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HIV-1 Nef increases astrocyte sensitivity towards
exogenous hydrogen peroxide
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Abstract

Background: HIV-1 infected individuals are under chronic exposure to reactive oxygen species (ROS) considered to
be instrumental in the progression of AIDS and the development of HIV-1 associated dementia (HAD). Astrocytes
support neuronal function and protect them against cytotoxic substances including ROS. The protein HIV-1 Nef, a
progression factor in AIDS pathology is abundantly expressed in astrocytes in patients with HAD, and thus may
influence its functions.

Results: Endogenous expressed HIV-1 Nef leads to increased sensitivity of human astrocytes towards exogenous
hydrogen peroxide but not towards TNF-alpha. Cell death of nef-expressing astrocytes exposed to 10 μM hydrogen
peroxide for 30 min occurred within 4 h.

Conclusion: HIV-1 Nef may contribute to neuronal dysfunction and the development of HAD by causing death of
astrocytes through decreasing their tolerance for hydrogen peroxide.

Background
Both HIV-1 associated dementia (HAD) and a milder
form of HIV-1 associated cognitive disorder, known as
minor cognitive and motor disorder (MCMD) are fre-
quent complications of the acquired immunodeficiency
syndrome (AIDS) and are characterized by neuronal
dysfunction and cell death caused by HIV-1 through
direct and indirect mechanisms [1-4].
Recently, a sophisticated inspection of brains from

HIV-1 infected patients confirmed that neurons are not
infected with HIV-1 and surprisingly revealed that astro-
cytes, the most abundant cell type in the brain, are exten-
sively infected. Additionally, this study elucidated that
infection of astrocytes with HIV-1 correlated with the
severity of neuropathology [5]. Astrocytes play an impor-
tant role in maintaining homeostasis, providing neuropro-
tection and regulating physiological activities within the
brain [6-8]. Therefore, astrogliosis and astrocyte death
occurring in HIV-infected individuals [9-12] may contri-
bute indirectly to neuronal dysfunction.
Even though HIV-1 is integrated in the astrocyte gen-

ome, it rarely replicates in this cell type in vivo, however,

regulatory proteins such as Nef are found to be abun-
dantly expressed [13-15]. The presence of HIV-1 Nef in
the brain is associated with astrogliosis and recruitment
of monocytes/macrophages [16], correlating with the
development of HAD [17].
Astrocytes stably transfected with HIV-1 Nef function

as appropriate cellular model systems for the purpose of
investigating basic mechanisms pertinent to the under-
standing of HAD pathogenesis. Using these cells, we pre-
viously showed that HIV-1 Nef induces CCL2/MCP-1
[18], thereby, providing an alternative hypothesis for the
occurrence of this chemokine at high concentrations in
the cerebrospinal fluid (CSF) of HIV-infected individuals
with HAD [19,20]. CCL2 plays an important role in the
cerebral infiltration of monocytes/macrophages in these
patients [21,22]. Infiltrated and activated monocytes/
macrophages, which are considered to be the effector
cells in cellular and tissue damage in AIDS, produce
cytotoxic substances such as reactive oxygen species
(ROS) and inflammatory cytokines [23,24]. Consequently,
HIV-1 infected and non-infected astrocytes are subjected
to an environment characterized, amongst others, by
high concentrations of hydrogen peroxide and tumor
necrosis factor (TNF)-alpha. Therefore, the aim of this
study was to investigate the effect of HIV-1 Nef on the
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cellular viability of human astrocytes exposed to these
particular cytotoxic substances.

Results
Astrocytes stably transfected with HIV-1 nef are highly
sensitive to hydrogen peroxide induced cell death
Astrocytes fulfil a protective function for neurons through
elimination of ROS such as hydrogen peroxide [25]. Yet
astrocytes are more vulnerable to the effects of hydrogen
peroxide than neurons [26,27], but it is not known how
this is modulated by HIV-1 Nef. Therefore, the sensitivity
of human astrocytic U251MG-Nef cells towards hydrogen
peroxide was tested in comparison with the sensitivity of
U251MG-parental and U251MG-pNeo cells. Cells treated
with hydrogen peroxide at concentrations of 1 μM and
10 μM for 30 min were investigated after 24 h for viability
using AlamarBlue® reagent containing resazurin, a
non-toxic, oxidation-reduction indicator indicating mito-
chondrial metabolic activity. The analysis revealed that in
astrocytic cells stably expressing nef, hydrogen peroxide
significantly reduced the cell viability as compared to
mock-treated cells, hydrogen peroxide-treated U251MG-
parental cells and hydrogen peroxide-treated U251MG-
pNeo cells (Figure 1). Similar results were obtained at 48 h
(additional file 1).

