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Abstract
Background: Although the important role of the non-structural 1 (NS) gene of influenza A in virulence of the virus is
well established, our knowledge about the extent of variation in the NS gene pool of influenza A viruses in their natural
reservoirs in Europe is incomplete. In this study we determined the subtypes and prevalence of influenza A viruses
present in mallards in Northern Europe and further analysed the NS gene of these isolates in order to obtain a more
detailed knowledge about the genetic variation of NS gene of influenza A virus in their natural hosts.

Results: A total number of 45 influenza A viruses of different subtypes were studied. Eleven haemagglutinin- and nine
neuraminidase subtypes in twelve combinations were found among the isolated viruses. Each NS gene reported here
consisted of 890 nucleotides; there were no deletions or insertions. Phylogenetic analysis clearly shows that two distinct
gene pools, corresponding to both NS allele A and B, were present at the same time in the same geographic location in
the mallard populations in Northern Europe. A comparison of nucleotide sequences of isolated viruses revealed a
substantial number of silent mutations, which results in high degree of homology in amino acid sequences. The degree
of variation within the alleles is very low. In our study allele A viruses displays a maximum of 5% amino acid divergence
while allele B viruses display only 2% amino acid divergence. All the viruses isolated from mallards in Northern Europe
possessed the typical avian ESEV amino acid sequence at the C-terminal end of the NS1 protein.

Conclusion: Our finding indicates the existence of a large reservoir of different influenza A viruses in mallards
population in Northern Europe. Although our phylogenetic analysis clearly shows that two distinct gene pools,
corresponding to both NS allele A and B, were present in the mallards populations in Northern Europe, allele B viruses
appear to be less common in natural host species than allele A, comprising only about 13% of the isolates sequenced in
this study.
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Background
Several viral gene products of influenza A virus are known
to contribute to the host range restriction and virulence of
the virus. The viral polymerase protein 2 (PB2) with its
amino acid at position 627 influences the ability of the
virus to replicate in human or mouse cells [1]. The recep-
tor binding efficiency and high cleavability of the haemag-
glutinin (HA) glycoprotein can influence viral entry and
lethal out come of infection [2]. The non-structural pro-
tein 1 (NS1) which is a multi-functional protein, plays a
crucial role in viral virulence by countering cellular antivi-
ral activities [3] and contributes to virus replication by
participating in multiple protein-RNA and protein-pro-
tein interaction.

The NS gene of influenza A viruses encodes an mRNA
transcript that is alternatively spliced to express two pro-
teins [4]. Translation of the unspliced mRNA encodes a
26-kDa NS1 protein which shares the same ten amino
acids from the initiation codon at the N-terminal of the
protein with a 14-kDa nuclear export protein (NEP, for-
merly called NS2) which is translated from spliced mRNA
[5]. Depending on virus strain NS1 consists of 124–237
amino acids in length and is expressed exclusively in
infected cells.

The NS1 protein contains two functional domains: the N-
terminal RNA-binding domain (residues 1–73) and the C-
terminal effector domain (residues 73–237) [6].

It has been suggested that the N-terminal RNA binding
domain of NS1 protein has regulatory activities that are
important to prevent interferon mediated antiviral
responses. Binding of NS1 protein to both single- and
double-stranded RNA might: (a) inhibit activation of
interferon induced protein kinase PKR [7], (b) prevent
activation of the 2'–5'oligoadenylate synthetase, which is
essential for activation of ribonuclease L (RNase L) system
[8], (c) inhibit the activation of IRF-3 and NF-κB, key reg-
ulators of IFN α and β gene expression, by interfering with
the retinoic acid-inducible gene I (RIG-I) [9-11] and (d)
suppression of RNA interfering system, by binding to
small interfering RNAs [12,13]. Earlier studies have indi-
cated the existence of important amino acid sequence
motifs for the function of NS1 protein. Analysis implies
that amino acids at the N-terminal RNA-binding domain
of NS1 are implicated in this function. The arginine at
position 38 and the lysine at position 41 contribute to this
interaction [10]. The N-terminal residues 81–113 of NS1
protein can also bind to eukaryotic translation initiation
factor 4GI (eIF4GI), the large subunit of the cap-binding
complex eIF4F [14]. By doing so, NS1 protein recruits
eIF4F to the 5' un-translational region of viral mRNA and
activates translation of viral mRNA.

