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Abstract

Background: Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread
chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey
kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric
and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed
to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV
infection and transmission were examined in conjunction with antiviral and cytotoxic drugs.

Results: Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-
145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to
about 20-22 h p.i.), but the logarithmic infection phase (days 2-3 p.i.), was characterized by secondary spread to clusters of
infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells,
and both primary and secondary PRRSYV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of
the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus
to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of
the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were
efficiently suppressed by interferon-y (IFN-y), as well as the more-potent experimental antiviral agent AK-2.

Conclusion: The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small
subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-
permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral
permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important
implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus
regulation.
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Background

Porcine reproductive and respiratory syndrome virus
(PRRSV) is an arterivirus which is the etiologic agent of
PRRS, a disease of epidemic proportions in swine [1-3].
PRRSV is macrophage-tropic in vivo, where it establishes a
chronic infection, and the virus replicates in primary pig
macrophages in vitro [4-6]. PRRSV infection has been
extensively studied in MARC-145 cells, a PRRSV-permis-
sive monkey kidney cell line [7,8]. Previous studies have
established that PRRSV replication in cultured MARC-145
cells follows a complex time-course, with PRRSV antigens
becoming detectable by immunofluorescence analysis
between about 10-20 h p.i., and emergence of foci of
damage (cytopathic effect; CPE) usually over the next 3-4
days [7,8].

The fate of PRRSV-infected MARC-145 cell cultures may
include death of some cells by modified apoptosis [9] or
necrosis [10], as well as establishment of chronic PRRSV
infection (Cafruny & Rowland, unpublished). Thus, clari-
fying the behavior of PRRSV in MARC-145 cells is signifi-
cant to progress in developing anti-viral strategies.

Previous studies have suggested that initial defenses
against PRRSV are comprised of innate lung and alveolar
macrophage responses [6]; subsequently, both Th1 and
Th2 responses are induced in the respiratory tracts of
PRRSV-infected pigs [11]. PRRSV infection of pigs is asso-
ciated with activation of several cytokines including inter-
feron-y [IFN-y; [12,13]], which has PRRSV-inhibitory
activity in vitro [14]. However, the IFN-y response to
PRRSV may be inhibited or delayed by some unknown
factors during PRRSV infection or vaccination [15,16],
and ultimately a poorly-neutralizing Th2-dependent
response seems to result in many pigs. Combined, the
characteristics of these host responses may facilitate viral
persistence [15,16].

The interaction of PRRSV with host cytokines is not well
understood, but this area of study is a potential key to
understanding host mechanisms during infection.
Cytokines have not yet been exploited to control PRRSV
infection in vivo, but their potential to regulate PRRSV
infection in certain experimental systems provides a
rationale for PRRSV discovery research, and anti-PRRSV
agents may be important tools for future drug develop-
ment.

The viral dynamics of another arterivirus, lactate dehydro-
genase-elevating virus (LDV), are dominated by regula-
tion of the LDV-permissive state; only a small fraction of
mouse macrophages are susceptible to LDV infection,
leading to an avirulent chronic infection in most mice
which is maintained through development of newly-per-
missive cells [17]. Viral permissiveness is a logical but
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poorly exploited target for antiviral drugs [18-20], and the
present study utilized two antiviral agents which target
permissiveness (IFN-y and an experimental antiviral
known as AK-2), as well as cytoskeleton disruptors, to
probe checkpoints in PRRSV replication.

Initially, our goal was to better characterize the dynamics
of PRRSV replication in MARC-145 cells. Using flow
cytometry and fluorescence microscopy, we demonstrated
logarithmic growth of PRRSV in MARC-145 cells, culmi-
nating over a period of 3-4 days in the death of most cells.
Secondary spread of PRRSV infection was observed to be
via cell-to-cell transmission, as demonstrated by emer-
gence of clusters of PRRSV-infected cells in confluent
monolayers of MARC-145 cells, which preceded PRRSV-
induced CPE, were inhibited by colchicine and cytochala-
sin D, and correlated with reduced actin expression.
PRRSV replication was sensitive to IFN-y as well as AK-2,
which was a relatively more potent PRRSV inhibitor and
capable of suppressing both primary and secondary
PRRSV infection. The results of this study demonstrate
cell-to-cell spread of PRRSV in cultured MARC-145 cells,
the dependence of PRRSV infection and transmission on
an intact cytoskeleton, and highlight the role of the
PRRSV-permissive state as a critical drug target, with
important implications for future therapeutic and preven-
tive strategies.

