEAS-2B cells t
were incubated in the presence of 4 μg/ml of Poly (I:C), and IFN-β secreted
collected at 0, 2, 4, 8, 16, and 24 p.i. (B) BEAS-2B cells were infected with C
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cells were incubated with 4 μg/ml of Poly (I:C) or infected with CHIKV at M
mRNA was amplified by RT-PCR. The products were analyzed by agarose g
in triplicate is shown.
In the present study, we demonstrated that following
Poly (I:C) treatment, BEAS-2B cells produced antimicro-
bial factors IFN-β, OAS, and MxA, which may constitute
a highly specific and potent barrier against CHIKV infec-
tion. Poly (I:C) is known to markedly upregulate the
IFN-β mRNA level in a dose-dependent manner in
mouse osteoblastic MC3T3-E1 cells [52]. Similarly,
trophoblast cells are known to express and secrete
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antiviral factors, such as OAS, MxA, and APOBEC3G,
by Poly (I:C) [53]. Poly (I:C) treatment also inhibited the
multiplication of xenotropic baboon type C endogenous
retrovirus M7 in chronically infected human AV3-M7
cells [54] and human immunodeficiency virus amplifica-
tion in dendritic cells via type I IFN-mediated activation
of APOBEC3G [55].
Based on the results of the present study, we conclude

that both Poly (I:C) and CHIKV infection enhanced the
expression of TLR3. The stimulation of TLR3 by dsRNA
transduces signals to activate the transcription factors
NF-ҚB and IRF/interferon-sensitive response element
(ISRE) via myeloid differentiation factor 88 (MyD88)-
independent signaling pathways, which involve a distinct
adaptor molecule, namely the Toll-interleukin (IL)-1 re-
ceptor (TIR) domain containing adaptor-inducing IFN-β
(TRIF), also called the TIR domain containing adaptor
molecule 1 (TICAM-1) [56,40]. This molecule elicits an
antiviral response, especially through the production of
IFNs-α/β [57]. Therefore, IFNs could contribute to de-
crease the CPE and inhibit the replication of CHIKV
through TLR3 stimulation. Similar phenomena were
reported in influenza virus in BEAS-2B cells. Both Poly
(I:C) and influenza virus infection induced IFN- β [31].
The replication of CHIKV is controlled by IFNs-α/β
[24], which is critically dependent on the action of non-
hematopoietic cells through the induction of one or
more IFN-stimulated genes (ISGs) [58]. Therefore, in-
duction of IFNs and antiviral genes observed in this
study could contribute to the Poly (I:C)-mediated
suppression of CPE and inhibition of the replication of
CHIKV in BEAS-2B cells.
Poly (I:C) was widely used as an adjuvant for vaccine

research. Poly (I:C)-combined intranasal vaccine pro-
tected mice against influenza virus infection, including
that due to highly pathogenic H5N1 [59-61]. Synthetic
dsRNA is adjuvant for the induction of T helper 1
and humoral immune response to human papilloma-
virus in rhesus macaques [62]. Therefore, Poly (I:C)
could be an adjuvant for CHIKV vaccine, which can
increase the immune response in humans to clear the
CHIKV.

Conclusions
CHIKV is sensitive to innate immune response induced
by Poly (I:C). Poly (I:C) decreased CPE and inhibited the
CHIKV replication in BEAS-2B cells. The Poly (I:C) in-
hibition of CHIKV replication may be through the in-
duction of TLR3, which triggers the production of IFNs
and other anti-viral genes, such as MxA and OAS. The
innate immune response is important to clear CHIKV in
infected cells.

Materials and methods
Viruses, cells, and reagents
Chikungunya viruses (Ross Strain) were propagated in
Vero-E6 (Vero) cells. The virus titer was measured by a
plaque assay. BEAS-2B, a SV-40-transformed airway
bronchial epithelial cell line, was purchased from Ameri-
can Type Culture Collection (Manassas, VA). Cells were
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maintained in RPMI-1640 supplemented with 10% FCS.
All experiments were performed in a biosafety level 3
containment laboratory. Poly (I:C) was purchased from
Sigma-Aldrich (St. Louis, MO).

RT-PCR
Total RNA was extracted from the cells by using
TRIzoL (Invitrogen, Carlsbad, CA) according to the
manufacturer’s protocol. RT was performed using
3.5 μg of total RNA. PCR was performed using an
INF-α forward primer (5’-TTTCTCCTGCCTGAAG
GACAG-3’) and an INF-α reverse primer (5’-
TCTCATGATTTCTGCTCTGACA-3’), a IFN-β for-
ward primer (5’-CTGTGGCAATTGAATGGGAGGC
-3’) and a IFN-β reverse primer (5’-CAGGCACAGT
GACTGTCCTCCTT-3’), a MxA forward primer (5’-
CATACTGCGAGGAGATCCTCCTT-3’) and a MxA re-
verse primer (5’-AGCATCCGAAATCTCAATCTCGTA
-3’), a OAS forward primer (5’-AGAATGTCAGACACT
GATCGACGA-3’) and a OAS reverse primer (5’-
TGTTCCCAGGCATACACCGTA-3’), a TLR3 forward
primer (5’-AAATTGGGCAAGAACTCACAGG-3’) and
a TLR3 reverse primer (5’-GTGTTTCCAGAGCC
GTGCTAA-3’), and a GAPDH forward primer (5’-CAC-
CACCAACTGCTTAGCAC-3’) and a GAPDH reverse
primer (5’-CCCTGTTGCTGTAGCCAAAT-3’). Amplifi-
cation products were resolved on 1.5% agarose gel con-
taining ethidium bromide.

Plaque assay
Vero cells were seeded at 2.5x105 cells per well in 24-
wells plates, incubated at 37°C overnight, and washed
once with phosphate buffered saline (PBS). Ten-fold ser-
ial dilutions of the virus mixture were prepared in Hanks
buffer (Sigma-Aldrich), and then 0.1 ml of the mixture
was inoculated into each well and incubated for 1 h at
37°C, during which we agitated the plate every 15 min-
utes. After adsorption for 1 h, the plate was washed with
PBS three times, and 1 ml of DMEM containing 2% car-
boxymethyl cellulose (W/V) (Sigma-Aldrich) and 5%
FBS was layered onto the cells. The plates were incu-
bated in a humidified incubator at 37°C with 5% CO2 for
3 days. The overlay was removed and washed with PBS.
Plaques were visualized by staining the monolayer with
1 ml 0.5% crystal violet containing 10% formaldehyde
(Sigma-Aldrich) for 2 h at room temperature. The virus
plaques were counted after thorough washing with tap
water.

Cytokine measurements
The concentration of human IFN-β in cell culture super-
natants was determined by using DuoSet Elisa kits (R&D
Systems, Minneapolis, MN).
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