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Ultra-violet radiation is responsible for the
differences in global epidemiology of chickenpox
and the evolution of varicella-zoster virus as man
migrated out of Africa
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Abstract

Background: Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a
unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate
areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating
from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-
zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously
unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of
this virus infection.

Presentation of the hypothesis: Unlike other human herpes viruses, varicella-zoster virus does not require
intimate contact for infection to occur indicating that transmission may be interrupted by a geographically
restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet
radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after
rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in
temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of
geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different
virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant.
Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that
temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation
has either been excluded or significantly reduced in intensity.

Testing the Hypothesis: The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation
and quantifying virus survival by plaque forming units or quantitative mRNA RT-PCR.

Implications of the hypothesis: The ancestral varicella-zoster virus, most probably a tropical genotype, co-
migrated with man as he left Africa approximately 200,000 years ago. For this virus to have lost the selective
advantage of resistance to ultra-violet radiation, the hypothesis would predict that the temperate, ultra-violet
sensitive virus should have acquired another selective advantage as an evolutionary trade-off. One obvious
advantage could be an increased reactivation rate as zoster to set up more rounds of chickenpox transmission. If
this were so, the mechanism responsible for resistance to ultra-violet radiation might also be involved in
reactivation and latency. This could then provide the first insight into a genetic correlate of the survival strategy of
this virus.
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Background
Chickenpox epidemiology is unique among human
herpes viruses. In the tropics primary infection is often
delayed into later childhood whereas in temperate zones
most infection occurs before leaving school. Indeed, in
some tropical countries 30-50% of adults are susceptible,
compared with only 5-10% from temperate areas [1].
Conventionally, transmission has been considered to

occur by shedding of virus from the upper respiratory
tract 1-2 days before the rash [2,3]. The papers which
claim to show such virus transmission however, also
conclude that the titres of virus in vesicular fluid are
considerably greater than those present in the pharynx
and that vesicular virus makes the greatest contribution
to spread [4-6]. Indeed, the few papers cited as provid-
ing epidemiological evidence for airborne spread are
either mis-quoted [7], based on case reports [8,9] or do
not reflect the normal transmission environment [10].
In this regard chickenpox appears similar to smallpox,
which also had a distinct winter-spring seasonal peak
in incidence and was spread partly by the vesicular
eruption [11].
Why such a common, global infection should be less

common in children from the tropics when infections are
generally more common remains unknown. Although
previously suggested factors such as heat, humidity, viral
interference, population density or infection with cross-
protecting viruses, have been suggested as possible causes
of the epidemiological differences, a unified, coherent
explanation has eluded discovery [1,12]. The climatic
factor which I propose to show is responsible for the geo-
graphical differences in transmission is ultra-violet radia-
tion (UVR). Furthermore, as varicella-zoster virus (VZV)
exists only in man, I propose that UVR has been involved
in the co-evolution of virus as man migrated out of
Africa. The evolution of varying degrees of resistance to
UVR among the different genotypes [13] may also have
implications for virus reactivation as zoster.

Presentation of the hypothesis
A search for sero-epidemiological studies of varicella-
zoster virus (VZV) using the terms “varicella”, “chicken-
pox” and “seroepidemiology” produced a total of 25
papers. From these publications other relevant refer-
ences were also located giving a total of 42 articles,
reviewed in [14]. Whilst the studies were of different
formats, linear regression curves of age-stratified anti-
body prevalence plotted against latitude showed a rea-
sonably good fit (r2 ≈ 0.5) was demonstrated across all
age groups of children >5 years (Figure 1). The same
antibody prevalence data when plotted against tempera-
ture, rainfall, population density and sunshine, using
data drawn from the World Meteorological Organisation

(http://www.wmo.int) and the United Nations (http://
www.fao.org/WAICENT/FAOINFO/SUSTDEV/EIdirect/
CLIMATE/EIsp0002.htm), showed no consistent corre-
lation (Figures 2, 3, 4 and 5).
Chickenpox is seasonal in temperate zones, with the

highest incidence seen in winter and spring [1]. One
explanation for this seasonality could be the significantly
higher levels in ultra-violet radiation (UVR) of approxi-
mately 10-25-fold seen in summer in temperate zones
[15], which could inactivate virus either in vesicular
lesions or after their rupture. Chickenpox is not seasonal
in the same way in the tropics possibly because UVR dif-
fers only by a factor of two during the year [15]. The tro-
pics however, do experience peaks in chickenpox
incidence when the climate is hot, dry and sunny with a
rapid decline to very low levels during the rainy season
[16-18]. This appears difficult to reconcile with UVR
inactivating virus until the effects of atmospheric pollu-
tion on ambient UVR are considered. For example, the
Indo-Asian haze, a continent-wide increase in air pollu-
tion during the dry season from December to April, has
been shown to reduce significantly the level of ambient
UVR [19]. As the Monsoon arrives, atmospheric particles
and pollutants are washed out, increasing the UVR which
inactivates virus more effectively. This correlates very
well with the observed chickenpox incidence in Sri Lanka
and south India [16,17]. Furthermore, outbreaks of vari-
cella have been terminated in certain African countries
by the arrival of the rainy season [18]. Increased atmo-
spheric pollution might partly explain, in association with
locally increased population density, why chickenpox is
commoner in urban environments compared with rural
communities in adjacent geographic areas [20,21].
Further support for the hypothesis derives from