Results

PRRSYV replication dynamics in MARC-145 cells

When PRRSV replication was assessed in MARC-145 cells
at 20-22 h p.i., only a small proportion of cells expressed
PRRSV antigen, as determined by FA (<5% in > 10 manual
experiments counting fluorescent-positive cells under the
microscope; Figure 1 by flow cytometry). However,
between 42-72 h p.i. the percent of PRRSV-positive cells
increased rapidly as determined by flow cytometric analy-
ses, up to a maximum of about 95% by 96 h p.i. (Figures
1 &2). Low permissiveness of MARC-145 cells to primary
(less than about 22 h p.i.) PRRSV infection was not due to
insufficient M.O.1., since inoculation of cultures with
about 100-times the standard dose resulted in a maxi-
mum 5.5% incidence of PRRSV-positive cells at 22 h p.i.
by flow cytometry (data not shown). Propidium iodide
staining followed by flow cytometry showed that PRRSV
inoculated cells underwent major changes in cell cycle
parameters (e.g. drop in G1 and G2; increased debris and
aggregates) between 72-96 h p.i., consistent with cell
damage and the spread of microscopic foci (CPE) typi-
cally observed throughout the cultures (data not shown).

FA analyses by confocal fluorescence microscopy, of doz-
ens of independent PRRSV-infected confluent cultures,
revealed that the primary (< 22 h p.i.) phase of PRRSV
infection was characterized by random targeting of
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PRRSV-permissive single cells (Figure 3A; see also Figure
5B for another example), representing only a few percent
of the total cells, and consistent with the quantitative
analyses by flow cytometry.

Formation of PRRSV-infected cell clusters (secondary
infection)

During the logarithmic phase of viral replication (e.g. 42-
48 h p.i.), infection was present mainly in clusters con-
taining multiple PRRSV-positive MARC-145 cells, rou-
tinely observed against a PRRSV-negative background of
confluent cells (examples indicated by arrows in Figures

3B,C,D; see also Figures 5C,D and 6B). These clusters were
never observed in the primary infection analyses,
although occasionally infected cell doublets were seen at
20-22 h p.i.. Based on >10 independent analyses, we esti-
mate that about 90% of secondary PRRSV infection of
MARC-145 cells line is characterized by formation of
infected cell clusters.

Typically, dozens of clusters were seen in each culture,
often containing a relatively central, bright-staining cell
(e.g. Figure 3B,D), suggesting that cell-to-cell spread orig-
inated from a single PRRSV-infected reservoir cell.
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Effects of AK-2 and IFN-y on PRRSYV replication in MARC-145 cells as determined by flow cytometry. A. Control
24 h p.i. with PRRSV; B. AK-2 pretreatment, 24 h p.i. with PRRSV; C. IFN-y pretreatment, 24 h p.i. with PRRSV; D. AK-2 pre-
treatment, 42 h p.i. with PRRSV; E. Control 46 h p.i. with PRRSV; F. AK-2 started at |18 h p.i. (delayed); G. IFN-y started at 18
h p.i. (delayed); H. AK-2 and IFN-y in combination, started at 18 h p.i.; | & J. IFN-y-pretreatment effects on primary (I) and sec-
ondary (J) response PRRSV antigen detection. The percentage of PRRSV antigen-positive cells is shown in the lower right quad-

rant for each graph.
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Figure 3
Confocal microscopy of FA-stained MARC-145 cells during PRRSYV infection. A. 24 h p.i. with PRRSV, 20 um.; B-C.

