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Abstract

Background: The current criteria for recreational water quality evaluation are primarily based on measurements of
fecal indicator bacteria growth. However, these criteria often fail to predict the presence of waterborne human
pathogenic viruses. To explore the possibility of direct use of human enteric viruses as improved human fecal
contamination indicators, human adenovirus (HAdV) was tested as a model in this study.

Findings: In order to establish a highly sensitive protocol for effective detection of HAdV in aquatic environments,
sixteen published PCR primer sets were re-optimized and comparatively evaluated. Primer sets nehex3deg/
nehex4deg, ADV-F/ADV-R, and nested PCR primer sets hex1deg/hex2deg and nehex3deg/nehex4deg were
identified to be the most sensitive ones, with up to 1,000 fold higher detection sensitivity compared to other
published assays. These three PCR protocols were successfully employed to detect HAdV in both treated and
untreated urban wastewaters, and also in 6 of 16 recreational water samples collected around the island of Oahu,
Hawaii.

Conclusions: Findings from this study support the possible use of enteric viruses for aquatic environmental
monitoring, specifically for the essential routine monitoring of Hawaiian beach waters using the optimized PCR
protocol to detect HAdV at certain water sites to ensure a safe use of recreational waters.

Findings
Occurrence of enteric virus contamination in recrea-
tional waters has been a major health concern world-
wide in recent years [1-5]. However, the current
recreational water quality criteria based on the concen-
tration of fecal bacterial indicators (total coliforms, fecal
coliforms, and enterococci) often fail to predict the pre-
sence of human pathogenic enteric viruses [6-9]. There-
fore, enteric viruses have been suggested as alternative
indicators of fecal contamination in aquatic environ-
ments [6,10,11] due to their low infectious dose [12,13],
long survival period in the environment [6,14,15], high
resistance to several wastewater treatments [16-18], and
the stringent host specificity that makes them free of
environmental multiplicity [11]. In addition, detection of
human enteric viruses using the library-independent
molecular methods (i.e. PCR) is much less laborious and
time-consuming compared to the traditional growth-
based assessment [11].

The European union regulation has already listed
enteroviruses as a parameter governing water quality
[11]. However, many studies have suggested that human
adenovirus (HAdV), the only enteric virus with double-
stranded DNA instead of RNA genome, would make a
better candidate as a fecal pollution indicator because of
its known stability and persistence in aquatic environ-
ments compared to other enteric viruses [11,18,19].
It is well known that monitoring the presence of

enteric viruses could be challenging due to the relatively
low level of viral particles existing in environmental
waters. However, this limitation can be overcome by the
use of improved methods for aquatic sample concentra-
tion, viral nucleic acids extraction, and more sensitive
viral detection techniques [11]. There are currently a
number of PCR protocols reported in literature for
HAdV detection. However, little is known about their
sensitivity or specificity for HAdV detection, particularly
for detecting HAdV in environmental waters.
In this study, a total of 16 sets of published HAdV

PCR primers, including 3 primer sets for nested PCR,
were tested in a side-by-side comparison using a single
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source of viral DNA for determining detection sensitiv-
ity. The selected primer sets were summarized in
Table 1. All primer sets were initially tested under stan-
dard laboratory PCR conditions with single source
HAdV DNA extracted from an in vitro cultured cell
sample using QIAamp DNA mini kit (Qiagen, CA)
according to the manufacturer’s instructions. As shown
in Table 2, among all 16 sets tested, only 8 primer sets
including hex1deg/hex2deg, nehex3deg/negex4deg,
ADV-F/ADV-R, XuHex1/XuHex2, hexDEGF/hexDEGR,
AdF/AdR, AdV1/AdV2, and AdV3ne/AdV4ne were able
to generate PCR products of the expected sizes in a
25 μL volume reaction containing 1X Taq reaction
buffer (Mg2+ free) (New England Biolabs, NEB, MA),
1.5 mM MgCl2 solution (NEB, MA), 200 nM of each
dNTP (Sigma-Aldrich, MO), 0.1 μg/μL of BSA (NEB,