The effector domain of NS1 protein has been associated
with regulation of gene expression of the infected cell
[15]. It has been shown that the effector domain of NS1
protein: (a) inhibit 3'-end processing of cellular pre-
mRNA by specifically interaction with the 30 kDa subunit
of the cleavage and polyadenylation specific factor (CPSF)
[16-18]. This function mediated by two distinct domains;
one located around residue 186 [18] and the other one
around residue 103 and 106 [19], (b) prevent transport of
cellular mRNA to cytoplasm by interaction with poly (A)
– binding protein II (PABII) [20]. Amino acids 215 to 237
have been identified as the binding site for PABII [18].

The NEP consists of 121 amino acids [21] which in asso-
ciation with the matrix protein 1 (M1) interacts with cel-
lular export factor (CEF1) and mediate the nuclear export
of viral ribonucleoprotein complexes [22] by connecting
the cellular export machinery with vRNPs [23].

Our knowledge about the NS gene pool of influenza A
viruses in their natural reservoirs in Europe is incomplete.
Limited information on the prevalence of influenza A
viruses in wild birds in Europe has been provided in
recent years indicating Mallards (Anas platyrhynchos) as an
essential factor of the ecology of influenza A viruses
because of a particularly wide variety of subtypes isolated
from these birds [24-28]. Therefore, in this study we ana-
lysed in detail the NS gene sequences of 45 influenza A
viruses, isolated from mallards at the major flyway of the
Western Eurasian mallard population in 2005, in order to
gain more detailed knowledge about the genetic variation
of influenza A viruses in their natural hosts.

Results and discussion
Avian influenza Prevalence
Samples from seven hundred and eighty one mallards
(Anas platyrhynchos) were collected in the frame of a sur-
veillance program, organized by the Swedish Board of
Agriculture (Figure 1). Birds were caught from October
until the autumn migrations were ended in late Decem-
ber. The matrix real-time reverse transcriptase polymerase
chain reaction (rRT-PCR) screening showed that about
24% of examined birds were influenza A positive. From
hundred and sixty four rRT-PCR positive samples a total
of 45 influenza A viruses of different subtypes were iso-
lated. The overall isolation rate was 6% (45/781). In our
study many different influenza A virus subtypes were
found to circulate at the same time, in the same bird spe-
cies at the single location in the Northern Europe. This
finding most likely indicates the existence of a large reser-
voir of different influenza A viruses in mallards popula-
tion in Northern Europe. Eleven haemagglutinin- and
nine different neuraminidase subtypes in twelve combi-
nations have been isolated from apparently healthy mal-
lards in the same geographical location (Figure 2). Mixing
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of migratory mallards at the single location may be the
reason for the high level of virus variation. The most fre-
quently identified subtypes in mallard populations in
Northern Europe during autumn migration in 2005 were
H3N8 (24%) and H4N6 (18%), similarly to the rates pre-
viously reported from North America and Europe [29,30].
Sequence analysis of the HA genes of the H5 and H7 influ-
enza A viruses isolated in this study showed that the hae-
magglutinin cleavage site lacked the basic amino acids
residues (data not shown), which indicating low patho-
genicity of these viruses [31]. No highly pathogenic H5N1
viruses were isolated from mallards included in this study.
This is important regarding the ongoing debate on the
possible spread of HPAI H5N1 viruses by apparently
healthy migratory birds and the time line of events char-
acterising the first arrival of the HPH5N1 viruses in West-
ern Europe and Baltic Sea area in winter 2005–2006 [32].

Phylogenetic analysis
We analysed the NS gene sequences of the 45 influenza A
viruses isolated from mallards in Northern Europe sepa-
rately and together with selected number of isolates,

reported between year 2000 to 2007, and previously pub-
lished in the GenBank [33].

Analysis of phylogenetic relationships among the NS
genes reported in this study clearly shows that two distinct
gene pools, corresponding to both NS allele A and B [34],
were present at the same time in the same geographic
location in the mallards populations in Northern Europe.
Out of 45 isolated viruses 39 (87%) belong to allele A,
while six (13%) to allele B. Allele B viruses appear to be
less common in natural host species than allele A, com-
prising only about 13% of the isolates sequenced in this
study. The prevalence rates of allele B viruses in North
American mallards are much higher than what we have
seen in mallards in Northern Europe (30% in North
America versus 13% in Northern Europe)[35]. In Asia the
figure is 15 per cent, including all viruses of avian origin.
Thus, the overall picture clearly shows that the majority of
the viruses belong to allele A in birds.