Secondary cluster formation (arrows) 42—46 h p.i. with PRRSV, 20 pm; D. Secondary cluster formation (arrow) 72 h p.i. with
PRRSYV, 20 um.; E. AK-2 pretreatment, 42 h p.i.; arrow indicates a single PRRSV-positive cell, 50 um; F. AK-2 post-treatment,
46 h p.i., arrows indicate several PRRSV-positive clusters, 20 um. (Length of scale bar is indicated for each panel)
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Figure 4

Confocal microscopy of FA-stained MARC-145 cells during PRRSYV infection. A. IFN-y pretreatment, 46 h p.i.,
arrows indicate several PRRSV-positive clusters, 50 um; B. AK-2 + IFN-y post-treatment, arrow indicates a single PRRSV-posi-
tive cell, 46 h p.i., 50 pm; C. AK-2 pretreatment, 42 h p.i., occasional PRRSV-positive cells (arrows), 50 um; D. IFN-y pretreat-
ment, 50 um; E. 45 h p.i. with PRRSY, 100 pum; F. Simultaneous AK-2 treatment and PRRSV infection, 45 h p.i., 100 um. (Length
of scale bar is indicated for each panel)
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Figure 5

Two-color fluorescence detection of actin (red) and PRRSYV antigen (green) in MARC-145 cells. A. Uninfected
control, 20 pm; B.18 h p.i. with PRRSV, 20 um; C. Control at 42 h p.i. with PRRSV, 50 um; D. Drug vehicle control at 42 h p.i.
with PRRSV, 50 um. E. Colchicine-treated, 5 1M, 42 h p.i. (arrow indicates PRRSV-positive doublet; see Figure 6, A, C and D

for higher magnification), 50 um; F. AK-2 treated, 250 um; (Length of scale bar is indicated for each panel)
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Figure 6

Two-color fluorescence detection of actin (red) and PRRSV antigen (green) in MARC-145 cells. A. PRRSV-
infected cell doublet (arrow) in a colchicine-treated culture; higher magnification, 50 um; B. Control — higher magnification, 50
pm; C. Arrow indicates PRRSV-infected cell doublet; green-only (compare to red + green in A), 50 um; D. Arrow indicates
position of PRRSV-infected cell doublet, red-only (compare to red + green in A), 50 pm; E. Emerging clusters at 41 h p.i., 20
pm; F. Cytochalasin D treatment (I pM) at I8 h p.i., 20 um; G. control 42 h p.i. with PRRSV (arrows = actin fibrils; 10 pm).
(Length of scale bar is indicated for each panel)
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Figure 7

Two-color fluorescence detection of actin (red) and PRRSV antigen (green) in MARC-145 cells. A-C. Control 41
h p.i.: A = actin (red) + PRRSV Ag (green); B = PRRSV Ag only; C = actin only; arrows = actin fibrils surrounding uninfected
cells, 25 pm; D (LDV antigen) & E (actin) expression in LDV-infected primary mouse macrophages; arrows indicate LDV-
infected cells; 10 um. (Length of scale bar is indicated for each panel).

Absence of cluster formation during primary infection did
not appear to be due to insufficient M.O.1. or late-stage
development of a soluble cluster-inducer during culture,
since using up to about 100-times the standard virus dose
(obtained from 45-96 h p.i. cell supernatants) did not
induce cluster formation at 20-22 h p.i. in our experimen-
tal system (data not shown), and cluster formation was
also density-dependent (see below - Figure 8B). Clusters
of PRRSV-positive cells were maintained forup to 72 h p.i.
as illustrated in Figure 3D, and images at this time were
also suggestive of maintenance of central bright-staining
cells as reservoirs of virus.

Role of the cytoskeleton in PRRSV infection

Treatment of cells with 10 uM colchicine simultaneously
with PRRSV inoculation, resulted in about 75% inhibition
of secondary PRRSV infection (e.g. 70% in control vs.
18% in colchicine-treated culture; counting >1000 total

cells at 46 h p.i.) and data representative of numerous
experiments are shown in Figure 5E to illustrate the inhib-
itory effect of colchicine on formation of PRRSV-infected
secondary clusters, which are seen spreading throughout
the controls (Figure 5C,D). Similarly, exposure of cells to
cytochalasin D under several experimental conditions (1
or 2 uM; administered either simultaneously with virus
infection or 2 h pre-infection) inhibited PRRSV-positive
cells by up to 87% (illustrated in Figure 8A between 13-
22 h p.i.; 2 h pre-treatment with 1 uM). These drug effects
were confirmed by flow cytometric analyses (about 50-
90% inhibition of PRRSV-positive cells; data not shown).