MA), 400 nM of forward and reverse primers (Inte-
grated DNA technologies, IA), and 2 units of Taq DNA
polymerase (provided by Dr. Tung Hoang, University of
Hawaii at Manoa), with a Master Cycler Gradient
(Eppendorf, Germany). Amplification started with an
initial denaturation at 94°C for 5 min, followed by
40 cycles of denaturation at 94°C for 30 sec, annealing
at 56°C for 30 sec, extension at 72°C for 30 sec, and a
final extension at 72°C for 5 min. All PCR products
were subjected to 2% agarose gel electrophoreis along-
side a 50-bp DNA marker (NEB, MA), stained with
Ethidium Bromide (Sigma-Aldrich, MO) and viewed
with the Molecular Imager Gel Doc XR+ system
(BioRad Laboratories Inc., CA).
The 8 primer sets that successfully generated products

of respective sizes (Table 1) were subjected to PCR

Table 1 Oligonucleotide sequences used for detection of HAdV

Primer Sequence (5’® 3’)a +/-b Target Ampliconsize (bp) References

Q-Padv-F AACGGCCGCTACTGCAAG + Swine AdV hexon 68 Hundesa et al., 2009 [24]

Q-Padv-R AGCAGCAGGCTCTTGAGG -

hex1deg (outer) GCCSCARTGGKCWTACATGCACATC + Hexon 301 Allard et al., 2001 [25]

hex2deg (outer) CAGCACSCCICGRATGTCAAA -

nehex3deg (inner) GCCCGYGCMACIGAIACSTACTTC + 171

nehex4deg (inner) CCYACRGCCAGIGTRWAICGMRCYTTGTA -

ADV-F GCCACGGTGGGGTTTCTAAACTT + Hexon 131 Gunson et al., 2009 [26]

ADV-R GCCCCAGTGGTCTTACATGCACATC -

XuHex1 TTCCCCATGGCICAYAACAC + Hexon 482 Xu et al. 2000 [27]

XuHex2 CCCTGGTAKCCRATRTTGTA -

hexDEGF CAGGACGCCTCGGRGTAYCTSAG + Hexon 103 Damen et al., 2008 [28]

hexDEGR GGAGCCACVGTGGGRTT -

AdE1 TCCCTACGATGCAGACAACG + Fiber 967 Xu et al. 2000 [27]

AdE2 AGTGCCATCTATGCTATCTCC -

AdF1 ACTTAATGCTGACACGGGCAC + 541-586

AdF2 TAATGTTTGTGTTACTCCGCTC -

AdF CWTACATGCACATCKCSGG + Hexon ~75 Hernroth et al., 2002 [29]

AdR CRCGGGCRAAYTGCACCAG -

HAdV-ABCDEF-hexon25fc CARTGGKCDTACATGCACATC + Hexon Kuo et al., 2009 [30]

HAdV-E-hexon373r CCAGRCTGTTGTAGGCAGTG - 349

HAdV-F-hexon265r CCACGGCCAGCGTAAAGC - 241

hexAA1885 (outer) GCCGCAGTGGTCTTACATGCACAGC + Hexon 300 Allard et al., 1990 [31]

hexAA1913 (outer) CAGCACGCCGCGGATGTCAAAGT -

nehexAA1893 (inner) GCCACCGAGACGTACTTCAGCCTG + Hexon 142 Allard et al., 1992 [32]

nehexAA1905 (inner) TTGTACGAGTACGCGGTATCCTCGCGGTC -

JTVFF AACTTTCTCTCTTAATAGACGCC + Fiber 117 Jothikumar et al., 2005 [33]

JTVFR AGGGGGCTAGAAAACAAAA -

AdV1 (outer) CAAGATGGCCACCCCCTCG + hexon 329 Oh et al., 2003 [34]

AdV2 (outer) CGATCCAGCACGCCGCGGATGTC -

AdV3 (inner) AATGGTCTTACATGCACAT + 253

AdV4 (inner) ACCCGGTTGTCGCCCACGGCCAG -

a. R = A+G; Y = C+T;S = C+G;W = A+T;H = A+C+T;B = C+G+T;V = A+C+G;D = A+G+T;N = all.

b. Polarity.

