RESEARCH

Open Access

Different linkages in the long and short regions of the genomes of duck enteritis virus Clone-03 and VAC Strains

Xiaoli Liu, Zongxi Han, Yuhao Shao, Yang Li, Huixin Li, Xiangang Kong^{*} and Shengwang Liu^{*}

Abstract

Background: Duck enteritis virus (DEV) is an unassigned member in the family *Herpesviridae*. To demonstrate further the evolutionary position of DEV in the family *Herpesviridae*, we have described a 42,897-bp fragment. We demonstrated novel genomic organization at one end of the long (L) region and in the entire short (S) region in the Clone-03 strain of DEV.

Results: A 42,897-bp fragment located downstream of the *LOFR11* gene was amplified from the Clone-03 strain of DEV by using 'targeted gene walking PCR'. Twenty-two open reading frames (ORFs) were predicted and determined in the following order: 5'-*LORF11-RLORF1-ORF1-ICP4-S1-S2-US1-US10-SORF3-US2-MDV091.5-like-US3-US4-US5-US6-US7-US8-ORFx-US1-S2-S1-ICP4 -3*'. This was different from that of the published VAC strain, both in the linkage of the L region and S region, and in the length of the US10 and US7 proteins. The *MDV091.5-like* gene, *ORFx* gene, *S1* gene and *S2* gene were first observed in the DEV genome. The lengths of DEV US10 and US7 were determined to be 311 and 371 amino acids, respectively, in the Clone-03 strain of DEV, and these were different from those of other strains. The comparison of genomic organization in the fragment studied herein with those of other herpesviruses showed that DEV possesses some unique characteristics, such as the duplicated US1 at each end of the US region, and the US5, which showed no homology with those of other herpesviruses. In addition, the results of phylogenetic analysis of ORFs in the represented fragment indicated that DEV is closest to its counterparts VZV (*Varicellovirus*) and other avian herpesviruses.

Conclusion: The molecular characteristics of the 42,897-bp fragment of Clone-03 have been found to be different from those of the VAC strain. The phylogenetic analysis of genes in this region showed that DEV should be a separate member of the subfamily *Alphaherpesvirinae*.

Background

Herpesviruses are among the most persistent of all pathogens because they have coevolved with their hosts over a long period of time, and they are relatively harmless in immunocompetent hosts [1]. The family *Herpesviridae* comprises approximately 100 members; these viruses infect a range of host species from humans and other mammals to birds, amphibians, and reptiles [2]. On the basis of differences in cellular tropism, genome organization, and gene content, herpesviruses have been grouped into three subfamilies: *Alphaherpesvirinae* (α -),

Betaherpesvirinae (β -), and Gammaherpesvirinae (γ -) [3,4]. Currently, duck enteritis virus (DEV), also known as duck plague virus (DPV) and duck herpesvirus-1 [4], is an unassigned member of the family *Herpesviridae* [5].

Herpesviruses are enveloped viruses with a virion size over 100 nm [1]. The genomes of these viruses are linear, double-stranded DNA, and they differ in size, sequence arrangements, and base composition [2]. They also vary significantly with respect to the presence and arrangement of inverted and directly repeated sequences [6]. Herpesvirus genomes differ in the arrangement of direct and inverted repeat regions with respect to unique regions. Six types of genome structures have been confirmed adequately in herpesviruses, which are designated by letters from A to F. The A type structure

© 2011 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: xgkong@hvri.ac.cn; swliu@hvri.ac.cn

Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China

consists of a unique region flanked by a direct terminal repeat at the genome ends. Type B genomes contain variable numbers of a TR (terminal reiterations) at each end of the genome. In the C type genome, the number of direct terminal reiterations is small but sequences longer than 100 bp are directly repeated and subdivide the unique sequence of the genome into several well delineated stretches. The D type genome just has the repeated sequences at one terminus and in an inverted orientation internally. In the E group, the genome is divided into unique long (UL) and unique short (US) regions; each unique region is flanked by the inverted repeats. The sequences at the two termini of the F group are not identical and are not repeated directly or in an inverted orientation. It has been reported that DEV also contains linear, double-stranded DNA, and its genome was shown to be approximately 180 kb in size, with a G plus C content of 64.3% [7]. Genomic sequences of DEV have been reported recently by several Chinese research groups; however, discrepancies were found among these reports [8-18]. Genes in the UL region of DEV and their arrangement have been reported by our laboratory, and the results generally showed more similarity with Mardiviruses [8-13]. Another report showed that the *LORF11* gene of the VAC strain is located at the leftmost end of the DEV genome, and that the LORF11 gene encoded a putative protein of 275 amino acids in the VAC strain [14]; both of these results differ from our previous results [12]. Meanwhile, several genes in the US region have also been reported [15-18]; however, the length of the putative proteins encoded by the US10 gene and US7 gene has been debated. In this study, we present a fragment of 42,897 bp, which contains one end of the L region that includes part of the LORF11 gene, which was absent from the published VAC strain, and the whole of the DEV S region. In addition, we demonstrated a different genomic organization of the junction of the L region and the S region in this study. These results will provide a useful comparative dataset for the study of related genes in DEV and other herpesviruses.

Results

The features of the overall sequences and determination of ORFs

A fragment of 42,897 bp downstream of the *LORF11* gene was amplified from the genome of the Clone-03 strain of DEV in this study. The genome structure and the gene layout of this fragment are depicted in Figure 1. The fragment contained part of the sequence of the *LORF11* gene [12], the rightmost part of the L region, the US region and its flanking sequences, and inverted repeats of the short region (IRS and TRS). The L region and IRS were interrupted by a set of tandem repeat

sequences designated as α -type-like sequences [13], as in the case of the two regions in herpes simplex virus (HSV) [19]. Another α -type-like sequence was also found at the end of the TRS in the DEV genome. The overall G plus C ratio of the region sequenced was 46.09%.

Twenty-two ORFs that contained more than 75 amino acids were found in the present study, which were in the order: 5'-LORF11-RLORF1-ORF1-ICP4-S1-S2-US1-US10-SORF3-US2-MDV091.5-like-US3-US4-US5-US6-US7-US8-ORFx-US1-S2-S1-ICP4-3'. These ORFs were predicted to encode 17 putative proteins, with the exception of LORF11, because genes in the IRS and TRS were inverted and encoded the same proteins. The start locations of all ORFs were assumed to be the first possible ATG. The motifs of each ORF are listed in Table 1.

The confirmation of the junction between the L region and the S region

Owing to the different linkages of the L region and S region found in the genome sequences of the published DEV VAC strain [14] and our above-described sequence in the Clone-03 strain of DEV, a pair of specific primers was designed to confirm the junction of the L region and S region in the DEV genome. The forward primer, L25, was located in the LORF11 gene (GenBank no. EU294364), which is a gene in the DEV UL region that had only one copy in the genome compared with the genomes of other alphaherpesviruses. The reverse primer, L26, was located in the SORF3 gene, which is a gene in the US region of the DEV genome that also has a single copy in the DEV genome. The PCR product was used as the model for the second nested PCR after dilution to 1 in 1,000. We obtained four different fragments (Figure 1), and they were 4,553 bp, 4,689 bp, 4,743 bp, and 5,547 bp in length, respectively. The results of sequencing of the four fragments showed that they were parallel with the sequences obtained using 'targeted gene walking PCR'. Consequently, we determined that the linkage between the L region and the S region should be in the following order: 5'-LORF11-RLORF1-ORF1-ICP4 -S1-S2-US1-US10-SORF3-3'.

A 207-bp insertion in both the IRS and the TRS regions was not found in their counterparts in the DEV VAC strain

In addition to the linkage of the L region and the S region, two insertions of 207 bp were found in the presented fragment in both the IRS region and the TRS region (Figure 2), when compared with the published VAC genome. The 158-bp sequence at the 3' end of the 207-bp sequence of the IRS region was complemented with a fragment of the same length at the 5' end of the 207-bp sequence of the TRS region. The remaining 49-bp fragment in each of the insertions was dissociated

and not complemented. Both of the fragments were rich in A plus T, with a content of 67.15%.

The characteristics of new ORFs detected in the fragment Two ORFs, designated *RLORF1* and *ORF1*, were detected in the region upstream of the S region. Another copy of *ORF1* was found to the left of the DEV L region of the genome [13]. The *RLORF1* and *ORF1* encoded two putative proteins of 109 and 81 amino acids, respectively. Four phosphorylation sites were predicted in the sequence of RLORF1.