To further evaluate PRRSV transmission in wvitro, actin
expression was imaged using Alexa Fluor 594-phalloidin
(red). Similar patterns of actin expression were observed
in control uninfected (Figure 5A) and PRRSV-infected
(Figure 5B) cells, and all cells expressed some degree of
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actin when high levels of gain were applied. Cells often
displayed fibrillar actin extensions appearing along the
outer membrane as well as less-elongated extensions over
the body of the cell. Effects on the actin staining pattern
were apparent after exposure of MARC-145 cells to the
actin disruptor cytochalasin D (Figure 6F), and also to
some extent after exposure to the microtubule inhibitor
colchicine (Figure 5E) although intact actin fibrils were
still present (see also description of Figure 6A,C,D below).
Simultaneous determination of actin expression and
PRRSV infection demonstrated that relatively high expres-
sion of actin filaments correlated with PRRSV resistance,
which was a consistent finding in dozens of control- and
colchicine-treated experiments. This observation is illus-
trated in Figure 6A,C, &6D, where the arrows indicate the
location of a PRRSV-positive doublet with low actin
expression. Figures 5B and 6E also illustrate the negative
correlation between actin and PRRSV-antigen expression.
While this was not an absolute correlation (some PRRSV-
positive cells did express high levels of actin), the trend
was clear from >5 independent experiments. Actin fibrils
also appeared to partition PRRSV-positive from PRRSV-
negative cells and were often observed surrounding
PRRSV-negative cells (Figures 6G and 7A-C; and see
below). Cytochalasin D added at 18 h p.i. also suppressed
secondary PRRSV-positive cluster formation (Figure 6F;
41 h p.i.; see emerging clusters in the control for this
experiment Figure GE), demonstrating a role for the
cytoskeleton in cell-to-cell transmission.

The confluent cultures used in our experiments generally
had mean cell-to-cell distances of < 2 um, and the cells
were usually in contact or too close to measure meaning-
ful distances. Due to the wide dynamic range of the fluo-
rescence signals, this is not always apparent in the figures,
but some figures, such as 3A, 7A &7B, serve to illustrate
the background of cultured cells. By seeding plates with
different numbers of cells and then infecting these cul-
tures containing different cell densities, it was possible to
measure cell-to-cell distances in hundreds of cells per cul-
ture from the captured images, and then correlate the
mean with the number of PRRSV-positive clusters (Figure
8B). The results show that formation of PRRSV-positive
secondary clusters was density-dependent, with a direct
correlation between the cell-to-cell mean distance and the
number of clusters (Figure 8B).

In contrast to the ability of PRRSV to spread via cell-to-cell
transmission, LDV did not exhibit this property, nor was
there any dissociation of actin expression by primary cul-
tured mouse macrophages from LDV permissiveness
(probed during the replication peak, Figure 7D &7E). Also
in contrast to the response of PRRSV in MARC-145 cells,
treatment of mouse macrophages with the same concen-
trations of colchicine had little effect on LDV replication
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(+17%, -26%, and -21% LDV-positive cells relative to con-
trol in three separate experiments), although LDV infec-
tion was completely suppressed by cytochalsin D (no
LDV-positive cells detected in three separate experi-
ments).

Combined, these data show that after primary acute
PRRSV infection of a small subpopulation of PRRSV-per-
missive MARC-145 cells, the virus spreads secondarily
over the next 2-3 days to surrounding cells by cell-to-cell
transmission. These virus mechanisms are both actin- and
tubulin-dependent, demonstrating the critical role of the
cytoskeleton in the processes of PRRSV infection and
spread. In contrast, the related arterivirus LDV displays no
cell-to-cell transmission in primary culture mouse macro-
phages and primary LDV replication is not tubulin-
dependent as revealed by absence of colchicine sensitivity.