Hydrogen peroxide rapidly induced cell death of
astrocytes stably transfected with HIV-1 nef
A light microscopic analysis was performed in order to
examine whether signs of cell death induced by hydro-
gen peroxide may be detected earlier than 24 h in nef-
expressing astrocytes. Indeed, in contrast to the control
cells, the previously flat-shaped nef-expressing astrocytes

had undergone a morphological alteration to being
round-shaped and almost completely detached from the
cell culture flask surface 3 h 30 min subsequent to
30 min treatment with hydrogen peroxide at a concen-
tration of 10 μM (Figure 2).
Translocation of the membrane phospholipid phos-

phatidylserine (PS) to the outer leaflet of the plasma
membrane occurs rapidly after exposure to a cytotoxic
agent and mostly indicates a point-of-no-return during
the cellular dying process. Using the Annexin V assay, it
was confirmed that hydrogen peroxide at a concentra-
tion of 10 μM severely affected cellular viability of
U251MG-Nef cells but had only a small effect on astro-
cytic U251MG-parental and U251MG-pNeo cells. PS
exposure on the cell surface in combination with posi-
tive PI staining indicating loss of plasma membrane
integrity, which is criterion to consider a cell as
dead [28], has been detected in about 75% of the nef-
expressing cells (Figure 3).

Astrocytes stably transfected with HIV-1 nef are as
sensitive to TNF-alpha induced cell death as non-
transfected cells
Previously, it has been shown that HIV-1 Nef protects
T cells against TNF-alpha induced apoptosis [29]. Con-
sequently, we tested whether HIV-1 Nef is also capable
of protecting astrocytes against TNF-alpha induced cell
death. Human astrocytic U251MG-parental, -pNeo and
-Nef cells were treated with TNF-alpha for 24 h and
their viability was analysed using AlamarBlue® reagent.
Data revealed that TNF-alpha significantly reduced the
cell viability of each astrocytic cell type investigated here
to a similar degree including the stably nef-transfected
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Figure 1 Hydrogen peroxide decreased the viability of nef-expressing astrocytes. U251MG-parental, -pNeo and -Nef cells were treated
with hydrogen peroxide for 30 min at indicated concentrations. Subsequently cells were washed twice with PBS and incubated in VLE-RPMI
1640 medium containing 10% FCS for a further 24 h. The medium was then exchanged and cell viability assay was performed as described in
the Material section. The times indicated are relative to the moment of adding AlamarBlue® reagent to the cell culture medium. The relative
fluorescence represents the ratio of the fluorescence intensity of study cells versus mock-treated cells at 1 h after start of the assay. Data
represent mean ± s.e.m. (n = 6); **, P < 0.01.
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cells (Figure 4). This result has been confirmed using
the Annexin V assay (additional file 2).

Discussion
Chronic oxidative stress in HIV-infected patients plays
an important role in AIDS progression [30,31]. This
phenomenon is explained by a depletion of endogenous
antioxidant moieties and an increased production of
ROS. Oxidative stress, in particular, is thought to be a
cause of neuronal cell death in the brain of HIV-1
infected patients and believed to contribute to develop-
ment of HAD [32,33]. Moreover, ROS-induced astrocyte
death is also thought to play a role in the occurrence of
HAD [26,27].
Here we show that a short exposure of exogenous

hydrogen peroxide to nef-expressing astrocytes led to
their rapid cell death. The early detection of a high num-
ber of propidium iodide/annexin V double positive cells
points to necrotic cell death [34], which was previously
suggested when astrocytes are subjected to tertiary-butyl
hydroperoxide [35]. But it can not be finally defined only
from this observation what kind of cell death exactly
occurred in our model. Also it depends on the concentra-
tion of hydrogen peroxide applied whether a cell dies in
an apoptotic or necrotic manner [36]. In this context it is
interesting to note that astrocytes are vulnerable to
hydrogen peroxide at concentrations ranging from
0.5 mM to 2.5 mM [27], values approximately a 1.000
fold higher than the concentration applied to induce
death of nef-expressing astrocytes herein. So it remains a
challenge for further studies to elucidate what HIV-1 Nef

precisely alters in the cell leading to increased sensitivity
to exogenous hydrogen peroxide. Intriguingly, it has been
shown during the preparation of this manuscript that
HIV-1 Nef in primary human astrocytes and in the brain
of mice increases oxidative stress [37], which is in line
with our finding.
Since HIV-1 Nef is known to inhibit apoptosis of