In addition, eight ORFs encoding four different putative proteins (S1, S2, ICP4, and US1) in the RS region were detected. Of these proteins, S1 and S2 were identified for the first time in the present study. The *S1* gene encoded a putative protein of 92 amino acids, and four phosphorylation sites were predicted. No homologue of S1 was found in the proteins encoded by other herpesviruses. Another unique gene in the RS region was *S2*, which encoded a putative protein of 96 amino acids that contained just six phosphorylation sites. ICP4 and US1 were the same as previously described [13,14]. 19,280-19,329r

20,407-20,456r

NP

20,299-20,348

21,799-21,848

23,335-23,384

25,058-25,107

26,158-26,207

NP

29,414-29,463

31.386-31.435r

32,267-32,316r

33,422-33,471

36,064-36,113

Gene RLORF1 ORF1

ICP4

S1

52

US1

11510

SORF3

US2

MDV091.5-like

US3

1154

1155

US6

US7

US8

ORFx

US1

S2

S1

ICP4

Promoter location ^a	Promoter score	TATA sequence	TATA location	Poly(A) sequence	Poly(A) location	Poly(A) score
NP ^b	NP	NP	NP	NP	NP	NP
5,564-5,613	0.93	ATATAAAGCGGTAGT	5,575-5,589	NP	NP	NP
10,928-10,977r ^c	0.88	TTTGTAAAAT	10,960-10,969r	AATAAA	5,867-5,872r	0.317475
13,570-13,619r	0.85	CTATCTAAGGCGACC	13,602-13,611r	NP	NP	NP
14,725-14,774	1.00	NP	NP	NP	NP	NP
15,606-15,655	0.99	GCCTAAAAAGCACCG	15,613-15,628	AATAAA	17,015-17,020	0.644949
17,003-17,052r	0.94	CAATAAACACCGCTT	17,014-17,028	NP	NP	NP

19,313-19,322r

20.434-20.448r

NP

20.305-20.314

21,807-21,821

23,335-23,349

25,062-25,076

26,167-26,181

NP

29,421-29,435

31.413-31.427r

NP

33,431-33,445

36,072-36,081

AATAAAr

NP

NP

NP

AATAAA

NP

NP

NP

NP

AATAAA

NP

NP

AATAAA

ΑΑΤΑΑΑ

18,248-18,253r

NP

NP

NP

23,310-23,315

25,170-25,175

NP

NP

NP

NP

30.021-30.026

NP

NP

41,170-41,175

Table 1	Core promoters	searched in the	e neural n	etwork and	polyadenylation	signals predicte	ed by POLYADQ
---------	-----------------------	-----------------	------------	------------	-----------------	------------------	---------------

GCTTTAAAAG

GTCTAAAAGGCAGAG

NP

CCCATAAATG

GTATAAATTAGACAA

GTCTTGTGTTTATAT

CGGCAATATGTATAT

ATATAATTACTACGC

NP

GTATATTAGGCCGAC

GCCTAAAAAGCACCG

NP

CTATCTAAGGCGACC

TTTGTAAAAT

^a the position is according to the sequence of the whole fragment of 42,897 bp.

0.99

0.85

NP

0.85

0.96

0.88

0.94

0.92

NP

0.93

0.99

1 00

0.85

0.88

^b NP indicates no prediction.

^c r indicates reverse direction.

0.138679

NP

NP

NP

0.385382

0.266987

NP

NP

NP

NP

0.644949

NP

NP

0.317475

The DEV US region contained 11 ORFs that were likely to code for 11 proteins (Figure 1), which included homologues of the HSV-1 genes US10, US2, US3, US4, US6, US7 and US8 [20]. Interestingly, a unique ORF in the DEV US region, located downstream of US8, was predicted in the present study and named ORFx. The ORFx encoded a putative peptide of 118 amino acids. One transmembrane domain was detected in the ORFx between residue positions 95 and 115 at the N-terminus. Remarkably, the length of our DEV US10 was 311 amino acids, which was different from published results of 168, 169 and 298 amino acids [14,15,17]. We also found a sequence of 13 amino acids, CSFWCCLGHAATC (Additional file 1, Figure S1), which mapped to amino acids 236-248 and conformed to the C-C-H-C zinc finger motif as described in equine herpesvirus-1 (EHV-1) [21,22]

A new gene was predicted in this study, which was 327 bp in length and overlapped 197 bp at the 3'-terminus of the *US2* gene. It was homologous to the proteins encoded by Marek's disease virus-1 (MDV-1), MDV-2 and HVT and was designated *MDV091.5-like* gene. BLAST searches using the amino acid sequence showed that this protein had some amino acid similarity with putative nucleotide-binding oligomerization domain-containing protein 2 of *Gasterostrus aculeatus*, the putative lyase of *Rhodococcus erythropolis*, and bacterial valyl-tRNA synthetase.

The transmembrane regions of the proteins encoded by the genes in the presented fragment are depicted in Figure 3. The conserved domains of US1, SORF3, US2, US3, US4, US6, US7, US8 proteins are shown in Additional file 2, Figure S2, Additional file 3, Figure S3, Additional file 4, Figure S4, Additional file 5, Figure S5, Additional file 6, Figure S6, Additional file 7, Figure S7, Additional file 8, Figure S8, Additional file 9, Figure S9, Additional file 10, Figure S10, respectively.

Phylogenetic analysis

Phylogenetic rooted trees were constructed from alignments of the putative proteins with their homologues in other alphaherpesviruses and are shown in Figure 4 and 5. The DEV *US2* gene, *US3* gene, *US6* gene, *US7* gene and *US10* gene showed closer relationships with members of *Mardivirus*. However, *US1* showed a closer relationship between DEV and members of *Simplexvirus* and *Varicellovirus*. The DEV *US4* gene showed more similarity with infectious laryngotracheitis virus (ILTV), and both clustered into the subfamily *Varicellovirus* (Figure 4). The DEV *US8* gene fell into an outgroup position with respect to members of subfamily *Alphaherpesvirinae* (Figure 5), which implies that a recombination event may have occurred during the origin and evolution of the virus.

The comparison of gene layouts in the US region of DEV with those in other alphaherpesviruses

A comparison of the genetic organization of selected alphaherpesvirus US segment genes is presented in

Figure 6. Despite obvious similarities, there were marked differences in gene content, organization and localization between DEV and other alphaherpesviruses. Nevertheless, these overall gene layouts are consistent with a model that accounts for the divergence of alphaherpesvirus from a common ancestor by a number of homologous and semihomologous recombination events, which resulted in concomitant loss or gain of US genes [23].

Origins of replication in the S region

Two well-defined origins of replication were found in the IRS and TRS of the DEV genome, designated *oriS*. The two *oriS* were palindromic structures and contained the same sequence features: two inverted 9-bp sequences, which were identical to that recognized by the origin-binding protein (OBP) encoded by the *UL9* binding sequence (GTTCGCAC), separated by a 43-bp AT-rich spacer sequence (76.75% A+T) (Figure 7). The features were the same as described for PRV (Pseudorabies virus) [24] and equine herpesvirus-1 (EHV-1) [25].

Discussion

Our laboratory has been engaged for many years in analyzing the genome sequences of DEV [8-13]. After we had completed the genome sequence of DEV Clone-03, a DEV VAC genome sequence was also published by other researchers [14]. However, some differences were detected by comparison of parts of our DEV Clone-03 strain with those of the DEV VAC strain. Herein, we presented the sequence of a 42,897-bp fragment anchored in the LORF11 gene of the DEV genome which was located at the rightward end of the UL region [12], by using the method of 'targeted gene walking PCR' (Figure 1). Comparison of the sequence of the fragment with that of the DEV VAC strain showed that our Clone-03 strain of DEV had a different gene order from that of the DEV VAC strain in this region. Consequently, we designed an additional four pairs of primers according to the new sequences and confirmed the result using nested PCR (Figure 1). The two methods obtained the same sequences, and it was demonstrated

that the genes in this region should be in the following order: 5'-LORF11-RLORF1-ORF1-ICP4-S1-S2-US1-US10-SORF3-3', which is different from the DEV VAC strain, in which the gene order is 5'-LORF11-UL-ICP4-US1-US10-SORF3-3' [14]. The different linkage pattern between DEV Clone-03 and the VAC strain in the L region and S region is difficult to explain and requires further investigation, although a different linkage between the L and S regions of HSV was also observed between wild-type virus and cell-adapted virus [26,27].

Interestingly, we also found some novel characteristics of the sequences in the S region of the Clone-03 strain of DEV. Two insertions of 207 bp in the IRS and TRS regions were found in the DEV Clone-03 strain that were absent from the VAC strain. It has been reported that some fragments were lost during serial passage of MDV [28]. Hence, we speculated that the insertion of the two 207-bp fragments in the DEV Clone-03 strain and their absence from the VAC strain might be due to the different passage levels [28]. The *S1* gene, *S2* gene, *RLORF1* gene, *ORF1* gene and *ORFx* gene that were observed in the Clone-03 strain in this study also had similar sequences in the VAC genome; however, those genes showed no homologues in other alphaherpes-viruses. Those genes may be potential markers to differentiate DEV from other alphaherpesviruses.