Suppression of PRRSV infection by targeting viral
permissivness with AK-2 and IFN-y

Pretreatment of MARC-145 cells for about 18 h prior to
PRRSV inoculation with AK-2 suppressed primary (Figure
2B) and secondary (Figure 2D) virus infection as assessed
by flow cytometry. The pharmacodynamics of AK-2 inhi-
bition of primary PRRSV infection were determined by
microscopic FA analyses (Figure 9), demonstrating that
the antiviral effect of AK-2 is on the PRRSV-permissive
state rather than directly on the virus, since pretreatment
was required to fully establish PRRSV resistance. No
detectable morphological effects of AK-2 on MARC-145
cells were noted in our studies, and the PI profiles of
treated cells were similar to those of control cells demon-
strating intact and metabolically viable cells at 22-46 h
p.i. (data not shown). AK-2 pretreatment completely
inhibited the formation of secondary clusters of PRRSV
infection, and only occasionally were single-positive cells
observed at 42-46 h p.i. in AK-2-pretreated MARC-145
cells (Figures 3E &4C). However, when added at 20 h p.i.,
AK-2 only partially inhibited secondary (cluster) PRRSV
spread, although there was a shift to single-cell PRRSV
infection (Figure 3F). Partial inhibition of secondary
PRRSV infection by delayed AK-2 addition was also
observed by flow cytometry, since AK-2 added at 18 h p.i.
inhibited the 42 h p.i. expression of PRRSV antigen, by
about one-half (27% vs. 58% in the drug-vehicle control;
Figure 2F). Exposure of MARC-145 cells to AK-2 simulta-
neously with PRRSV inoculation suppressed all secondary
cluster formation at 45 h p.i. (see control in Figure 4E and
AK-2-treated in Figure 4F), confirming that, even without
pretreatment, AK-2 can suppress the viral permissiveness
of target cells for secondary cell-to-cell transmission,
while leaving primary single-cell infection relatively intact
due to the time required for induction of PRRSV resist-
ance.
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Pharmacodynamics of PRRSYV inhibition by AK-2. MARC-145 cells were exposed to AK-2 at various times pre- or post-

infection. The % inhibition of PRRSV antigen detection is shown on the y-axis.
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A higher-magnification image of AK-2-treated (single-cell
infection only) is shown in Figure 5F, which also illus-
trates the often-observed appearance of actin fibrils sur-
rounding a PRRSV-positive cell, as if to separate it from
other uninfected cells as indicated above for Figure 6G.
The data also show the absence of a detectable effect of
AK-2 on actin expression.

In other studies, AK-2 pretreatment inhibited PRRSV anti-
gen expression at 20-22 h p.i. by about 90% in primary
pig macrophages, in each of two experiments. Similarly,
pretreatment of primary mouse macrophages with recom-
binant murine AK-2 inhibited LDV replication by 86% in
a single experiment. Thus, the anti-arterivirus effects of
AK-2 are expressed over a broad host cell range.

Observations were also made for the anti-PRRSV effect of
IFN-y pretreatment, which was demonstrated in previous
studies to inhibit PRRSV replication [14]. PRRSV inhibi-
tion by IFN-y was less effective than that of AK-2 under the
same experimental conditions, as seen for example in the
primary response to pretreatment measured by flow
cytometry (Figure 2CI); the effect of IFN-y pretreatment
also waned by 40 h p.i. (Figure 2J). FA analyses confirmed
the reduced efficacy of IFN-y relative to AK-2, since IFN-y
pretreatment did not completely inhibit formation of sec-
ondary PRRSV antigen-positive clusters (Figure 4A,D) and
there were higher numbers of PRRSV antigen-positive
cells in IFN-y-pretreated cultures (data not shown). Con-
sistent with these data, flow cytometry demonstrated that
IFN-y added at 18 h p.i. had a reduced effect on secondary
PRRSV infection (Figure 2G), relative to AK-2 (Figure 2F)
or the combination of AK2 and IFN-y (Figure 2H); the
inhibitory effect of post-treatment with both drugs is also
shown in Figure 2H, although little if any synergy was
observed. Thus, while IFN-y mediated significant inhibi-
tion of PRRSV infection, AK-2 appears to be a more potent
anti-PRRSV agent.

Discussion

The results of this study show that PRRSV replication in an
experimental MARC-145 cell system is composed of two
discrete phases: primary infection of a relatively small
subpopulation of PRRSV-permissive cells during about
the first 22 h p.i, followed by secondary cell-to-cell spread
over the next several days to contiguous cells, resulting in
formation of infected cell clusters and ultimately cell
death/CPE by days 3-4 p.i. Flow cytometry of PRRSV
infection of pig macrophages has previously been
reported [32], but for the present study we developed a
flow technique to quantitatively measure PRRSV antigen
expression in MARC-145 cells, a standard cell line for the
study of PRRSV infection. Combined with FA analyses by
microscopy, this methodology provides evidence that per-
missiveness to PRRSV infection is dependent on the
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mechanism of virus presentation, since the majority of
cells appear non-permissive to free virus, but become
readily infected by exposure to productively-infected cells.