T-cells [29,38,39] and monocytes/macrophages [40,41],
it was somewhat surprising that TNF-alpha decreased
the viability of U251MG-Nef cells and U251MG-paren-
tal cells equally. Additionally, this finding is in contrast
to previously reported data demonstrating that HIV-1
Nef prevents TNF-alpha triggered apoptosis in astrocytic
U251MG cells [42]. This discrepancy may be due to the
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Figure 3 Hydrogen peroxide leads to rapid loss of the cell
membrane integrity in nef-expressing astrocytes. (A) U251MG-
parental, -pNeo and -Nef cells were treated with hydrogen peroxide
for 30 min at concentrations as indicated. Cells then were washed
twice with PBS, incubated in VLE-RPMI 1640 medium containing
10% FCS for a further 3 h 30 min and subsequently the annexin V
assay was performed as described in the Methods section. (B)
Summary of three independent experiments. Annexin V, PI double-
negative cells (living cells) and annexin V, PI double-positive cells
(dead cells) are shown.
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Figure 2 Hydrogen peroxide leads to rapid detachment of nef-
expressing astrocytes. U251MG-parental and -Nef cells were
treated with hydrogen peroxide (10 μM) for 30 min. Cells were
subsequently washed twice with PBS, incubated in VLE-RPMI 1640
medium containing 10% FCS for a further 3 h 30 min and
subsequently a light microscopic analysis of astrocytic cells was
performed. A Zeiss Axiovert 25 microscope (Carl Zeiss Jena GmbH,
Jena, Germany) was used. Original magnification, × 100.
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use of cells stably transfected with nef in our study,
which could clearly well simulate the long term effect of
HIV-1 Nef in chronically infected cells [43] than cells
transiently transfected with nef. Moreover, involvement
of HIV-1 Nef in cell survival is subject to generally con-
troversy [44,45].
HIV-1 encodes a glutathione peroxidase [46], which has

been shown to protect the cell against exogenous and
endogenous ROS [47]. Consequently, what ever the reason
why HIV-1 Nef causes an increase of sensitivity towards
hydrogen peroxide, it is conceivable that the HIV-1 GPX
could counteract this action of HIV-1 Nef by detoxifying
hydrogen peroxide. Thereby HIV-1 GPX would prevent
the cytotoxic potential of HIV-Nef, which is considered as
a progression factor in AIDS [48-50] and known to induce
an AIDS-like disease in a mouse model [51,52]. Thus, this
could explain the paradoxical effect that functional HIV-1
GPXs are frequently found in long-term non-progressors
while non-functional HIV-1 GPXs are present in HIV-1
isolates from patients developing AIDS [47].

Conclusions
Besides other known direct and indirect effects of HIV-1
proteins, HIV-1 Nef may contribute to cellular and tis-
sue injury frequently detected in HIV-1 infected indivi-
duals, including various AIDS-associated diseases such
as HAD, by increasing the sensitivity of Nef-harboring
cells to hydrogen peroxide.

Methods
Cell culture
The human astrocytoma cell line U251MG was obtained
from M. Brenner (National Institutes of Health, Bethesda,
MD). The cell lines U251MG-NefBru clone 4/4.2 stably

expressing nef from HIV-1Bru (GenBank accession num-
ber K02013) and U251MG-pNeo carrying only the neo-
mycin resistance gene were established as reported [53].
HIV-1 Nef expression was confirmed by immunoblotting
(Figure 5). Cells were routinely incubated at 37° under
5% CO2, and 90% humidity in VLE-RPMI 1640 medium
certified to contain < 0.01 endotoxin units/ml, and sup-
plemented with 10% fetal calf serum (FCS), 100 U/ml
penicillin as well as 100 μg/ml streptomycin (all from
Biochrom AG, Berlin, Germany). Before treatment
with hydrogen peroxide (Merck KgaA) or TNF-alpha
(BioSource International Inc., Camarillo, CA), cells were
seeded at a density of 1 × 105 cells/ml in 96-well flat bot-
tomed microtiter plates (BD Biosciences) for the cell
viability assay or in 12-well plates (Costar) for the
annexin V assay and incubated overnight in VLE-RPMI
1640 medium supplemented with 10% FCS.