Davison and McGeoch concluded that differences in gene layout in the S component between HSV-1 and VZV have resulted from expansion and contraction of IRS/TRS during evolution [23]. This may also be the case for the DEV genome. Unlike those of MDV-1, MDV-2 and HVT, the DEV *US1* gene was duplicated and also inverted to the other end of the US, as is that of PRV [24]. Similarly, the presence of two copies of the *US1* gene in DEV does not imply that the virus expresses two forms of ICP22 [24]. Although the pattern of the two copies of the *US1* gene in the DEV genome showed a similar gene layout to those of PRV, the existence of the

LORF11 gene at the rightward end of the UL region indicated that the organization of the DEV genome may be similar to that of other avian herpesviruses. The presence of the SORF3 gene and the MDV091.5-like gene, and the translocation of the US10 gene in the DEV genome, further suggests a close relationship between DEV and other avian herpesviruses. In addition, the phylogenetic analysis of most genes in the presented fragment further indicated a close relationship between DEV and viruses in the subfamily Mardivirus. However, the US region of DEV contained some genes that were absent from the genomes of other avian herpesviruses, such as US4 and ORFx, which indicates that DEV may be a unique member of the subfamily Alphaherpesvirinae.

Replication of the viral genome is a central event in the life cycle of herpesviruses. The initiation of viral DNA synthesis marks the commitment of the infected cell to the production of new infectious virus and, in most instances, cell death. HSV-1 contains three origins of DNA replication of two types: one copy of *oriL* located at the centre of the UL region of the genome and two copies of *oriS* located in the repeat regions that flank the US region of the genome [29]. The reasons for the three potential origins of replication in the viral genome are not apparent in HSV. In this study, we predicted two copies of

oriS in the RS region of DEV. It has been reported that the deletion of the *oriL* in HSV resulted in reduced replication in mouse tissues and reduced reactivation from latent infection. Thus, *oriL* may be required for DNA replication in certain tissues [29]. Although *oriL* was absent from the DEV genome, the core sequence of *oriS*, which typically contains an origin recognition element and a DNA-unwinding element, was unchanged [29]. This absence of *oriL* from DEV may be associated with the evolution of the viral genome, may lead to different characteristics of the replication of DEV from those of other herpesviruses, and may even result in functional deletions from the genome of DEV in comparison with other herpesviruses.

Conclusion

In this study, we demonstrated a different organization of genes in the rightward part of the L region and the whole S region in the Clone-03 strain of DEV, when compared with the VAC strain. Several novel characteristics were also detected in this region that have not been reported in the VAC strain, including the presence of *S1*, *S2*, *ORFx* and *MDV091.5-like* genes and two insertions in the IRS and TRS regions. The genomic order and the characteristics of the genes in this region, together with phylogenetic analysis based on the

putative proteins encoded by the genes investigated in the present study showed that DEV should be a unique member of the subfamily *Alphaherpesvirinae*.

Methods

Virus stock preparation

The Clone-03 strain of DEV was used in this study [8-13]. The virus stocks were produced by propagation in chicken embryo fibroblasts (CEF) in Dulbecco's minimum essential medium (DMEM) with 8% fetal bovine serum. The infected CEFs were harvested when the cytopathic effect (CPE) reached 80%. After three freeze-thaw cycles, the virus stocks were confirmed primarily by electron microscopy and polymerase chain reaction (PCR) as described previously [8-13].

DNA extraction, polymerase chain reaction and sequencing

The viral DNA was extracted from the virus stocks as described previously [9]. The 'targeted gene walking PCR', as described previously [30,31], was used to amplify the targeted DEV genome fragment, as illustrated in Figure 1. Briefly, four nonspecific 'walking' primers, N1, N2, N3 and N4 [10] were used to walk the genome of DEV. A pair of specific primers, L1 and L2, was designed on the basis of the partial sequence of DEV *LORF11* published in Gen-Bank (GenBank no. EU294364) [12]. The PCR was carried out by using L1 and L2 as forward primers; the four nonspecific primers were used as reverse primers. Finally, a 2,998-bp fragment (F1) was amplified, anchored from the DEV *LORF11* gene. Targeted primer L3 and internal

primer L4 were designed on the basis of the newly generated fragment, and was used to amplify the neighbouring gene fragment with one of the four nonspecific primers. Similarly, primers L5-L6, L7-L8, L9-L10, L11-L12, L13-L14, L15-L16, L17-L18, L19-L20, L21-L22 and L23-L24 (Figure 1) were designed and used in the subsequent PCR amplifications. The primers used in PCR amplifications in this study are listed in Table 2.

The PCR was carried out in a 25 μ l reaction volume as described previously [9]. The reaction was performed at 95°C for 5 min, followed by 30 cycles of 94°C for 1 min, 50°C for 1 min and 72°C for 3 min; the reaction was ended by elongation at 72°C for 10 min. The PCR products were analyzed on a 0.8% agarose gel. The PCR products were sequenced directly or cloned into the pMD18-T vector (TaKaRa, Dalian, China) according to the manufacturer's instructions and used for sequencing. Each of the fragments was sequenced at least three times from different PCR products.

The determination of open reading frames (ORFs) in the presented fragment and genomic organization in the junction between the L region and S region in the DEV genome

The sequences obtained were assembled using the Gene Runner (version 3.00, Hastings Software, Inc., Hudson, NY, USA). The ORFs and genomic organization in the junction of the L region and S region, and the layout of genes in the S region, were determined by comparison with the sequence counterparts of Marek's disease virus (MDV), HSV-1 and varicella-zoster virus (VZV). The