These dynamics of PRRSV infection of MARC-145 cells
stand in stark contrast to those of the related and relatively
benign arterivirus LDV, since primary LDV infection of
cultured mouse macrophages peaks at about 8 h p.i. in
vitro, and soon thereafter in vivo, but there is little or no
secondary virus replication after these events [17]. A likely
explanation for this difference is the absence of cell-to-cell
(cluster) spread of LDV. The ability of PRRSV to spread
secondarily by cell-to-cell transmission may overcome an
early block to virus permissiveness, and while it is not yet
known whether this mechanism occurs in vivo, it could
potentially help PRRSV resist antibody defenses and
maintain persistence.

Our studies show that PRRSV transmission to infected cell
clusters is dependent upon cytoskeletal function, since the
microtubule inhibitor colchine [26-28] as well as the actin
inhibitor cytochalasin D [26,29-31] suppressed secondary
virus spread. Consistent with this conclusion, a number of
other viruses are dependent on the host cytoskeleton for
entry, transport, and/or egress [32-34], and actin polym-
erization may enhance cell-to-cell virus spread [35]. For
example, the actin cytoskeleton is a critical factor for
assembly and/or budding of HIV-1 [36], West Nile virus
[37], respiratory syncytial virus [31], fowlpox virus [38],
and equine infectious anemia virus [39]. Interestingly, we
observed that the pattern of actin expression correlated
with PRRSV resistance, since there was often a distinct
appearance of actin filaments surrounding PRRSV-nega-
tive cells, and a general (but not absolute) negative corre-
lation between viral antigen detection and the level of
actin expression. This finding appears to suggest that actin
provides a protective barrier to cell-to-cell transmission,
and that the actin cytoskeleton may have a dual role in
PRRSV infection. This seemingly paradoxical observation
may be analogous to that reported for transport of secre-
tory granules, which is both limited and mediated by the
actin cortex [40]. Furthermore, the actin cytoskeleton is a
potential barrier to exocytosis [41,42], and the cortical
actin network may provide a cellular barrier to SFV [43]
and HIV [29]. PRRSV infection might potentially inhibit
the cytoskeleton [44-46], to further promote virus spread
in culture. In contrast to the finding with PRRSV, there
was no difference between actin expression in LDV-per-
missive and LDV-non-permissive mouse macrophages.
Additional studies of the role of the cytoskeleton should
be of interest to PRRSV pathogenesis and the biology of
arteriviruses.

Primary infection was dependent on an intact cytoskele-

ton, and nascent cluster initiation during this time frame
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was signified by the occasional appearance of infected cell
doublets. Formation of secondary PRRSV-infected cell
clusters was a function of time p.i. and the cell-to-cell dis-
tance, and is thus a physical property of the in vitro system,
potentially analogous to tissue sites in vivo. The viral
dynamics from our studies are consistent with previous
observations demonstrating infection of a small percent-
age of cells by day 1 p.i., which increases markedly over
the next few days, culminating in peak supernant virus tit-
ers at about 72-96 h p.i. [9]. The data also suggest that 1
TCIDs, contains multiple virions since the number of cells
acutely infected can exceed the TCIDs, dose and optimal
infection is achieved at low M.O.I. (calculated by TCIDx,)
as previously reported (9,14). Future studies to clarify the
relationship of M.O.I and TCID;, might help to determine
what special characteristics facilitate primary permissive-
ness to free virus, which could include ability to bind one
or more virions as well as biochemical factors regulating
virus replication.

Our data show that the logarithmic increase in the per-
centage of PRRSV infected cells over about 2-4 days p.i. is
due to secondary cell-to-cell virus spread, from innately-
permissive (reservoir) cells to surrounding uninfected
cells. The foci of infection typically observed microscopi-
cally, in cultures of PRRSV-infected cells which begin to
degenerate by 3-4 days p.i., are thus the outcome of sec-
ondary cluster infection and direct virus infection. These
data reinforce that secondary spread to clusters in MARC-
145 cells provides an important direction for future stud-
ies of PRRSV mechanisms, since cell-to-cell virus transmis-
sion [47] might help to explain the resistance of PRRSV to
antibody-mediated control as well as PRRS pathology. In
a recent study, the replication of PRRSV in transformed
pig peripheral blood monocytes was shown to be under
genetic control and varied between 23.1-31.4% at 24 h
p.i. [48]. Thus, our results suggest the possibility that var-
iations in cell-to-cell PRRSV transmission may underlie
differences in PRRSV replication between different cell
lines in vitro.