sequence analysis which has classified VZV into dis-
tinct genotypes. In the largest published study, 348
genotypes of VZV were given geographic locations
based on where the virus was originally detected [13].
In the temperate zones which were studied (N Amer-
ica, Argentina, Europe, S Africa, N China, N Asia) a
total of 35/259 (13.5%) genotypes were tropical. In
contrast, of the 89 isolates from tropical countries/
regions (India, Nepal, Bangladesh, Chad, DRC, South-
ern China, Western Australia, Brazil, Cote D’ Ivoire,
Ethiopia, Thailand, Vietnam, Zimbabwe), only 5 (5.6%)
were temperate. This difference was statistically signif-
icant by Chi-square testing (p < 0.0001). Nevertheless,
temperate virus genotypes, which should be more sen-
sitive to UVR than tropical strains, and so would be
out-competed in terms of transmission, have been
detected in tropical areas, namely Australia, Brazil,
Congo, and Mexico City. However, survival of tempe-
rate genotypes in these regions is still consistent
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with the hypothesis when it is considered how redu-
cing ambient UVR allows temperate genotypes to
transmit.
In Australia widespread preventative measures are

taken limit exposure to UVR in schools by having large,
shaded playground areas.

In urban Brazil, man-made biomass burning and in
rural areas, the forest canopy and high humidity act
together to reduce UVR [22].
In the Congo, the first ever demonstration of trans-

mission of temperate virus, occurred in only one family
all living in the same house, the implication being that
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Figure 2 Mean winter/dry season temperature and prevalence of VZV IgG by age.
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temperate virus is rapidly inactivated by UVR after leav-
ing the confines of the family home [23].
Finally, the detection of temperate virus genotypes from

cases of chickenpox in Mexico City may be explained
because it is one of the most heavily polluted cities in the
world which reduces UVR, allowing temperate genotypes
to survive [24].

Proving the hypothesis
The hypothesis is biologically plausible because UVR is
virucidal against many viruses, yet the effect of UVR on
survival of VZV in vitro has never been tested [25]. How-
ever, the effect of UVR on virus transmission in vivo was
demonstrated over 60 years ago when artificial UVR was
used successfully to reduce virus transmission in US
schools to limit spread of chickenpox [26]. Epidemiologi-
cal evidence to support the hypothesis could be provided
by correlating the transmission of different virus geno-
types with ambient UV radiation. Genotyping VZV in
cases of chickenpox could determine if there are seasonal
differences in genotype transmission in temperate areas.
The hypothesis would predict that tropical virus geno-
types should predominate during summer in temperate
countries since they would have the selective advantage
of increased resistance to UVR.
If different genotypes of VZV possess different toler-

ances to UVR this could be demonstrated in vitro by
exposing virus to UVR and quantifying the surviving virus
by either plaque forming units or quantitative mRNA RT-
PCR. Finally, it may also be possible to make hybrid
viruses by exchanging those regions of the VZV genome

which are significantly different between genotypes and
determine for the first time the molecular markers that
underlie transmission or reactivation of VZV.

Implications of the hypothesis
The principal difficulty with the hypothesis is explaining
how an ancestral tropical virus genotype, inherently
more resistant to UVR, migrated with man out of Africa
200,000 years ago only to lose the selective advantage of
resistance to UVR, form a temperate virus genotype
lineage and as result become less transmissible. The
solution to this paradox could be that loss of the selec-
tive advantage of resistance to UVR and reduced trans-
missibility was offset by an increased propensity to
reactivate as zoster. This could indicate that the areas of
the VZV genome which confer resistance to UVR are
the same as are involved in latency and reactivation.
I suspect this to be the case because as the transmis-

sion environment is so harsh in the tropics, random
mutation and natural selection should have brought
about a tropical virus genotype which reactivates much
more frequently to counter-act the lower transmissibility
of chickenpox. The fact that the data on zoster epide-
miology from tropical countries (in the pre-AIDS era)
are virtually absent suggests that the tropical genotype
reactivates only in severely immune suppressed indivi-
duals. Potentially it may have implications for VZV vac-
cine since if it was made from a tropical genotype which
reactivated much less frequently, it might be possible, in
years to come, to significantly reduce the disease burden
from zoster.
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