L1 AGTCCAGTCATCTCCG 1,562-1,581 L2 ACGATTIGGCTGTGCTGAG 1,730-1,749 L3 CTGTCTAAGGTAGGCGC 4,825-4,845 L4 GTAGGAAATATTGAGCCGAG 4,826-4,845 L5 TTCTGATGTTTTGGCAGCC 7,578-7,597 L6 CAGANTGCGCCTTTGTTTGG 7,578-7,597 L6 CAGANTGCGCCTTTGTTGGGC 7,569-7,688 L7 TTGAAGATTAGGTTGCTCGTAG 11,272-11,292 L8 ATACAGGAAAATTAACGAT 11,367-11,335 L9 ATGTAGCAGTTGGTCGCGCA 17,273-17,271 L10 AAGATGAGCCTTACCCAGAGG 14,445-14,465 L11 TATTCCATTGCGTGTCCCC 17,273-17,271 L12 CTTGTAAGGTGGCGCGCTAC 17,275-17,979 L13 CGATCTGCTTTCCG 21,895-21,914 L14 TAGCGGATAGCTGCCCCCCCC 20,832-26,063 L14 TAGCGGAGAGTATT 26,043-26,063 L15 GCATCTGCTTGCTGCAC 21,895-21,914 L16 GCATTAATTACCCCAACC 26,697-29,715 L18 CCTACTTGGTGGTCGCGCCCA 29,795-29,813 <t< th=""><th>Primer</th><th>Sequences (5'-3')</th><th>Position^a</th><th></th></t<>	Primer	Sequences (5'-3')	Position ^a	
12 ACGATTTGGCTGTGGCTAGG 1,730-1,749 13 CTGTCTTAGGCTGGCG 4532-4553 14 GTGGCATAGCCGAG 4532-4553 15 TTCTGATGTTTGGCAAGCCG 7578-7597 16 CAGAATTGACGCGAG 7669-7688 17 TTGAGAGATTGTCGATAG 11,272-11,292 18 ATACAGGAAAATTACCAT 11,373-11,325 19 ATGTAGCGCTTTGTTCAMC 14,495-11,365 19 ATGTAGCAGCTTGCTCCATAG 17,978-17,297 110 TATCCATCCACTGAGGCGCCTAC 17,978-17,297 1112 CTTGTAAAGCTGGCGCCTAC 17,978-17,297 113 CGATCTGCTTCCGCTTCCG 21,252-21,744 114 TACCCTGGCATGCACATG 21,252-21,914 115 GAAGTTAACGAGAGAATGT 26,063-29,715 116 GCATTAATTACTACGCACC 24,266-34,284 117 GTCATCCTGTGTATGTGCAC 28,097-29,715 118 CTACTGGTGGTAGGAGACATG 29,097-29,715 118 GCAGTTACACTGGCACCA 37,793-37,813 119 CAGGATTTACTGGCAGCAGGAGAT 37,793-37,813	L1	AGTCCAGTCATCTCCATCCG	1,562-1,581	
13 CTGTCTTAAGGTTAGGGCTGGC 4532-4553 14 GTAGGAAATATTGGCCCGAG 4520-4545 15 TTCTCATGTTTGGCCAGCC 7669-7688 16 CAGAATGGCCCTTGTTTGG 7669-7688 17 TGAAGAATAGTGTCCTGTAG 11,272-11,292 18 ATGCACGTTGTCAAC 11,367-11,385 19 ATGTACCAGTTGTCCAAC 11,419-14,412 10 AAGATGACTCACCCCGAAGG 14,445-14,465 11 TATTCCATCCAGTGCCCCC 17,375-17,751 112 CTGTGTAACGCTGGCCCCA 17,99-17,997 113 CGATCTGCTTTCCGGTTTCCG 17,99-17,997 114 TAGCTGGTATGCCACACC 21,295-21,744 114 TAGCTGGTATGCCACAATG 21,295-21,744 115 GAACTTACGGAGGAAGTATT 26,0633 116 GCATTATATTACTACGCAACC 26,165-26,185 117 GTCACCTGTGTATGCTAACC 29,997-29,813 118 CTAGCGACTTGCTAACTACC 29,997-29,813 119 CAGGGTTGGACCAGAGGCAGGAGGAGGAGGAGGAGGAGGAGGAGGAG	L2	ACGATTTGGCTGTGCTGTAG	1,730-1,749	
14 GTAGGAAATATTGAGCCCGAG 4826-4845 15 TTGTGAGTTTGGCAAGCC 7578-7597 16 CAGAATGGCCTTGTTGG 7696-7688 17 TTGAAGATAGGTTGCTCGTAG 11,272-11,292 18 ATACAGGAAAATTAACCAT 11,367-11,385 19 ATGTAGCAGTTTGTTCAAAC 14,445-14,465 11 AAGATGAGTCAACACCGAAGG 14,445-14,465 11 TATTCCATCACACCGCAAGG 17,732-17,751 112 CTGTGTAAAGCTGGCCGCTAC 17,972-17,997 113 CGATCTGCTTTGGCAACACTG 21,895-21,914 114 TACCGGAGGAAGTATT 26,043-26,063 115 GAAGTTAACTGACAACC 26,043-26,063 116 GCATTAATTACTAGCACACC 26,043-26,063 117 GTACCTGTATATTACTAGCACACC 26,043-26,063 118 CCTACTTGGTGGTGGCCCA 29,795-29,813 119 CAGGATTGATGACCAATC 29,795-29,813 121 GTACGGACACTGAGGAGAGT 42,043-34,492 122 GAGGGGTGGTACTGGTGCCCG 37,793-37,813 123 CCTACTTGGTAGGCGAGAGGAGT 40,794-00,799 </td <td>L3</td> <td>CTGTCTTAAGGTTAGGGCTGGC</td> <td>4,532-4,553</td> <td></td>	L3	CTGTCTTAAGGTTAGGGCTGGC	4,532-4,553	
LS TICTGATGTTTGGCAAGCC 7578-7597 L6 CAGATGGCCTTTGTTGG 7569-7588 L7 TTGAAGATAGGTGCTGGTAG 11,272-11,292 L8 ATACAGGAAAATTAACGAT 11,367-11,385 L9 ATGTACCAGTTGTTCAAAC 14,193-142,12 L10 AAGATGAACCCGAAGG 14,445-14,465 L11 TATCCATCCAGTTGCCCC 17,373-17,751 L12 CTTGTAAAGCTGGCCGCTAC 17,979-17,997 L13 CGATCTGCTTCCG 21,725-21,744 L14 TACCTGGTATGGCAACAATG 26,165-26,185 L15 GAAGTTAACGGAAGAATAT 26,063 L16 GCATATAATTACTACGCAACC 29,795-29,913 L17 GTCATCCTTGTTGTGACCCA 29,795-29,913 L18 CCTACTTGGTGGCGCCCA 29,795-29,913 L19 CAGGATTGATAGCT 34,733,4492 L20 ATACGGGACATTGCCG 34,733,4492 L21 TGAACGGGGGTGGTGCGCCAGACT 40,944,0968 L22 GAGGGTGGTGATCGGTGCGC 37,993,37,813 L23 CTTACAACTTAGGGGACT 40,944,0968 L24	L4	GTAGGAAATATTGAGCCGAG	4,826-4,845	
16 CAGAATGGCCGCTITGTTTGG 7,669-7,688 1.7 TTGAAGATAGGTTGCTCGTAG 11,222-11,292 1.8 ATACAGGAAAATTAACGAT 11,367-11,385 1.9 ATGTAACAGTTGTTCAAAC 14,193-14212 1.10 AAGATGAGTCAACACCGAAGG 14,445-14,465 1.11 TATTCACTCAGTTGCTCCC 17,728-17,751 1.12 CTGTGATAGCGCGCTAC 17,728-17,997 1.13 CGATCTTGCTTTCGGCGCACAC 21,825-21,914 1.14 TAGCGGAGGAAGTAT 20,493-26,063 1.15 GAAGTTAACGGAGGAAGTAT 20,493-26,063 1.16 GCATATAATTACTACGCAACC 29,697-29,715 1.18 CCTACTTGGTTGGTCGCCCA 29,697-29,715 1.18 CCTACTGGTGGGCCA 29,697-29,715 1.18 CCTACTGGTTGGTCGGCCA 31,203-38,139 1.19 CAGGGTTGATACCAAGAGG 34,733-34,492 1.20 ATAGCGCACTAACGAGGAAGT 31,793-37,813 1.21 TGAACGGACCTTTGCTGATGGGCATG 31,793-37,813 1.22 GAGGGTGTACTGGTTCGC 31,793-37,813 1.22 GAGGGTGCTACTGGGGAATG <t< td=""><td>L5</td><td>TTCTGATGTTTTGGCAAGCC</td><td>7,578-7,597</td><td></td></t<>	L5	TTCTGATGTTTTGGCAAGCC	7,578-7,597	
17 TIGAAGATAGGTIGCTCGTAG 11,222-11,292 18 ATACAGGANAATTAACGAT 11,365-11,385 19 ATGTAGCAGTTIGTCAAAC 14,193-14,212 10 AAGATGAGTCAACCAGAGG 17,732-17,751 11 TATCCATCCAGTIGCTCCC 17,732-17,751 112 CTTGTAAAGCTGGCCGCCTAC 17,732-17,751 113 CGATCTGCTTTCGGTTCCG 17,732-17,751 114 TAGCTGGTATGCCAACAATG 21,895-21,744 114 TAGCTGGTATGCCAACAATG 21,895-21,914 115 GAAGTTAACGGAGGAAGTATT 26,043-26,063 116 GCATATAATTACTACGCAACCA 26,043-26,063 117 GTCATCCTTGTTATGTTGA 29,095-29,715 118 CTACTGGTGGTGGCGCA 29,795-29,813 119 CAGGATTGATAACCAGAACAC 34,266-34,284 120 ATAAGCGCACTAGATGGCAG 34,473-34,492 121 TGAACGGACGTGGCAGGAAGT 37,93-37,813 122 GAGGGGTGGTACTGGTCGGGGAAG 34,103-34,1492 123 CCTACAATAACCTGGGGGAATG 40,770-40,789 124 GATCTTGTCCGATGGGGGAATG 40,949-40,968 125 ATGGGACAGTCCCTACCGTTGAAGGCTCCGATATAGGCT CACTATATGTC 43,714-43,753,714 126 GGACTGCCAACCGTTGAACGAGAGCTGCTGAATAGGCT CACTATGTGTC 40,949-40,968 127	L6	CAGAATGGCGCTTTGTTTGG	7,669-7,688	
L8ATACAGGAAAATTAACGAT11,367-11,38519ATGTAGCAGTTTGTCAAAC14,193-14,212L10AAGATGAGCAAACCCGGAAGG14,4193-14,212L110TATTCCACCGATGGCCCCC17,723-17,751L111TATTCCACCGTTGCCCC17,723-17,751L12CTTGTAAAGCTGGCCGCTAC17,723-17,751L13CGATCTGCTTTCGGTTCGGCAACAATG21,255-21,744L14TAGCTGGTAGCGACAAATG26,043-26,003L15GAAGTTAACGAAGGAAGTATT26,043-26,003L16GCATATAATTACTACGCAACC26,165-26,185L17GTCATCCTTGTTATGTGTA29,697-29,715L18CCTACATTGGTCGGCCAC29,597-29,813L19CAGGATTGATACCACC34,266-34,284L20ATGAGGGCGCAGAGGAGGAG34,473-34,492L21TGAACGGACCTTAGGTCGGCAG34,266-34,284L22AGAGGGGGTGATCGGACGAG34,473-34,492L23CCTACATATAGCCACGGGAAG34,473-34,492L24GACGTGACTGGTCCGGATGGCCCCGGATTGAAGGCTCCTAAG40,940-90,68L25ATGGGACAGTCCCTACGGTGGCCCCGGATAGGGCAGCA40,940-90,68L26GACTCGCCGCCCCCACATAAGC40,940-90,68L27GCCAGCCCCCCCCCCGCATGGCCCCGGATAGGCCCCCGATACTGTGC49,340,62L28CAACCCCCCCCCACATAAGC40,343,402L29GCTACAGTCCTCACGGTGGCCCCGGATAGGCCCCTGATATGGCCCCGGATAGGCTGCACGGTCACGGTCACGGCCCCGATAACTGGCCCCGGATAGCCTCAGGCCCCGATACGTGCACG49,343,4062L28CAACCCCCGCCCCACATAAGC49,343,402L29GCTACAGTCCTCACGGCGCGCGGATGGCCCCGGATAGGCTGCACGGCGCGCGC	L7	TTGAAGATAGGTTGCTCGTAG	11,272-11,292	