The differences in function, if any, between allele A and
allele B have not been defined, but it appears that allele B
viruses are more distinct from mammalian origin viruses.
All viruses from mammalian species belong to allele A,
with only two exceptions, one previously reported equine
origin virus (A/equine/Jilin/1/1989/H3N8) and as shown
here, one swine origin virus (A/Swine/Saskatchewan/
18789/2002/H1N1). However, both these viruses are
believed to be a direct transmission from avian species
[36,37]. Studies that have placed NS allele B gene into
mammalian origin viruses have attenuated these viruses
in mice [38]. This indicates that NS1 from allele B, cannot
easily be adapted to mammalian species. Thus, it would
be very interesting to be able to pinpoint possible differ-
ences in function between NS1 from allele A and B.

Phylogenetic analysis revealed three separate clades and
multiple sub clades among isolates in allele A and two
separate clades in allele B (Figure 3). Viruses in allele A
were separated into three clades. Clade I consist of thir-
teen isolates divided into two sub clades. Clade II is
encompassing fourteen isolates, divided into three subc-
lades. Finally, twelve isolates formed clade III.

When co-analyzed with other viruses isolated from mal-
lards the isolates grouped separately by Eurasian and
American lineages in both alleles, without any geographi-
cal assortment of the mallard origin isolates (Figure 4).

Unlike pattern observed among mallard viruses, isolates
from shorebirds shown some intercontinental exchange
of genes (Figure 5). It has been shown by Wallensten and
co-authors (2005) that NS gene segment of influenza A
virus (A/Guillemot/Sweden/3/00/H6N2) isolated from
Guillemot (Uria aalge) on Boden Island in the northern

The sample location at Ottenby bird Observatory (56°12' N, 16°24' E) on a major European flyway, on Baltic island of Öland at southeast coast of Sweden indicated by a black arrowFigure 1
The sample location at Ottenby bird Observatory (56°12' N, 
16°24' E) on a major European flyway, on Baltic island of 
Öland at southeast coast of Sweden indicated by a black 
arrow.
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Baltic Sea belongs to American lineage of influenza A
viruses [39]. Alternatively, as shown here, one NS allele A
gene from A/shorebird/DE/261/03/H9N5 [40] fell into
same clade with genes from Eurasian avian viruses (Figure
5).

The phylogenetic assortment appears to be more common
among North American isolates, i.e. two swine origin iso-
lates, A/swine/Ontario/42729/01/H3N3 and A/swine/
Ontario/K01477/01/H3N3, grouped together with Amer-
ican avian origin viruses in allele A (Figure 5), however,
limited sequence data is available from Eurasian origin
viruses which make further conclusions difficult.

The viruses detected in poultry and in wild birds, grouped
closely to each other in both alleles. The close relationship
of the HPAI H7N7 isolates detected in 2003 in the Neth-
erlands [41] and the LPAI isolate of the same subtype
from apparently healthy mallards in Northern Europe in
2005 poses an important puzzle in the epidemiology of
these viruses. This may indicate that viruses of the H7N7
subtype are currently circulating in the European Mallard
bird population and these viruses still can constitute a
threat to domestic poultry and public health.

Molecular characterization
To further investigate the evolutionary stasis of the NS
gene, we analyzed the nucleotide and protein sequences
of NS1 and NEP of isolated viruses. Each of the NS genes
consisted of 890 nucleotides; there were no deletions or
insertions. Nucleotide sequence identities of NS gene
within alleles were 95–100% and 97–100%, respectively;
however, the two alleles were, at most, 72% similar (Table
1). In allele A viruses the largest divergence (5%) in nucle-
otide sequences was found between A/Mallard/Sweden/
S90360/2005/H6N8 and A/Mallard/Sweden/S90419/
2005/H3N8.

The nucleotide sequence of the NEP consists of 363 nucle-
otides encoded from a spliced mRNA. The potential splice
donor and acceptor sites were conserved in the entire NS
gene examined in this report (data not shown). Within
the allele A and B, the NEP showed a nucleotide similarity
of at least 85 and 90%, respectively, between the two alle-
les, the nucleotide similarity was 77% at most.