c. Forward primer for both HAdV-E-hexon373r and HAdV-F-hexon265r.
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condition optimization. Different annealing tempera-
tures, MgCl2 concentration and amounts of primers
were combined and adjusted to improve the sensitivity
of individual detection protocols. The sensitivity of the
detection assay was first evaluated at 6 annealing tem-
peratures ranging from 50°C to 60°C. Using the obtained
optimal annealing temperature, each set then was tested at
4 selected MgCl2 concentrations ranging from 1.5 to 4.0
mM. The last optimization step was to evaluate the effect
of selected primer concentrations from 0.2 μM to 0.8 μM
on detection sensitivity. The final optimized PCR condi-
tions for each primer set are listed in Table 2. Detection
sensitivity of each primer set was evaluated under the final
optimized condition using a serial of 10-fold dilution of a
single-source HAdV DNA as template. The detection lim-
its were based on the highest dilution that gave a clear
positive signal after PCR amplification. As shown in Table
2, the sensitivities among all tested primers ranged from
10-4 X to 10-7 X dilution, indicating a detection difference
of 1,000 fold. Among all, sets nehex3deg/nehex4deg,
ADV-F/ADV-R, and AdF/AdR were identified to be the
most sensitive ones for ADV detection. Nested PCR using
hex1deg/hex2deg and nehex3deg/nehex4deg exhibited
similar sensitivity by showing the positive results with
stronger detection signals when the same dilution was
used. Due to the small size of the final product generated
by AdF/AdR (less than 100 bp), only nehex3deg/nehex4-
deg, ADV-F/ADV-R, and nested PCR sets hex1deg/hex2-
deg and nehex3deg/nehex4deg were employed in a survey
study directed to testing sewage and environmental water
samples for naturally occurring HAdV and the detection
protocol validation.
From previous experience examining human norovirus

contamination, we learned that PCR conditions opti-
mized using a single clinical source of viral nucleic acids
might not act as specifically on total nucleic acids
extracted from a complex microbial community,

especially when the target viruses only exist in a very
small amount compared to other organisms, which is
often the case for naturally occurring enteric viruses in
environmental waters. Urban wastewaters of human ori-
gin are known to contain a large volume of enteric
viruses due to characteristic shedding in high numbers
in the feces of infected individuals [11,20]. Therefore,
the three selected protocols were first validated for their
potential application in HAdV detection in environmen-
tal samples by testing treated and untreated urban was-
tewater samples collected from Sand Island Wastewater
Treatment Plant (SIWWTP, Hawaii) during May 2010.
The SIWWTP processes around 60 million gallons of
wastewater daily, accounting for approximately 85% of
Oahu’s wastewater. Samples were collected from 3 dif-
ferent treatment stages, including untreated raw influ-
ence, post-primary clarifying/pre-disinfection stage, and
post-disinfection/effluence. Water samples were concen-
trated according to the filtration-based method
described by Katayama et al. [21] with modifications.
Briefly, negatively charged type HA filter membranes
(Millipore Corporation, MA) with a 0.45-μm pore size
and 90-mm diameter were used with a vacuum pump
system. MgCl2 was added to the sewage samples at a
final concentration of 25 mM before filtration was per-
formed. One hundred milliliters of wastewater sample
was filtered through the membranes for viral absorption.
The recovered membranes were subjected to nucleic
acid extraction using the PowerWater DNA isolation kit
(MoBio Laboratories, CA) according to the manufac-
turer’s instructions. Five microliters of the total DNA
was used as the template for HAdV detection using the
optimized PCR protocols with primer sets ADV-F/ADV-
R and nehex3deg/nehex4deg. As expected, HAdV was
detected consistently by the two detection methods in
all three stages of the collected urban wastewater sam-
ples with clean, single bands as shown in Figure 1.

Table 2 Optimized PCR conditions and detection limits for each primer set

Primer Stda Optimized condition Detection limit

Tannel [MgCl2] [primer]

hex1deg/hex2deg ✓ 54-60 1.5 mM 600-800 nM 10-5 X

nehex3deg/nehex4deg ✓ 58-60 2.0 mM 600-800 nM 10-6-7 X

ADV-F/ADV-R ✓ 51.6-55.4 1.5 mM 600-1000 nM 10-7 X

XuHex1/XuHex2 ✓ 54-60 1.5 mM 1000 nM 10-5 X

hexDEGF/hexDEGR ✓ 59.2 3.0 mM 600-800 nM 10-5 X

AdF/AdR ✓ 60 1.5 mM 600 nM 10-6-7 X

AdV1/AdV2 ✓ 51.6-55.4 2.0 mM 600-800 nM 10-4X

AdV3ne/AdV4ne ✓ 55.4 1.5 mM 400-800 nM 10-4 X

Hex1deg/hex2deg; nehex3deg/nehex4degb 10-7 X

AdV1/AdV2; AdV3ne/AdV4neb 10-5 X

a. Standard condition as described in text.