19 ATGTAGCAGTTTGTTCAAAC 14,193-14,212 110 AAGATGAGTCAACACCGAAGG 14,445-14,465 111 TATTCCATCCAGTGCTCCC 17,732-17,751 112 CITGTAAAGCTGGCCGCTAC 17,732-17,791 113 CGATCTGCTTTCGCTTTCCG 17,732-17,791 113 CGATCTGCTTTCGCTTTCCG 21,895-21,914 114 TAGCTGGTAGCGAACAATG 21,895-21,914 115 GAAGTTAACTGAGCAACATG 26,043-26,063 116 GCATATAATTACTACGCGACCA 26,063-20,715 118 CCTACTTGGTGTGGTGGCGCCA 29,697-29,715 118 CCTACTTGGTGATGGGGCGCA 29,697-29,715 118 CCTACTTGGTGATGGGGGGCA 29,795-29,813 120 ATAAGCGCGCATAGTGGCGGCA 29,795-29,813 121 TGAACGGACCTTGAACGCA 37,793-37,813 122 GAGGGGTGGTGACTGGCTCCG 38,100-38,139 122 GAGGGACTGGTGACTGGCTCCGATTCAACGCTCCGATTCAACGCT 40,949-40,968 122 GAGGGACCTTGAACGGCCCCGAATTCAACGCTCCGGATTCAACGTC 18,210-18,758, ¹⁹ 123 CCTACAATAGCGGCACCTTGAATGAGCTCACGATTCTAGGT 443	L8	ATACAGGAAAATTAACGAT	11,367-11,385	
L10 AAGATGAGTCAACACCGAAGG 14,445-14,465 L11 TATTCCATCCAGTTGCCCCC 17,732-17,751 L12 CTTGTAAAGCTGGCCCGCTAC 17,978-17,997 L13 CGATCTGCTTTCCG 21,725-21,744 L14 TAGCTGGTATGGCAACAATG 21,895-21,914 L15 GAAGTTAACGGAGGAAGTATT 26,043-26,063 L16 GCATTATATTACTACGCAACC 29,697-29,715 L17 GTCATCCTTGTTATGTGA 29,697-29,715 L18 CCTACTGTGTGGGCGCCA 29,795-29,813 L19 CAGGGATTGATAACTAACC 34,266-34,284 L20 ATAAGCGCACTGGGTCGG 34,266-34,284 L21 TGAACGGACCTTTGCTAATGAC 37,93-37,813 L22 GAGGGTGTACTGGTTCCG 38,120-38,139 L23 CCTACAATAACCTGGGGAATG 40,704,0789 L24 GATCTTGCCCTACCGTGGCCTCGATTCGAAGCTCTCAGG 40,740-40,968 L25 ATGGGACAGTCCCTACCGTGGCCCCGATATAGGCTACTATGGCT 143 L26 GGACTGCAGGCCCTTAACGAGGCCCCTGAATAGGCTACTATGGCT 40,34-4062 L27 GCCAGCCCTAACGTAAGAGCCCCTGAATAGGCTACTATGGCTACTATGGCT 40,314-4062	L9	ATGTAGCAGTTTGTTCAAAC	14,193-14,212	
L11TATTCCATCCAGTTGCTCCC17,732-17,751L12CTTGTAAAGCTGGCCGCTAC17,978-17,997L13CGATCTGCTTTCGCTTTCCG21,725-21,744L14TAGCTGGTATGGCAACAATG26,043-26,063L15GAAGTTAACGGAGGAAGTATT26,043-26,063L16GCATATAATTACTACGCAACC26,165-26,185L17GTCATCTTGTTGTGTGA29,975-29,715L18CCTACTTGGTGGCGCCA29,295-29,813L19CAGGATTGATACTAACC34,266-34,284L20ATAACGGCACTAGATGGCAG34,473-34,492L21TGAACGGCACTAGATGGCAG37,793-37,813L22GAGGGTGGTACTGGTTCCG38,120-38,139L23CCTACAATAACTGGGGAATG40,7040,789L24GATCTGGTCGGGGATG40,949-40,988L25ATGGGACGCTTTCAACGGCCCCTGATTGCATCAGGT18,716-18,758rbL26GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC18,716-18,758rbL27GCCAGCCCTAACATAAGC4,932-4,6523L28CAACCCCGCCCCAATAAGC4,912-8,731rL29GCTTACAGTAACTGGGGATG13,315-13,334L30CGAACCGTCCACAGTACAG13,315-13,334L31GCCGGCGATAGTACTCAG13,315-13,334L32TGCCGAGTAGTACTCAG13,315-13,334L32TGCCGATATCATTGGTTCAT13,212-13,231N1TATAGGTTTICA/TTGGTCATNPN2CTTTTGGAGCGNPN3GAATGTAGTGACAGNPN4CATGTGTGCCGAANP	L10	AAGATGAGTCAACACCGAAGG	14,445-14,465	
L12 CTIGTAAAGCTGGCCGCTAC 17,978-17,997 L13 CGATCTGCTTTCGGCTTCCG 21,725-21,744 L14 TAGCTGGTATGGCAACAATG 21,895-21,914 L15 GAAGTTAACGGAAGCAATG 20,603-26,063 L16 GCATATAATTACTACGCAACCA 26,165-26,185 L17 GTCATCCTTGTTATGTTGA 29,697-29,715 L18 CCTACTTGGTGGGCGCA 29,795-29,813 L19 CAGGATTTGATAACTAACC 34,266-34,284 L20 ATAACGGCACTAGATGGCAG 34,266-34,284 L21 TGAAGCGACCTTTGGTAGGCGAG 34,793-37,813 L22 GAGGGTGGTACTGGTTCCG 38,120-38,139 L23 CCTACAATAACCTGGGGAACT 40,770-40,789 L24 GATCTGTCCGATGGCCCTGGATTCAAAGCTTCCAG 40,949-40,968 L25 ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG 40,434.062 L26 GGACCCTAACCGTTAGCAGCCCCTGAATTAGCTACTAGTGCT 40,434.062 L27 GCCAGCCCAAATAAGC 40,434.062 L28 CAACCCGCCCCAAATAAGC 40,434.062 L29 GCTTACATGCTTGCAGA 592.86,11 L30 CGACC	L11	TATTCCATCCAGTTGCTCCC	17,732-17,751	
L13CGATCTGCTTTCGCTTTCGG21,725-21,744L14TAGCTGGTATGGCAACAATG21,895-21,914L15GAAGTTAACGGAGAAGTATT26,043-26,063L16GCATATAATTACTACGCAACC26,165-26,185L17GTCATCCTTGTTATGTTGA29,697-29,715L18CCTACTTGGTGGTCGGCCA29,795-29,813L19CAGGATTTGATAACTAACC34,473-34,492L20ATAAGCGCACTAGATGGCAG34,473-34,492L21TGAACGGACCTTGCTAATGAC38,120-38,139L22GAGGGTGGTACTGGTACGGGAACT40,070-40,789L23CCTACATGGGGACTTGGCAGCGCTGCGATTCAAAGCTTCTCAG40,949-40,968L24GACCTGCCGACGGGATG40,949-40,968L25ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG433L26GGACTGCCAGGCCTTTCAAAGCACGCCCCTGATTGCAATGGCTACTATGTC14,37L27CCAACCCCCAACTAAGCA4,043-4,062L28CAACCCCGCCCAATAAGC4,043-4,062L29GCTTACATGCTTTGCCAGG8,592-8,511L30CGAACCGTCACAGTCGAG8,592-8,511L31GCCGGCGATAAGTACTGAG8,592-8,511L32TGCCGATATCATGGTTCAT13,212-13,231N1TATGGGTTC/ATGGTCAG8,592-8,511L32TGCCGATATCATTGGTTCAT13,212-13,231N1TATGGGTGGNPN2TGTTGGAGCTGNPN2GAATGTGA(A/G),AANPN4CATGTGCAGANP	L12	CTTGTAAAGCTGGCCGCTAC	17,978-17,997	
L14 TAGCTGGTATGGCAACAATG 21,895-21,914 L15 GAAGTTAACGGAGGAAGTATT 26,043-26,063 L16 GCATATAATTACTACGCAACC 26,165-26,185 L17 GTCATCCTTGGTGATGGGACA 29,697-29,715 L18 CCTACTTGGTGGTGGCGCA 29,697-29,813 L19 CAGGGATTTGATACTAACC 34,266-34,284 L20 ATAACGCACATAGATGGCAGG 34,73-34,492 L21 TGAACGGACCTTGGTAAGTGACAG 37,793-37,813 L22 GAGGGTGGTACTGGTTCCG 38,120-38,139 L23 CCTACATAACCTGGGAACT 40,770-40,789 L24 GATCTTGCCGATGGGATG 40,949-40,968 L25 ATGGGACAGTCCTTACGTGGCCCGGATTCAAAGCTTCTCAG 44,34-062 L26 GACCCCTAACCTTAAGACAG 44,34-062 L27 GCCAGCCCTAACGTTGGCACGAGTGCAGATAGAG 40,314-062 L28 CAACCCCGCCCACAATAAGC 40,43-4,062 L29 GCTTACATGCTTTCCCGGC 8,712-8,731r L30 CGCAGCCTAAGTGTGCAGA 8,592-8,611 L31 GCCGGCATATAGTGTCAT 13,212-13,231 N1 TATAGGTTIC/AJTGTT	L13	CGATCTGCTTTCGCTTTCCG	21,725-21,744	
L15 GAAGTTAACGGAGGAAGTATT 26,043-26,063 L16 GCATATAATTACTACGCAACC 26,165-26,185 L17 GTCATCCTTGTTGATGTTGA 29,697-29,715 L18 CTACTTGGTGGCGCCA 29,795-29,813 L19 CAGGATTTGATAACTAACCACC 34,266-34,284 L20 ATAAGCGCACTAGATGGCAGG 34,473-34,492 L21 TGAACGGACCTTGCTAATGAC 34,793-37,813 L22 GAGGGGTGGTACTGGTTCCG 38,120-38,139 L23 CCTACATTAACTGGGGAACT 40,770-40,789 L24 GATCTTGTCCGATGGGGATG 40,9049,409,68 L25 ATGGGACGCCTTAACGTGGCCCCGATTCAAAGCTTCTCAG 14,3 L26 GACTGCAGGCCCTTAACGGGCCCCTGATTAGGCTACTATGTC 18,716-18,758, ¹⁵ L27 GCCAGCCCTAACCTTAAGACAG 4,032-4,553 L28 CAACCCCGCCCAAATAAGC 4,043-4,062 L29 GCTTACATGCTTTTCCCCGC 8,712-8,731r L30 CGAACCGTACAGTCTGCAG 8,592-8,611 L31 GCCGCGCAGATAGTACTCAG 13,212-13,231 L31 GCCGCGCAGTATCATGGTTCAC 8,592-8,611 L32 TGCCGATATCATTGGTCAGT 13,212-13,231 N1 TAAGGT	L14	TAGCTGGTATGGCAACAATG	21,895-21,914	
L16 GCATATAATTACTACGCAACC 26,165-26,185 L17 GTCATCCTTGTTATGTTGA 29,697-29,715 L18 CCTACTTGGTGGGCCA 29,795-29,813 L19 CAGGATTTGATAACTAACC 34,266-34,284 L20 ATAAGCGCACTAGATGGCAG 34,473-34,492 L21 TGAACGGACCTTGGTAATGCA 37,793-37,813 L22 GAGGGTGGTACTGGTTCCG 38,120-38,139 L23 CCTACAATAACCTGGGAACT 40,794-0,789 L24 GATCTGCTGGGGATG 40,949-40,968 L25 ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG 4,949-40,968 L26 GGACTGCAGGCCTTTCAACGGCCCCTGAATTAGGCTACTATGTC 14.3 L26 GGACTGCAGGCCTTTCAACGGCCCCTGAATATGGCTACTATGTC 4,932-4,553 L27 GCCAACCCCGCCCACAATAAGC 4,032-4,553 L28 CAACCCCGCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTICCCCGC 8,712-8,731r L30 CGGACGTAAGTACTCAG 8,592-8,611 L31 GCCGCGATAAGTACTCAG 8,592-8,611 L32 TGCGATATGATTGGTTCAT 13,212-13,231 L31 TATGG	L15	GAAGTTAACGGAGGAAGTATT	26,043-26,063	
L17 GTCATCCTTGTTATGTTGA 29,697-29,715 L18 CCTACTTGGTGGTCGGCCA 29,795-29,813 L19 CAGGATTTGATAACTAACC 34,266-34,284 L20 ATAAGCGCACTAGATGGCAG 34,473-34,492 L21 TGAACGGACCTTGGTAATGAC 37,793-37,813 L22 GAGGGTGGTACTGGTCCG 38,120-38,139 L23 CCTACAATAACCTGGGAACT 40,770-40,789 L24 GATCTTGCCGATGGGGATG 40,949-40,968 L25 ATGGGACAGTCCCTACGGTGGCCTGATTCAAAGCTTCTCAG 143 L26 GACTGCAGGCCTTTCAACGGCCCTGATTGGACTCCATATGTC 18,716-18,758 ^{-b} L27 GCCAGCCCTAACCTTAAGGACAG 4,532-4,5537 L28 CCCAGCCCTAACCTTAAGACAG 4,043-4,062 L29 GCTTACATGCTTGCCGC 8,712-8,731r L30 CCGGCCGCAATAAGCC 8,592-8,611 L31 GCCGGCGATATCATGGTGCAG 8,592-8,611 L31 GCCGGCGATATCATGGTTCAT 13,315-13,334 L32 TGCCGGATATCATGGTTCAT 13,315-13,334 L32 TGCGGACATTAGTTGGTTCAT 13,315-13,334 L32 TGCGGACATTGGTTCAT 13,315-13,334 L32 TGCGGGATATCATGGTT	L16	GCATATAATTACTACGCAACC	26,165-26,185	