The nucleotide sequences of isolated viruses were com-
pared for similarity. The A/tern/South Africa/1961/H5N3
and A/redhead duck/ALB/74/1977/H4N6[40] which rep-

Prevalence of each influenza A virus subtype isolated from mallards in Northern Europe in 2005Figure 2
Prevalence of each influenza A virus subtype isolated from mallards in Northern Europe in 2005.
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Phylogenetic relationship of NS1 genes of 45 influenza A viruses isolated from mallards in Northern Europe in 2005Figure 3
Phylogenetic relationship of NS1 genes of 45 influenza A viruses isolated from mallards in Northern Europe in 2005. The pro-
tein coding region tree was generated by neighbour-joining analysis with Tamura-Nei γ-model, using MEGA 4.0. Numbers 
below key nodes indicate the percentage of bootstrap values of 2000 replicates.
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Phylogenetic relationship of NS1 genes of 45 influenza A viruses isolated from mallards in Northern Europe in 2005 compared with selected number of mallards isolates, reported between year 2000 to 2007, and previously published in the GenBankFigure 4
Phylogenetic relationship of NS1 genes of 45 influenza A viruses isolated from mallards in Northern Europe in 2005 compared 
with selected number of mallards isolates, reported between year 2000 to 2007, and previously published in the GenBank. The 
protein coding region tree was generated by neighbour-joining analysis with Tamura-Nei γ-model, using MEGA 4.0. Numbers 
below key nodes indicate the percentage of bootstrap values of 2000 replicates. Swedish isolates are indicated by red dot.
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Phylogenetic relationship of NS1 genes of 45 influenza A viruses isolated i from mallards in Northern Europe in 2005 in com-parison with virus genes from shorebirds, poultry and mammalian origin isolates, reported between year 2000 to 2007, and previously published in the GenBankFigure 5
Phylogenetic relationship of NS1 genes of 45 influenza A viruses isolated i from mallards in Northern Europe in 2005 in com-
parison with virus genes from shorebirds, poultry and mammalian origin isolates, reported between year 2000 to 2007, and 
previously published in the GenBank. The protein coding region tree was generated by neighbour-joining analysis with Tamura-
Nei γ-model, using MEGA 4.0. Numbers below key nodes indicate the percentage of bootstrap values of 2000 replicates. Swed-
ish isolates are indicated by red dot.
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resent the earliest isolates from wild birds reservoir were
used as a baseline for respectively allele A and allele B
viruses. Thirty-one nucleotide substitutions were found
among clade I viruses in allele A compared to reference
strain. Of these, twenty-six were transitions; 14 were pyri-
midine and 12 were purine transitions and five substitu-
tions were results of transversion. Five of these
substitutions resulted in amino acid changes in NS1 pro-
tein. Analysis of the sequence variations demonstrated
that nucleotide changes are not uniformly distributed
across the gene with a few relatively variable site identified
at the N-terminus of the effector domain. In clade II
viruses, thirty-four substitutions were observed compared
to A/tern/South Africa/1961/H5N3. Of these, thirty-one
were result of transitions (17 T or C substitution and 14 A
or G substitutions). Four of these substitutions resulted in
amino acid changes in NS1 protein. Thirty-two nucleotide
substitutions were found in viruses belong to clade III. Six
amino acid changes in NS 1 protein were results of these
substitutions, two located in RNA binding domain and 4
in effector domain of the NS1 protein. Sixty-three nucle-
otide substitutions were found among clade I viruses in
allele B compared to reference strain. Fourty-one of these
were transitions; 23 of these were pyrimidine and 18 were
purine transitions. Only 3 of these substitutions resulted
in amino acid changes in NS1 protein. In the genome of
clade II viruses 58 substitutions were observed compared
to A/redhead duck/ALB/74/1977/H4N6. Thirty-nine of
these were results of transitions (20 T or C and 19 A or G
substitutions). Three of these substitutions resulted in
amino acid changes in NS1 protein.

Two hundred and four (30%) nucleotide substitutions
were found among viruses in allele B compared to A/tern/
South Africa/1961/H5N3. Of these, 91 were result of tran-
sitions. These substitutions were resulted to 70 amino
acid differences between the allele B viruses and A/tern/
South Africa/1961/H5N3. These results are similar to
those previously reported by Suarez and Perdue [42].

Analysis of the sequence variations demonstrated that
nucleotide changes are almost uniformly distributed
across the whole gene with only one relatively conserved
site at the 3' end of the nucleotide sequence (Figure 6). A

comparison of nucleotide sequences of isolated viruses
revealed a substantial number of silent mutations, which
results in high degree of homology in protein sequences.
The degree of variation within the alleles is very low.
Allele A viruses displays a maximum of 5% amino acid
divergence while allele B viruses display only 2% amino
acid divergence.