b. Nested PCR.
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Following validation with sewage samples, we evalu-
ated the three protocols for potential use in detecting
naturally occurring HAdV in environmental water
samples. Sixteen surface water samples were collected
from different recreational water bodies composed of
both marine and fresh waters around the island of
Oahu during June 2010. Sample sites, conditions, and
filtration volumes are summarized in Table 3. To
ensure the reliability of water filtration and nucleic
acid extraction processes, a field blank sample com-
prised of 2 L distilled water as a negative control, and
a spiked sample made by adding 50 mL of HAdV-posi-
tive untreated wastewater sample into 2 L of seawater
collected from Diamond Head Beach Park as a positive
control were also carried out using the same filtration
and DNA extraction procedures for all environmental
samples. Surface waters collected from fresh water
bodies were subjected to initial treatment with 25 mM
MgCl2 for 5 min at room temperature prior to
filtration.

As shown in Table 3, six sites including Sand Island
State Recreational Area, Kailua Bay, Waikiki Beach, Ala
Wai Canal, Wahiawa freshwater, and Manoa stream
were all positive for HAdV by using the nested PCR
protocol with hex1deg/hex2deg and nehex3deg/nehex4-
deg. As a comparison, Kailua Bay and Manoa stream
were HAdV positive using the ADV-F/ADV-R PCR pro-
tocol, while HAdV was found in the surface waters of
Waikiki Beach and Manoa Stream when nehex3deg/
nehex4deg PCR protocol was employed. Manoa Stream
was the only site at which all three protocols confirmed
HAdV presence. All HAdV positive PCR products were
recovered after electrophoresis from 2% agarose gel
using QIAquick Gel Extraction kit (Qiagen, CA) by fol-
lowing the manufacture’s instruction. The recovered
DNAs were sent to the Advanced Studies in Genomics,
Proteomics and Bioinformatics (ASGPB, University of
Hawaii at Manoa) for sequencing to confirm the positive
detection of HAdV.
The resulting positive detection of HAdV from envir-

onmental water by employing highly sensitive detection
methods clearly indicates that low concentration is not
an impossible obstacle to overcome when detecting
human enteric viruses from environmental waters. In
this study, the comparative analysis of several PCR
assays currently available for HAdV detection has led to
the identification of three highly sensitive PCR proto-
cols, which were successfully employed for effective
detection of HAdV in different types of aquatic environ-
ments in Hawaii. In addition, the nested PCR appeared
to be superior to the other two protocols for detecting
HAdV in environmental waters, suggesting this protocol
should be a priority for use in facilitating early detection
of HAdV contamination in future.
As the only enteric virus containing a double-stranded

DNA genome, HAdV has been shown to be up to 60
times more resistant to UV irradiation than its RNA
enteric virus counterparts [17,22] and is able to persist
and remain infectious in the environment for a long
period of time [6]. In addition, HAdV occurrence was
reported to have great correlation with other human
enteric viruses, especially hepatitis A virus [19,23]. With
several well-established stable cell lines available, HAdV
could also be subjected to infectious studies and future
exposure risk assessment. Overall, HAdV would make
an ideal candidate as a potential molecular index for
enteric viral contamination of recreational waters.
It should be noted that this is the first report of

HAdV detection in Hawaiian environmental waters
using PCR methods to the best of our knowledge. The
high prevalence of HAdV in Oahu waters revealed from
this study should raise public awareness of a more
serious beach contamination issue than previously
expected. These new findings strongly argue the

Figure 1 Agarose gel electrophoresis of PCR detection of HAdV
in urban wastewaters of three different treatments stages. (A)
Amplified with primer set ADV-F/ADV-R. (B) amplified with primer
set nehex3deg/nehex4deg. HAdV were detected from 100 mL of
untreated raw influenced (lane 1), pre-disinfection (lane 2), and
post-disinfection/effluence (lane 3) stages. Lane M = 50-bp DNA
marker, lane C+ = positive control using HAdV DNA, and lane C- =
no template control.
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importance and necessity of including these established,
sensitive HAdV detection protocols into routine water
quality monitoring for better protection of the public
from recreational waterborne illness associated with
enteric viruses. Current research in this laboratory is
directed to the establishment of in vitro infectivity assays
for water samples collected from the HAdV positive
sites and to the determination of a possible correlation
between the PCR detection and actual viral infectivity,
thus providing baseline information important for the
interpretation and assessment of PCR-based HAdV
detection and actual health risk to the public.
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