Immunoblotting and immunodetection
Lysates of U251MG-parental, -pNeo and -Nef cells were
prepared by directly adding 1x SDS sample loading buffer
to the cells followed by sonication. Samples were sepa-
rated on a 4-20% tris-glycine gradient gel (Anamed,
Darmstadt, Germany) and blotted on a nitrocellulose
membrane. The blotted membranes were immunostained
using mouse anti-Nef 3E6 mAb provided by K. Krohn
through the National Institute for Biological Standards
and Control Centralised Facility for AIDS Reagents,
mouse anti-GAPDH mAb MAB347 (Chemicon Interna-
tional, Inc., Temecula, CA) and MFP488-conjugated goat
anti-mouse antibody (MoBiTec GmbH, Göttingen,
Germany), and positive signals were detected by fluores-
cence scanning (excitation wavelength 488 nm, emission
filter 520BP40) using the Typhoon 9410 Fluorescence
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Figure 4 HIV-1 Nef does not modulate TNF-alpha decreased viability of astrocytes. U251MG-parental, -pNeo and -Nef cells were treated
with TNF-alpha for 24 h at indicated concentrations. The medium was then exchanged and cell viability assay was performed as described in
the Material section. The times indicated are relative to the moment of adding AlamarBlue® reagent to the cell culture medium. The relative
fluorescence represents the ratio of the fluorescence intensity of study cells versus mock-treated cells at 1 h after start of the assay. Data
represent mean ± s.e.m. (n = 5).
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Scanner (GE Healthcare), and analyzed using Image-
Quant 5.2 software (Molecular Dynamics).

Cell viability assay
The AlamarBlue® reagent (Molecular Probes, Inc.,
Eugene, OR) containing the water soluble, non-toxic dye
resazurin (7-Hydroxy-3H-phenoxazin-3-one 10-oxide)
was used to quantify mitochondrial activity according to
the manufacturer’s recommendation. Briefly, 1/10th of
the volume of AlamarBlue® reagent was added directly to
the cells in culture medium. Using the Typhoon™ 9410
fluorescence scanner (GE Healthcare), fluorescence mea-
surement was performed by applying an excitation wave-
length of 532 nm and an emission filter of 580BP30 nm.
Data were analyzed using ImageQuant™ TL software
(GE Healthcare). The fluorescence intensity of medium
containing only AlamarBlue® was determined simulta-
neously and was subtracted from all values.

Annexin V assay
Phosphatidylserine on the cell surface was detected with
the Annexin V-FITC Apoptosis Detection Kit I (BD
Biosciences). Briefly, cells were plated and treated in 12-
well plates (Costar). Then cells were washed twice with
cold PBS and incubated in the dark for 15 min in 1 ×
binding buffer supplemented with annexin V-FITC. Pro-
pidium iodide (PI) was added to the cell suspension
immediately before analyzing with the BD FACSCanto™

flow cytometer (BD Biosciences). Data were evaluated
using FlowJo© software (Tree Star).

Statistical analysis
GraphPad Prism 4 (GraphPad Software, Inc., San Diego,
CA) was used for statistical analysis. The Mann-Whitney
test was used to compare the groups; a P value of less
than 0.05 was considered significant. Tests were per-
formed exactly and two-tailed.

Additional material

Additional file 1: Hydrogen peroxide significantly decreased the
viability of nef-expressing astrocytes. U251MG-parental and -Nef cells
were treated with hydrogen peroxide for 30 min at indicated
concentrations. Cells were subsequently washed twice with PBS,
incubated in VLE-RPMI 1640 medium containing 10% FCS for a further
48 h. The medium was then exchanged and cell viability assay was
performed as described in the Methods section. The relative fluorescence
represents the ratio of the fluorescence intensity of study cells versus
mock-treated. Data obtained after 4 h of starting the assay represent
mean ± s.e.m. (n = 6); **, P < 0.01.

Additional file 2: TNF-alpha equally induces PS externalization in
U251MG-parental and -Nef cells. Cells were treated with TNF-alpha for
4 h or with hydrogen peroxide for 30 min at concentrations as indicated.
Cells treated with hydrogen peroxide were washed twice with PBS,
incubated in VLE-RPMI 1640 medium containing 10% FCS for a further 3
h 30 min and subsequently the annexin V assay was performed as
described in the Methods section.
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