The length of NS1 protein in some influenza A viruses iso-
lated from poultry and mammalian hosts has been shown
to vary, but the NS1 protein of all the isolates of either
subtypes presented in this study consist of 230 amino acid
residues without any insertion or deletions. In its natural
host, the NS gene evolves slowly, but when introduced
into a new host the evolution goes rather fast which can
results in deletions, insertions and truncations of NS1
[43,44].

Several studies have identified important amino acid resi-
dues for the function of NS1 protein in the infected cells
[7,10,16-18]. Our knowledge about the existence of these
motifs in the NS gene pool of influenza A viruses in their
natural reservoirs is insufficient. To further evaluate the
existence of these specific motifs in our data set we aligned
additional 4073 amino acid sequences, available at the
GenBank, together with the data generated in this study.
Two major functional domains have been suggested on
NS1 protein, the N-terminal RNA-binding domain (resi-
dues 1–73) and the C-terminal effector domain (residues
73–237) [3]. The arginine at position 38 and the Lysine at
position 41 contribute to both dsRNA binding activity
and interferon antagonist activity of the NS1 protein [10].
The NS1 gene of all studied isolates includes R38 and K41.
We found only two avian influenza viruses: A/Pintail/
Alberta/1979/H4N6 and A/Chukkar/MN/1998/H5N2
among 4073 studied viruses that contained substitution at
the position 38; R38A and R38K respectively. The substi-
tution at amino acid position 41 appear more frequently
in human isolates of subtypes H1N2 and H3N2 and
swine isolates of subtypes H3N2, while the K41 seem to
be much more conservative in avian and equine isolates.
The absolute majority of human H1N2 and H3N2 viruses
contain substitution K41R. This substitution has also

Table 1: Sequence similarity of the NS gene products among influenza A viruses isolated in Northern European mallards.

NS1 % similarity NEP % similarity

Comparsion Aminoacids Nucleotide Aminoacids Nucleotide

Within allele A 95–100% 95–100% 88–100% 93–100%
Within allele B 98–100% 97–100% 95–100% 90–100%
Between allele A and B 68–72% 67–70% 76–83% 71–77%
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been seen in A/Swine/Ontario/52156/2003/H1N2 that
phylogenetic grouped with human influenza A viruses.

The amino acid Glu92 in the NS1 protein observed in
H5N1/97 influenza viruses is implicated in their ability to
modulate the cytokine response and has been associated
with the high virulence of these viruses in pigs [45]. At the
GenBank database only 26 H5N1 viruses contains Glu92,
mostly isolated in Hong-Kong in 1997. Among avian iso-
lates six H6N1 and several H9N2 viruses contains Glu92.
Interestingly one swine isolate; A/swine/United King-
dom/119404/91/H3N2, also contain Glu92 in the NS1
protein. No viruses sequenced in this study contained
glutamic acid at position 92 of the NS1 protein. Overall,
the substitution of Glu92 is extremely rare, and the impor-
tance for the virulence in other species than pigs is
unclear.

It has been suggested that the amino acid at the position
149 of NS1 protein of HPAI-H5N1 affect the ability of the
virus to antagonize the induction of IFN α/β in chicken
embryo fibroblasts [46]. All Swedish isolates sequenced in
this study possessed the amino acid Ala149 in their NS1

protein and have this proposed virulence hallmark of
NS1.

The NS1 protein interaction with cleavage and polyade-
nylation specificity factor (CPSF) inhibits 3'-end process-
ing of cellular pre-mRNA [16-18]. This function mediated
by two distinct domains; one around residue 186 [18] and
the other one around residue 103 and 106 [19]. All iso-
lates sequenced in this study possessed the amino acid
Glu186, Phe103 and Met106 in their NS1 protein.