The present results show that AK-2 is a potent inhibitor of
arterivirus (PRRSV and LDV) replication. This is the first
published report of the antiviral effects of AK-2, which
suppresses viral permissiveness by activating an antiviral
gene program (Wong;, unpublished), and which we
exploited to supplement our studies of the IFN-y response.
Pretreatment was required for full expression of the drug
effects, likely due to a lag phase for activation of the anti-
viral gene program. Both primary as well as secondary
(cluster) PRRSV infection were susceptible to the antiviral
actions of AK-2, but required optimal conditions of pre-
treatment for induction of the PRRSV-resistant state, and
secondary PRRSV infection was controlled independently
of primary infection by simultaneous or delayed drug
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exposure. IFN-y was relatively less effective under our
experimental conditions, but our IFN-y data reinforce the
conclusion that the viral-permissive state is an important
drug target in PRRSV infection. This is also the case for
LDV-mediated fetal infection [49,50] and neuropathol-
ogy [51], since suppression of LDV-permissiveness by
IFN-y reduces these viral phenomena, and the arterivi-
ruses may be good models for the role of permissiveness
in antiviral strategies. Despite sensitivity to [FN-o, PRRSV
may be a relatively weak inducer of this cytokine [52],
facilitating evasion of host defenses. Thus, development
of useful drugs which target viral permissiveness could be
a superior strategy to inhibit primary or secondary phases
of PRRSV infection, particularly if secondary cell-to-cell
spread is resistant to a conventional antibody attack, and
might also provide a superior toxicity profile, since the
induction of PRRSV resistance is fundamentally a physio-
logical process.

Conclusion

PRRSV infection has been shown to spread by cell-to-cell
transmission in a stable MARC-145 cell line. Two stages of
viral infection have been identified: primary (innate) per-
missiveness to free-virus which appears in a relatively
small percentage of cells, and secondary permissiveness to
cell-to-cell transmission which is highly expressed and
culminates in CPE. PRRSV infection of MARC-145 cells
requires an intact cytoskeleton, but actin expression may
also correlate with cell protection. Drugs such as AK-2
which induce a block in PRRSV permissiveness reveal a
potentially important drug target for suppression of pri-
mary and secondary PRRSV infection.

Methods

MARC-145 cells

A stable and mycoplasma-free MARC-145 cell line was
utilized in these experiments. Cells were cultured in
DMEM containing10% fetal bovine serum, and for virus
infections the medium was switched to MEM containing
2% horse serum. Cells for virus infections were grown to
confluency in either T-25 flasks (seeded with about 5 x
105 cells/culture) or 8-well glass slide chambers (seeded
with about 10,000 cells/culture; Lab-Tek II; Nalge Nunc
International), and for the cell density studies, serial two-
fold dilutions of the cells were used. Cells were inoculated
with PRRSV at about 1-2 days after seeding (time to
approximate doubling of the population).

Primary pig macrophages

Pig cells were collected from 4-8 week old pigs by lung
lavage with PBS [21-23]. Cells were cultured in DMEM
containing 10% FBS. After 18-24 h, non-adherent cells
were removed by washing. The remaining adherent cells
were cultured for an additional 24 h in RPMI containing
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2% horse serum, and then inoculated with PRRSV (M.O.L
approximately 0.1 TCIDs,).

PRRSY stocks

PRRSV isolate SD-23983 was passaged on MARC-145
cells, preparing high-titer (~ 10> TCIDg, per ml) virus
stocks from culture supernatants at 48-96 h p.i. PRRSV
stocks were sequentially filtered through 0.45, 0.22, and
0.10 um filters and confirmed to be mycoplasma-free by
testing on PPLO medium. As reported previously (9,14),
maximum efficiency of PRRSV infection of MARC-145
cells occurs with low M.O.I as determined by TCIDj,
probably due to the presence of multiple virions per
TCIDs,. For the present studies, M.O.I. of about 0.01
TCIDs, (slide cultures) and 0.001 TCIDs, (T-flask cul-
tures) were found to result in near-optimal efficiency of
infection, and were thus used for our studies unless other-
wise noted in Results.