L18 CCTACTTGGTGGTCGGCCA 29,795-29,813 L19 CAGGATTTGATAACTAACC 34,266-34,284 L20 ATAAGCGCACTAGATGGCAG 34,473-34,492 L21 TGAACGGACCTTTGCTAATGAC 37,793-37,813 L22 GAGGGTGGTACTGGTTCCG 38,120-38,139 L23 CCTACAATAACCTGGGAACT 40,770-40,789 L24 GATCTTGCCGATGGGGATG 40,949-40,968 L25 ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG 4,932-4,553 L26 GGACTGCAGGCCTTTAAAGGCCCCTGATATGGCTACTATGTC 143 L26 GGACTGCAGGCCTTTAAAGGCACG 4,532-4,553 L27 GCCAGCCCTAACCTTAAGGCACG 4,532-4,553 L28 CAACCCCCGCCCACAATAAGC 4,532-4,553 L29 GCTTACAGTCTTGCCGG 8,592-8,611 L30 CGACCGTAACGTTGCAG 8,592-8,611 L31 GCCGCGCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(CA)TGGT NP ^C N2 CTTTGGAGCG NP NP N3 GAAGTGCAGCCTAACGTAGAG NP NP	L17	GTCATCCTTGTTATGTTGA	29,697-29,715	
L19 CAGGATTTGATAACTAACC 34,266-34,284 L20 ATAAGCGCACTAGATGGCAG 34,473-34,492 L21 TGAACGGACCTTTGCTAATGAC 37,793-37,813 L22 GAGGGTGGTACTGGTTCCG 38,120-38,139 L23 CCTACAATAACCTGGGAACT 40,770-40,789 L24 GATCTTGTCCGATGGGGATG 40,949-40,968 L25 ATGGGACAGTCCCTACCGTTGGCCTCGATTGCAAAGCTTCTCAG 143 L26 GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC 18,716-18,758, ¹⁶ L27 GCCAGCCCTAACCTTAAGACAG 4,043-4,062 L28 CAACCCCGCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTTCCCCGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGGCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^C N2 CTTTGGAGCTG NP N2 CTTTGGAGCTG NP N2 CTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTGA(A/G)AA NP	L18	CCTACTTGGTGGTCGGCCA	29,795-29,813	
L20 ATAAGCGCACTAGATGGCAG 34,473-34,492 L21 TGAACGGACCTTTGCTAATGAC 37,793-37,813 L22 GAGGGTGGTACTGGTTCCG 38,120-38,139 L23 CCTACAATAACCTGGGAACT 40,770-40,789 L24 GATCTTGCCGATGGGGATG 40,949-40,968 L25 ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG 1-43 L26 GGACTGCAGGCCTTTCAACGGCCCTGATATGGCTACTATGTC 18,716-18,758 ^b L27 GCCAGCCCTAACCTTAAGACAG 4,043-4,062 L28 CAACCCCGCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTCCCCGC 8,712-8,731r L30 CCGGCGCAGTAAGTACTCAG 8,592-8,611 L31 GCCGGCAGTAAGTACTCAGG 13,212-13,231 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(CA)TGTT NP ^c N2 CTTTTGGAGCTG NP N2 CTTTGGAGCTG NP N2 CTTTGGAGCTG NP N3 GAATGTAGAGTCCCCAGA NP	L19	CAGGATTTGATAACTAACC	34,266-34,284	
L21 TGAACGGACCTTTGCTAATGAC 37,793-37,813 L22 GAGGGTGGTACTGGTTCCG 38,120-38,139 L23 CCTACAATAACCTGGGAACT 40,770-40,789 L24 GATCTTGTCCGATGGGGATG 40,949-40,968 L25 ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG 1-43 L26 GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC 18,716-18,758 ¹⁵ L27 GCCAGCCCCACACTAAGCAGCCCCTGATATGGCTACTATGTC 4,043-4,062 L28 CAACCCCGCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTCCCGGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGGCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^C N2 CTTTGGAGCTG NP N3 GAATGTGA(AG)AA NP N3 GAATGGA(AG)AA NP N4 CATGTCGCGA NP	L20	ATAAGCGCACTAGATGGCAG	34,473-34,492	
L22GAGGGTGGTACTGGTTCCG38,120-38,139L23CCTACAATAACCTGGGAACT40,770-40,789L24GATCTTGTCCGATGGGGATG40,949-40,968L25ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG1-43L26GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC18,716-18,758 ^{rb} L27GCCAGCCCTAACCTTAAGACAG4,532-4,553L28CAACCCCGCCCACAATAAGC4,043-4,062L29GCTTACATGCTTTTCCCCGC8,712-8,731rL30CGAACCGTCACAGTCTGCAG8,592-8,611L31GCCGGCAGTAAGTACTCAG13,315-13,334L32TGCCGATATCATTGGTTCAT13,212-13,231N1TATAGGTTT(C/A)TGTTNP ^c N2CTTTTGGAGCTGNPN3GAATGTGA(A/G)AANPN4CATGTCTGCCGANP	L21	TGAACGGACCTTTGCTAATGAC	37,793-37,813	
L23 CCTACAATAACCTGGGAACT 40,770-40,789 L24 GATCTTGTCCGATGGGGATG 40,949-40,968 L25 ATGGGACAGTCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG 1-43 L26 GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC 18,716-18,758 ^{,b} L27 GCCAGCCCTAACCTTAAGACAG 4,043-4,062 L28 CAACCCGCCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTCCCCGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGCGCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT NP ^c N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(AG)AA NP N4 CATGTCGCGA NP	L22	GAGGGGTGGTACTGGTTCCG	38,120-38,139	
L24 GATCTTGTCCGATGGGGATG 40,949,068 L25 ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG 1-43 L26 GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC 18,716-18,758 ^{,b} L27 GCCAGCCCTAACCTTAAGACAG 4,043-4,062 L28 CAACCCGCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTTCCCCGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGGCAGTAAGTACTCAG 13,212-13,231 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L23	CCTACAATAACCTGGGAACT	40,770-40,789	
L25 ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG 1-43 L26 GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC 18,716-18,758 ^b L27 GCCAGCCCTAACCTTAAGACAG 4,532-4,553r L28 CAACCCGCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTTCCCCGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGGCAGTAAGTACTCAG 13,212-13,234 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L24	GATCTTGTCCGATGGGGATG	40,949-40,968	
L26 GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC 18,716-18,758 ^{rb} L27 GCCAGCCCTAACCTTAAGACAG 4,532-4,553r L28 CAACCCGCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTTCCCCGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGCGCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L25	ATGGGACAGTCCCTACCGTTGGCCTCGATTCAAAGCTTCTCAG	1-43	
L27 GCCAGCCCTAACCTTAAGACAG 4,532-4,553r L28 CAACCCGCCCACAATAAGC 4,043-4,062 L29 GCTTACATGCTTTCCCCGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGGCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L26	GGACTGCAGGCCTTTCAACGGCCCCTGATATGGCTACTATGTC	18,716-18,758r ^b	
L28 CAACCCCGCCCACATAAGC 4,043-4,062 L29 GCTTACATGCTTTTCCCCGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGCGCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L27	GCCAGCCCTAACCTTAAGACAG	4,532-4,553r	
L29 GCTTACATGCTTTTCCCCGC 8,712-8,731r L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGCCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^C N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L28	CAACCCCGCCCACAATAAGC	4,043-4,062	
L30 CGAACCGTCACAGTCTGCAG 8,592-8,611 L31 GCCGCCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^C N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L29	GCTTACATGCTTTTCCCCGC	8,712-8,731r	
L31 GCCGCGCAGTAAGTACTCAG 13,315-13,334 L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L30	CGAACCGTCACAGTCTGCAG	8,592-8,611	
L32 TGCCGATATCATTGGTTCAT 13,212-13,231 N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L31	GCCGCGCAGTAAGTACTCAG	13,315-13,334	
N1 TATAGGTTT(C/A)TGTT NP ^c N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCGCCGA NP	L32	TGCCGATATCATTGGTTCAT	13,212-13,231	
N2 CTTTTGGAGCTG NP N3 GAATGTGA(A/G)AA NP N4 CATGTCTGCCGA NP	N1	TATAGGTTT(C/A)TGTT	NP ^c	
N3 GAATGTGA(A/G)AA NP N4 CATGTCTGCCGA NP	N2	CTTTTGGAGCTG	NP	
N4 CATGTCTGCCGA NP	N3	GAATGTGA(A/G)AA	NP	
	N4	CATGTCTGCCGA	NP	