It was proposed earlier by Obenauer and colleagues
(2006) that NS1 have a PDZ binding motif at the very end
of the protein. PDZ domains are protein-interacting
domains present once or multiple times within certain
proteins and these domains are involved in the cell signal-
ling, assembly of large protein complexes or intracellular
trafficking. They also showed that there were typical
human, avian, equine and swine motifs. The most com-
monly seen avian motif ESEV were shown to bind to sev-
eral PDZ domains in human proteins, while the most
common human motif RSKV bound very few [40]. All the
viruses isolated from mallards in Northern Europe pos-

Frequency of substitution at the nucleotide position of NS1 gene among studied virusesFigure 6
Frequency of substitution at the nucleotide position of NS1 gene among studied viruses.
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sessed the typical avian ESEV amino acid sequence at the
C-terminal end of the NS1 protein. However, viruses from
Asia have slightly other versions, like EPEV and GPEV. The
EPEV motif appears in both avian as well as swine, human
and equine viruses [39]. It is therefore possible that this
motif of NS1 is important for the adaptation of influenza
into a new host. The exact functional relevance of this
remains unclear at the moment.

The NEP of the studied isolates consists of 121 amino
acids. It has been suggested that tryptophan at position 78
is involved in NEP-M1 interaction that mediates the
nuclear export of viral ribonucleoprotein complexes [23].
All Swedish isolates sequenced in this study possessed the
amino acid TRP78 in their NEP. Hayman and co-workers
suggested that two differences in the sequence of the NEP,
at position 14 and 70, are particularly important for the
attenuation of replication of the avian influenza viruses in
human [47]. All the viruses studied here contain avian
methionine/glutamine at position 14 and avian serine at
position 70.

Conclusion
Our surveillance study indicates existence of a large reser-
voir of different influenza A viruses in mallards popula-
tion in Northern Europe. Twenty four per cent of
examined birds were influenza A positive. Eleven haemag-
glutinin- and nine different neuraminidase subtypes in
twelve combinations have been isolated, including the
low pathogenic H5N3 and H7N7.

Finally, to our knowledge, this is the first study providing
a comprehensive analysis of NS gene of avian influenza in
its natural reservoir in Europe. Our findings improve the
present understanding of NS gene pool of avian influenza
viruses and should help in understanding of gene func-
tion in the natural host, mallards, as well as in other hosts,
like domestic avian species. Particularly interesting is the
fact that two distinct gene pools, corresponding to both
NS allele A and B, were present in the mallard populations
in Northern Europe. Allele B viruses appear to be less
common in natural host species than allele A, comprising
only about 13% of the isolates sequenced in this study.
Despite the high level of subtype variation among studied
viruses the nucleotide sequences of NS gene of these
viruses showed a substantial number of silent mutations,
which results in high degree of homology in protein
sequences.

Methods
Field sampling of live wild birds
Samples were collected at the Ottenby bird observatory
from seven hundred and eighty one mallards (Anas platy-
rhynchos) in the frame of a surveillance program, organ-
ized by the Swedish Board of Agriculture. The Ottenby

bird observatory is situated on a major European flyway,
in Baltic island of Öland in southeast coast of Sweden
(Figure 1). Birds were caught from October until the
autumn migrations were ended in late December. After
banding and collection of biometrical data, two cloacal
swabs or fresh dropping samples were taken from each
bird using cotton swabs and stored in transport media at
-70°C until processed. Transport media consisted of
Hanks balanced salt solution supplemented with 10%
glycerol, 200 U/ml penicillin, 200 μg/ml streptomycin,
100 U/ml polymyxin B sulphate, 250 μg/ml gentamicin,
and 50 U/ml nystatin (all from ICN, Zoetermeer, the
Netherlands). All samples were strictly handled in a gov-
ernment-certified biosafety level 3+ (BSL-3+) facilities by
highly trained staff. Collected samples were screened for
the presence of influenza A viruses by real-time reverse
transcriptase polymerase chain reaction (rRT-PCR) for the
matrix protein gene [48], all positive cases were further
analysed by conventional reverse transcriptase-PCR (RT-
PCR) for detection of H5 and H7 viruses, including virus
pathotyping by amplicon sequencing of the identified H5
and H7 viruses [49]. All PCR assays were performed
according to the recommendations from the Community
Reference Laboratory (CRL; VLA Addlestone).