Fluorescence (FA) detection of viral and cellular target
molecules

PRRSV replication was detected using FITC-labeled 1gG
anti-PRRSV  nucleocapsid  monoclonal  antibody
(SDOW17; [24]). MARC-145 cells were cultured and
inoculated with PRRSV in glass-bottom slide chambers,
fixed in 80% acetone, and incubated for 1 h at 37°C with
a 1:100 dilution of FITC-conjugated SDOW17 antibody
made in PBS containing 5% fetal bovine serum. Then the
cells were washed three times with cold PBS prior to exam-
ination under a fluorescence microscope, screening about
30-40,000 total cells to obtain the incidence of antigen-
positive cells. Confocal fluorescence microscopy was per-
formed using an Olympus BX61 microscope and
Fluoview software. Images shown in Figures 3 and 4 dis-
play the yellow scale bar captured with the original image,
along with a higher-contrast white scale line. For flow
cytometry, MARC-145 cells were cultured and PRRSV-
inoculated in T-flasks, the cells were suspended in trypsin-
versene, pelleted at 1000 rpm, resuspended in DMEM
with 2% horse serum, fixed in cold 80% acetone for 10
min, washed twice in PBS, and resuspended in 1 ml PBS
containing 60 ul of fetal bovine serum. FITC-conjugated
SDOW17 antibody was then added to the cells (2.5 ul/
ml), incubation was carried out at 37°C for 60 min, the
cells were washed with PBS, examined under a fluores-
cence microscope, and flow cytometry was performed
with a FACSVantage SE (Becton Dickenson) equipped
with a 488 Enterprise II coherent laser. Twenty thousand
events per sample were analyzed with CellQuest software.
Cell cycle analyses were also performed on the same sam-
ples, by staining with propidium iodide for 20 minutes at
room temperature and analyzing the flow cytometric
results with ModFit LT 2.0 software. PRRSV replication in
primary pig alveolar macrophages [22,23] was assessed by
FA under a fluorescent microscope. Cellular expression of
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actin was determined by incubating acetone-fixed cells
with AlexaFluor 594 phalloidin (Invitrogen) according to
the manufacturer's instructions, with the modification of
simultaneous PRRSV detection as above, such that com-
bined labels were applied for 60 min at 37°C, permitting
two-color fluorescence detection by confocal microscopy.
Data shown are representative of at least 2 replicate exper-
iments for each type of experiment described in the
Results.

LDV infection of primary mouse macrophages

Peritoneal macrophages were collected from outbred ICR
mice, seeded onto glass coverslips, and inoculated with a
standard dose of LDV-P as described previously [25]. LDV
replication was assessed in cells fixed in acetone at 8 h p.i
by IFA assay as described previously [25].

Drug treatments

Purified recombinant human interferon-y (IFN-y; 100 ug/
ml) and actokine-2 (AK-2; 50 ug/ml) were provided by
Actokine Therapeutics. AK-2 is a cytokine-based experi-
mental antiviral being developed by Actokine Therapeu-
tics, which consists of recombinant normal human
proteins comprising part of the mammalian cell response
to virus infection (Wong; unpublished). Soluble stocks of
these agents were stored at 4°C in fetal bovine serum,
which also served as the drug-vehicle control for the
experiments, and were diluted 1:50 or 1:100 in medium
to yield concentrations in cell cultures of about 1-2 ug/
ml. As noted for individual experiments, cells were
exposed to the drug or control treatments prior to PRRSV
infection (pretreatment), during the course of PRRSV
infection (delayed or post-treatment), or simultaneously
with PRRSV infection. Based on previous studies of in vitro
efficacy, the microtubule inhibitor colchicine which binds
to tubulin (Sigma; 5 or 10 uM; 26-28) or the microfila-
ment disruptor cytochalasin D which depolymerizes actin
(Sigma; 1 or 2 uM; [26,29-31]) were added to cell cultures
at the times indicated.
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