Table 2 Sequences of oligonucleotides primers used for PCR amplification

^a the position is according to the sequence of the whole fragment of 42,897 bp.

 $^{\rm b}\ {\rm r}$ indicates the reverse direction.

^c NP indicates no prediction.

same program was used to detect ORFs encoding proteins of greater than or equal to 75 amino acids with a methionine (M) start codon. The predicted ORFs and flanking sequences were evaluated for coding potential by detecting the promoter http://www.fruitfly.org/seq_tools/promoter.html[32], and the presence of TATA box http://motif.genome.jp/ and transcription terminal signals http://rulai.cshl.org/tools/polyadq/polyadq_form. html. Searches of the deduced proteins for signal peptides http://www.cbs.dtu.dk/services/SignalP/, transmembrane regions http://www.ch.embnet.org/software/ TMPRED_form.html, N-linked glycosylation sites http:// www.cbs.dtu.dk/services/NetNGlyc/ and serine, threonine and tyrosine phosphorylation sites http://www.cbs. dtu.dk/services/NetPhos/ were also performed online. The secondary structure of sequences in the *oriS* was constructed by using GeneQuest in DNAStar.

Confirmation of the junction between the L region and the S region by specific PCR

Owing to the different order of genes in the junction of the L region and S region in the DEV Clone-03 in this study and the reported DEV VAC strain [14], one pair of specific primers, L25 and L26 (Table 2), was designed to confirm the result. Primer L25 was located within the *LORF11* gene and L26 was located within the *SORF3* gene. This pair of primers was used in the first nested PCR. Other primers, L27, L28-L29, L30-L31, and L32 (Table 2), were also used in the second nested PCR. The position of the primers and the strategy for confirmation of the sequence are shown in Figure 1.

The PCR was carried out in a 25 μ l reaction volume. The first nest of the PCR reaction was performed at 95° C for 5 min, followed by 35 cycles of 94°C for 1 min, 50°C for 1 min and 72°C for 8 min; the reaction was ended by elongation at 72°C for 10 min. The PCR product was analyzed on a 0.8% agarose gel and was used as the template for the second nest. The second nested PCR was performed at 95°C for 5 min, followed by 30 cycles of 94°C for 1 min, 53°C for 1 min and 72°C for 3 min; the reaction was ended by elongation at 72°C for 1 min and 72°C for 1 min, 53°C for 1 min and 72°C for 10 min. The products of the second nested PCR were cloned and sequenced, respectively.

Phylogenetic analysis

Homologue searches were conducted using BLAST searching [33] and phylogenetic analysis was performed using the MEGALIGN program in Lasergene (DNAStar) with CLUSTAL W multiple alignment and weight matrix Gonnet 250 [13]. The result was confirmed by use of the MAGE package (Version 4.0). The sequences of the herpesviruses that were used as reference strains for homology analysis were obtained from the GenBank database and the GenBank accession numbers are given in the phylogenetic trees.

GenBank accession numbers

The DNA sequence of 42,897 bp from the DEV Clone-03 genome has been deposited in the GenBank database with the GenBank accession no. HQ009801.

Additional material

Additional file 1: Figure S1: Multiple alignments of homologues based on US10 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*. The pink box indicate the probable C-C-H-C zinc finger motif in US10 proteins by comparison with their homologues in other herpesviruses.

Additional file 2: Figure S2: Multiple alignments of homologues based on US1 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*.

Additional file 3: Figure S3: Multiple alignments of homologues based on SORF3 proteins of DEV Clone-03 and other avian herpesviruses.

Additional file 4: Figure S4: Multiple alignments of homologues based on US2 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*. The conserved domains were indicated by pink boxes.

Additional file 5: Figure S5: Multiple alignments of homologues based on the amino acid sequences in the N-terminus of US3 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*. The conserved domains (from 1 to VI) were indicated by pink boxes.

Additional file 6: Figure S6: Multiple alignments of homologues based on the amino acid sequences in the C-terminus of US3 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*. The conserved domains (from VII to XI) were indicated by pink boxes.

Additional file 7: Figure S7: Multiple alignments of homologues based on US4 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*. The conserved domains were indicated by pink boxes.