Virus isolation and characterisation
Virus isolation was performed in a BSL3+ laboratory at the
National Veterinary Institute (SVA) in Sweden. Samples
that were identified as influenza A virus positive by matrix
rRT-PCR were thawed, mixed with an equal volume of
phosphate buffered saline containing antibiotics (penicil-
lin 2000 U/ml, streptomycin 2 mg/ml and gentamicin 50
μg/ml), incubated for 20 minutes in room temperature,
and centrifuged at 1,500 × g for 15 min. The supernatant
(0.2 ml/egg) was inoculated into the allantoic cavity of
four 9-days old specific pathogen free (SPF) embryonated
hens' eggs as described in European Union Council Direc-
tive 92/40/EEC [50]. Embryonic death within the first 24
hours of incubation was considered as non-specific and
these eggs were discarded. After incubation at 37°C for 3
days the allantoic fluid was harvested and tested by hae-
magglutination (HA) assay as describe in European
Union Council Directive 92/40/EEC. In the cases where
no influenza A virus was detected on the initial virus iso-
lation attempt, the allantoic fluid was passaged twice in
embryonated hens eggs. The number of virus passages in
embryonated eggs was limited to the maximum two, to
limit laboratory manipulation. A sample was considered
negative when the second passage HA test was negative.
The subtypes of the virus isolates were determined by con-
ventional haemagglutination inhibition (HI) test, as
describe in European Union Council Directive 92/40/EEC
and the neuramidinase inhibition (NI) test [51].
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RNA extraction and PCR with NS1 gene specific primers
RNA was extracted in a BSL-3+ laboratory, using Trizol
reagent (Invitrogen Corp., Carlsbad, CA) according to the
manufacturer's instructions. The RNA was converted to
full-length cDNA using reverse transcriptase. The RT mix
comprised 2.5 μl of DMPC water, 5 μl of 5× First Strand
buffer (Invitrogen), 0.5 μl of 10 mM dNTP mix (Amer-
sham Biosciences), 2 μl of 50 mM random primers
(pdN6), 32 U of RNAguard (Amersham Biosciences), 200
U of MMLV reverse transcriptase (Invitrogen) and 5 μl
RNA solution in total volume of 25 μl. The reactions were
incubated at 42°C for 90 min followed by inactivation of
the enzyme at 95°C for 5 min.

PCR amplification with NS gene specific primers (Fw
primer: 5' AGC AAA AGC AGG GTG ACA AAG 3', Rev
primer 5' AGT AGA AAC AAG GGT GTT TTT TAT 3') was
performed to amplify the product containing the full
length NS gene. Twenty-five microliter PCR-mix con-
tained 1× Platinum Taq buffer (Invitrogen), 200 μM
dNTP, 2.5 mM MgCl2, 240 nM each of Fw primer and Rw
primer, 1 U Platinum Taq DNA Polymerase (Invitrogen)
and 3 μl cDNA. Reactions were placed in a thermal cycler
at 95°C for 2 min, then cycled 35 times between 95°C 20
sec, annealing at 58°C for 60 sec and elongation at 72°C
for 90 sec and were finally kept at 8°C until later use.

The PCR products were treated with shrimp alkaline phos-
phatase-exonuclease I (ExoSapI) (U.S Biologicals,
Swampscott, MA, USA) (5 μl ExoSapI per reaction, 30
min. at 37°C followed by 10 min. at 95°C) and utilized
for sequencing directly.

NS1 sequences obtained from GenBank
The NS gene was analysed both with selected number of
mallards isolates and in comparison with virus genes
from poultry and mammalian origin isolates.

The NS1 gene sequences of 100 additional influenza A
viruses, reported between year 2000 to 2007, obtained
from GenBank were used in phylogenetic studies [33].

Phylogenetic and sequence analysis
Sequences of the purified PCR products were determined
using gene specific primers and BigDye Terminator ver-
sion 3.1 chemistry (Applied Biosystems, Foster City, CA),
according to the manufacturer's instructions. Reactions
were run on a 3100 DNA analyzer (Applied Biosystems).
Sequencing was performed at least twice in each direction.
After sequencing, assembly of sequences, removal of low-
quality sequence data, nucleotide sequence translation
into protein sequence, additional multiple sequence
alignments and processing were performed with the
Bioedit software version 7.0.4.1[52] with an engine based
on the Custal W algorithm [53]. Blast homology searches

http://www.ncbi.nlm.nih.gov/blast were used to retrieve
the top fifty homologous sequences for the sequenced
gene from the GenBank database. The phylogenetic anal-
ysis, based on complete gene nucleotide sequences were
conducted using Molecular Evolutionary Genetics Analy-
sis (MEGA, version 4.0) software [54] using neighbour-
joining tree inference analysis with the Tamura-Nei γ-
model, with 2000 bootstrap replications to assign confi-
dence levels to branches.

Table 2: Influenza A virus isolates collected from Mallards in 
Northern Europe in 2005.

Viruses Accession Allele

A/Mallard/Sweden/S90355/2005/H3N8 EU518715 Allele A
A/Mallard/Sweden/S90360/2005/H6N8 EU518716 Allele A
A/Mallard/Sweden/S90391/2005/H3N8 EU518717 Allele A
A/Mallard/Sweden/S90406/2005/H3N8 EU518718 Allele A
A/Mallard/Sweden/S90407/2005/H3N8 EU518719 Allele A
A/Mallard/Sweden/S90410/2005/H3N8 EU518720 Allele A
A/Mallard/Sweden/S90412/2005/H6N8 EU518721 Allele A
A/Mallard/Sweden/S90418/2005/H6N8 EU518722 Allele B
A/Mallard/Sweden/S90419/2005/H3N8 EU518723 Allele A
A/Mallard/Sweden/S90424/2005/H3N8 EU518724 Allele B
A/Mallard/Sweden/S90432/2005/H3N8 EU518725 Allele A
A/Mallard/Sweden/S90436/2005/H5N3 EU518726 Allele B
A/Mallard/Sweden/S90443/2005/H6N8 EU518727 Allele B
A/Mallard/Sweden/S90448/2005/H3N8 EU518728 Allele A
A/Mallard/Sweden/S90457/2005/H10N4 EU518729 Allele A
A/Mallard/Sweden/S90462/2005/H3N8 EU518730 Allele A
A/Mallard/Sweden/S90465/2005/H3N8 EU518731 Allele A
A/Mallard/Sweden/S90494/2005/H12N5 EU518732 Allele A
A/Mallard/Sweden/S90514/2005/H7N7 EU518733 Allele A
A/Mallard/Sweden/S90515/2005/H9N2 EU518734 Allele A
A/Mallard/Sweden/S90586/2005/H1N1 EU518735 Allele A
A/Mallard/Sweden/S90597/2005/H7N7 EU518736 Allele A
A/Mallard/Sweden/S90598/2005/H7N7 EU518737 Allele A
A/Mallard/Sweden/S90599/2005/H7N7 EU518738 Allele A
A/Mallard/Sweden/S90738/2005/H2N3 EU518739 Allele A
A/Mallard/Sweden/S90739/2005/H11N9 EU518740 Allele A
A/Mallard/Sweden/S90748/2005/H4N6 EU518741 Allele A
A/Mallard/Sweden/S90754/2005/H4N6 EU518742 Allele A
A/Mallard/Sweden/S90768/2005/H1N1 EU518743 Allele A
A/Mallard/Sweden/S90770/2005/H4N6 EU518744 Allele A
A/Mallard/Sweden/S90772/2005/H2N3 EU518745 Allele A
A/Mallard/Sweden/S90780/2005/H1N1 EU518746 Allele A
A/Mallard/Sweden/S90781/2005/H11N9 EU518747 Allele A
A/Mallard/Sweden/S90792/2005/H11N9 EU518748 Allele A
A/Mallard/Sweden/S90795/2005/H4N6 EU518749 Allele B
A/Mallard/Sweden/S90796/2005/H4N6 EU518750 Allele B
A/Mallard/Sweden/S90800/2005/H4N3 EU518751 Allele A
A/Mallard/Sweden/S90805/2005/H2N3 EU518752 Allele A
A/Mallard/Sweden/S90807/2005/H4N6 EU518753 Allele A
A/Mallard/Sweden/S90808/2005/H2N3 EU518754 Allele A
A/Mallard/Sweden/S90812/2005/H11N9 EU518755 Allele A
A/Mallard/Sweden/S90816/2005/H4N6 EU518756 Allele A
A/Mallard/Sweden/S90818/2005/H4N6 EU518757 Allele A
A/Mallard/Sweden/S90822/2005/H4N3 EU518758 Allele A
A/Mallard/Sweden/S90825/2005/H4N3 EU518759 Allele A
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518725
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518726
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518727
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518728
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518729
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518730
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518731
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518732
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518733
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518734
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518736
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518737
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518738
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518744
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518745
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518746
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518747
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518748
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518749
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518750
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518751
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518752
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518753
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518754
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518755
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518756
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518757
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518758
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU518759
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Nucleotide sequence accession numbers
The nucleotide sequence data obtained in this study has
been submitted to the GenBank database and is available
under accession numbers; EU518715–EU518759 (Table
2).
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