Additional file 8: Figure S8: Multiple alignments of homologues based on US6 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*. The conserved domains were indicated by pink boxes.

Additional file 9: Figure S9: Multiple alignments of homologues based on US7 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*.

Additional file 10: Figure S10: Multiple alignments of homologues based on US8 proteins of DEV Clone-03 and other typical strains of the subfamily *Alphaherpesvirinae*. The conserved domains were indicated by pink boxes.

List of abbreviations used

DEV: duck enteritis virus; DVE: duck viral enteritis; DPV: duck plaque virus; ORF: open reading frame; L: long; S: short; UL: unique long; US: unique short; α : Alphaherpesvirinae; β : Betaherpesvirinae; γ : Gammaherpesvirinae; CEF: chicken embryo fibroblasts; DMEM: Dulbecco's minimum essential medium; CPE: cytopathic effect; PCR: polymerase chain reaction; MDV: marek's disease virus; HVT: turkey herpesvirus; VZV: varicella-zoster virus; PRV: pseudorabies virus; M: methionine; ILTV: infectious laryngotracheitis; EHV: equine herpesvirus; CeHV: cercopithecine herpesvirus; CaHV-1: canid herpesvirus-1.

Authors' contributions

XL, SL and XK designed research; XL, ZH, YS and YL performed research; XL, SL, XK and HL analyzed data; and XL, SL and XK wrote the paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 14 October 2010 Accepted: 2 May 2011 Published: 2 May 2011

References

- E Gershburg, JS Pagano, Conserved herpesvirus protein kinases. Biochim Biophys Acta. 1784, 203–212 (2008)
- JP Weir, Genomic organization and evolution of the human herpesviruses. Virus Genes. 16, 85–93 (1998). doi:10.1023/A:1007905910939
- B Roizman, LE Carmichael, F Deinhardt, G De-The, AJ Nahmias, W Plowright, F Rapp, P Sheldrick, M Takahashi, K Wolf, Herpesviridae. Definition, provisional nomenclature, and taxonomy. The herpesvirus study group, the international committee on taxonomy of viruses. Intervirology. 16, 201–217 (1981). doi:10.1159/000149269
- B Roizmann, RC Desrosiers, B Fleckenstein, C Lopez, AC Minson, MJ Studdert, The family *Herpesviridae*: an update. Arch Virol. **123**, 425–449 (1992). doi:10.1007/BF01317276
- AJ Davison, R Eberle, B Ehlers, GS Hayward, DJ McGeoch, AC Minson, PE Pellett, B Roizman, MJ Studdert, E Thiry, The order Herpesvirales. Arch Virol. 154, 171–177 (2009). doi:10.1007/s00705-008-0278-4
- B Roizman, The human herpesviruses in The herpesviridae, a brief introduction. in *Fields of Virology*, ed. by Roizman B, Whitley RJ, Lopez C (New York: Raven Press, 1993), pp. 1–9

- R Gardner, J Wilkerson, JC Johnson, Molecular characterization of the DNA of anatid herpesvirus 1. Intervirology. 36, 99–112 (1993)
- H Li, S Liu, Z Han, Y Shao, S Chen, X Kong, Comparative analysis of the genes UL1 through UL7 of the duck enteritis virus and other herpesviruses of the subfamily alphaherpesvirinae. Genet Mol Bio. 32, 121–128 (2009). doi:10.1590/S1415-47572009005000003
- H Li, S Liu, X Kong, Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV): a proof for the classification of DEV. Virus Genes. 33, 221–227 (2006). doi:10.1007/s11262-005-0060-6
- S Liu, S Chen, H Li, X Kong, Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV). Gene. 401, 88–96 (2007). doi:10.1016/j.gene.2007.06.022
- R An, H Li, Z Han, Y Shao, S Liu, X Kong, The UL31 to UL35 gene sequences of duck enteritis virus correspond to their homologs in herpes simplex virus 1. Acta Virol. 52, 23–30 (2008)
- SW Liu, HX Li, Y Li, ZX Han, YH Shao, R An, XG Kong, Pylogeny of duck enteritis virus: Evolutionary relationship in the Family Herpesviridae. Intervirology. 51, 151–165 (2008). doi:10.1159/000146865
- XL Liu, SW Liu, HX Li, ZX Han, YH Shao, XG Kong, Unique sequence characteristics of genes in the leftmost region of unique long region in duck enteritis virus. Intervirology. 52, 291–300 (2009). doi:10.1159/000235742
- YF Li, B Huang, XL Ma, J Wu, F Li, W Ai, MX Song, HC Yang, Molecular characterization of the genome of duck enteritis virus. Virology. 391, 151–152 (2009). doi:10.1016/j.virol.2009.06.018
- Y Zhao, JW Wang, F Liu, B Ma, Molecular analysis of US10, S3, and US2 in duck enteritis virus. Virus Genes. 38, 243–248 (2009). doi:10.1007/s11262-008-0315-0
- Y Zhao, JW Wang, B Ma, FY Liu, Molecular analysis of duck enteritis virus US3, US4 and US5 gene. Virus Genes. 38, 289–294 (2009). doi:10.1007/ s11262-008-0326-x
- Y Hu, H Zhou, Z Yu, H Chen, M Jin, Characterization of the genes encoding complete US10, SORF3, and US2 proteins from duck enteritis virus. Virus Genes. 38, 295–301 (2009). doi:10.1007/s11262-009-0329-2
- Y Zhao, JW Wang, Characterization of duck enteritis virus US6, US7 and US8 gene. Intervirology. 53, 141–145 (2010). doi:10.1159/000274974
- A Dolan, FE Jamieson, C Cunningham, BC Barnett, DJ McGeoch, The genome sequence of herpes simplex virus type 2. J Virol. 72, 2010–2021 (1998)
- DJ McGeoch, A Donald, FJ Rixon, Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol. 181, 1–13 (1985). doi:10.1016/0022-2836(85)90320-1
- MF Summers, Zinc fingers motif for single stranded mucleic acids? Investigatjions by nuclear magnetic resonance. J Cell Biochem. 45, 41–48 (1991). doi:10.1002/jcb.240450110
- VR Holden, RR Yaamanchili, RN Harty, DJ O' Callaghan, Identification and characterization of an equine herpesvirus 1 late gene encoding a potential zinc finger. Virology. 188, 704–713 (1992). doi:10.1016/0042-6822(92)90525-T
- AJ Davison, DJ McGeoch, Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. J Gen Virol. 67, 597–611 (1986). doi:10.1099/0022-1317-67-4-597
- BG Klupp, CJ Hengartner, TC Mettenleiter, LW Enquist, Complete, annotated sequence of the Pseudorabies virus genome. J Virol. 78, 424–440 (2003)
- EAR Telford, MS Watson, K McBride, AJ Davison, The DNA sequence of Equine herpesvirus-1. Virology. 189, 304–316 (1992). doi:10.1016/0042-6822 (92)90706-U
- H Delius, JB Clements, A partial denaturation map of herpes simplex virus type 1 DNA: evidence for inversions of the unique DNA regions. J Gen Virol. 33, 125–133 (1976). doi:10.1099/0022-1317-33-1-125
- GS Hayward, RJ Jacob, SC Wadsworth, Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proc Natl Acad Sci USA. 72, 4243–4247 (1975). doi:10.1073/pnas.72.11.4243
- K Hirai, K Ikuta, S Kato, Structural changes of the DNA of Marek's disease virus during serial passage in culture cells. Virology. 115, 385–389 (1981). doi:10.1016/0042-6822(81)90119-7
- JW Balliet, PA Schaffer, Point mutation in herpes simplex virus type 1 oriL, but not in oriS, reduce pathogenesis during acute infection of mice and impair reactivation from latency. J Virol. 80, 440–450 (2006). doi:10.1128/ JVI.80.1.440-450.2006

- PC Chang, ML Hsieh, JH Shien, DA Graham, MS Lee, HK Shieh, Complete nucleotide sequence of avian paramyxovirus type 6 isolated from ducks. J Gen Virol. 82, 2157–2168 (2001)
- JD Parker, PS Rabinovitch, GC Burmer, Targeted gene walking polymerase chain reaction. Nucleic Acids Res. 19, 3055–3060 (1991). doi:10.1093/nar/ 19.11.3055
- M Reese, NL Harris, FH Eeckman, Large scale sequencing specific neural networks for promoter and splice site recognition. in *Biocomputing Proceedings of the 1996 Pacific Symposium: 2-7 Jan 1996*, ed. by Hunter L, Klein TE (Singapore: World Scientific Publishing Inc, 1996)
- SF Altschul, W Gish, W Miller, EW Mysers, DJ Lipman, Basic local alignment search tool. J Mol Bio. 215, 3389–3402 (1990)

doi:10.1186/1743-422X-8-200

Cite this article as: Liu *et al.*: Different linkages in the long and short regions of the genomes of duck enteritis virus Clone-03 and VAC Strains. *Virology Journal* 2011 **8**:200.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit