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Abstract
The discovery and genome analysis of Acanthamoeba polyphaga Mimivirus, the largest known DNA
virus, challenged much of the accepted dogma regarding viruses. Its particle size (>400 nm), genome
length (1.2 million bp) and huge gene repertoire (911 protein coding genes) all contribute to blur
the established boundaries between viruses and the smallest parasitic cellular organisms.
Phylogenetic analyses also suggested that the Mimivirus lineage could have emerged prior to the
individualization of cellular organisms from the three established domains, triggering a debate that
can only be resolved by generating and analyzing more data. The next step is then to seek some
evidence that Mimivirus is not the only representative of its kind and determine where to look for
new Mimiviridae. An exhaustive similarity search of all Mimivirus predicted proteins against all
publicly available sequences identified many of their closest homologues among the Sargasso Sea
environmental sequences. Subsequent phylogenetic analyses suggested that unknown large viruses
evolutionarily closer to Mimivirus than to any presently characterized species exist in abundance
in the Sargasso Sea. Their isolation and genome sequencing could prove invaluable in understanding
the origin and diversity of large DNA viruses, and shed some light on the role they eventually played
in the emergence of eukaryotes.

Introduction
The discovery and genome sequence analysis of Mimivi-
rus [1,2], the largest of the Nucleo-cytoplasmic Large DNA
Viruses (NCLDV), challenged much of the accepted
dogma regarding viruses. Its particle size (>400 nm),
genome length (1.2 million bp) and extensive gene reper-
toire (911 protein coding genes) all contribute to blur the
established boundaries between viruses and the smallest
parasitic cellular organisms such as Mycoplasma or
Nanoarchea [2]. In the universal tree of life, the Mimivirus
lineage appears to define a new branch, predating the
emergence of all established eukaryotic kingdoms [2].
Although this result is compatible with various hypothe-

ses implicating ancestral DNA viruses in the emergence of
eukaryotes [3-5], it requires confirmation from additional
data. An urgent task is thus to convince ourselves that
Mimivirus is not the sole representative of its kind (i.e. a
viral counterpart to the platypus) and to provide some
rational guidance as to where to begin the search for even-
tual new Mimiviridae.

Mimivirus was serendipitously discovered within Acan-
thamoeba polyphaga, a free-living ubiquitous amoeba, prev-
alent in aquatic environments. Phylogenetic analysis of
the most conserved genes common to all nucleo-cytoplas-
mic large double-stranded DNA viruses (NCLDV) [6]
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positions Mimivirus as an independent lineage, roughly
equidistant from the Phycodnaviridae (algal viruses) and
Iridoviridae (predominantly fish viruses). Given the eco-
logical affinity of these virus families for the marine envi-
ronment, we have examined the sequence data set
gathered through environmental microbial DNA sam-

pling in the Sargasso Sea [7] to look for possible Mimivi-
rus relatives.

Results
By comparing Mimivirus ORFs to the Sargasso Sea
sequence data set and to all other publicly available

Table 1: Matching Status of Mimivirus core genes (type 1 to 4).

ORF# Definition Best score in nr Best score in 
DNA viruses

Best score in 
Sargasso Sea

Status Reciprocal Best 
match

L206 Helicase III / VV D5 167-virus 167 214 Best ENV YES
R322 DNA pol (B family) extein 207 167 238 Best ENV YES
L437 A32 virion packaging ATPase 169-virus 169 191 Best ENV YES
L396 VV A18 helicase 200-virus 200 187 -
L425 Capsid protein 119-virus 117 142 Best ENV complex
R439 Capsid protein 164-virus 159 173 Best ENV complex
R441 Capsid protein 137-virus 147 209 Best ENV complex
R596 E10R-Thiol oxidoreductase 104-virus 105 119 Best ENV YES
R350 VV D6R – helicase 170-virus 170 102 -
R400 F10L – prot. Kinase 86-virus 86 58 -
R450 A1L-transcr factor 52-virus 47 65 Best ENV
R339 TFII-transcr. factor 62 42 66 Best ENV
L524 MuT-like NTP PP-hydrolase 40 38 39 -
L323 Myristoylated virion prot. A 43 42 40 -
R493 PCNA 92 87 154 Best ENV YES
L312 Small Ribonucl. reduct 341 338 310 -
R313 Large Ribonucl. reduct 766 741 740 -
R429 PBCV1-A494R-like 152-virus 152 216 Best ENV YES
L37 BroA, KilA-N 123-virus 124 65 -

R382 mRNA-capping enz. 86 78 166 Best ENV YES
L244 RNA pol. sub 2 (Rbp2) 727 416 508 -
R501 RNA pol. sub.1 (Rpb1) 805 415 520 -
R195 ESV128-Glutaredoxin 50 39 49 -
R622 S/Y phosphatase 75 73 65 -
R311 CIV193R BIR domain 68 44 51 -
L65 Virion memb. prot 44 44 - -

R480 Topoisomerase II 902 717 367 -
L221 Topoisomerase I bacterial 528 35 516 -
R194 Topoisomerase I pox-like 188 100 145 -
L364 SW1/SNF2 helicase 70-virus 70 72 Best ENV YES
L4 N1R/P28 DNA binding prot 123-virus 124 72 -

L540 Pre-mRNA helicase – splicing 256 136 214 -
L235 RNA pol subunit5 69 38 50 -
R354 Lambda-type exonuclease 69-virus 69 154 Best ENV YES
R343 RNAse III 129 112 131 Best ENV YES
R141 GDP mannose 4,6-dehydratase 294 68 252 -
L258 Thymidine kinase 151 140 124 -
L271 Ankyrin repeats (66 paralogs) 179 152 192 Best ENV complex
R325 Metal-dependent hydrolase 69-virus 69 105 Best ENV YES
L477 Cathepsin B 226 43 47 -
R497 Thymidylate synthase 278 242 217 -
R449 Uncharacterized prot. 69-virus 69 129 Best ENV YES
R303 NAD-dependent DNA ligase 270-virus 270 228 -
L805 MACRO domain 36 33 - -
R571 Patatin-like phospholipase 105 80 122 Best ENV YES
R301 Uncharacterized prot. 48-virus 48 65 Best ENV YES
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sequences, 138 (15%) of the 911 Mimivirus ORFs were
found to exhibit their closest match (Blastp E-values rang-
ing from 10-74 to 10-4 [8]) to environmental sequences
(see Additional file 1). Even before the discovery of Mim-
ivirus, increasingly complex large double-stranded DNA
viruses have been isolated, in particular from unicellular
algae. The genome analysis of these Phycodnaviruses
revealed a variety of genes encoding enzymes from totally
unexpected metabolic pathways [9]. Mimivirus added
more unexpected genes (such as translation system com-
ponents [2]) to this list. As the gene repertoire of these
large viruses and the gene content of cellular organisms
become increasingly comparable, we have to be cautious
in the interpretation of environmental/metagenomics
sequence data. To focus our study on environmental

organisms most likely to be viruses, we limited further
analyses to Mimivirus homologues member of the
NCLDV core gene sets [2,6]. These core genes are subdi-
vided into four classes from the most (class I) to least
(class IV) evolutionarily conserved [6]. Seven of 10 Mim-
ivirus Class I core genes (L206 to R400) have their closest
homologues in the Sargasso Sea data. This is also the case
for 3 of 7 class II (R450-R313)core genes, 3 of the 13 class
III core genes (R429-L364) and 7 of the 16 Class IV core
genes (L4-R301) (Table 1). Overall, 43% of Mimivirus
core genes have their closest homologues in the Sargasso
Sea data set. To further assess the viral nature of these
unknown microbes, we studied the phylogenetic relation-
ships between the corresponding Mimivirus proteins,
their Sargasso Sea homologues, and the closest homo-

Phylogenetic evidence of uncharacterized Mimivirus relativesFigure 1
Phylogenetic evidence of uncharacterized Mimivirus relatives. (a) Neighbor-joining (NJ) clustering (see Materials and 
Methods) of Mimivirus R449 ORF with its best matching (≈35% identical residues) environmental homologues (noted 
Sargasso1 to Sargasso6 according to their decreasing similarity) and closest viral orthologues (28% identical). (b) NJ clustering 
of Mimivirus R429 ORF with its best matching (≈50% identical) environmental homologues (noted Sargasso1 to Sargasso5) and 
closest viral orthologues (35% identical). (c) NJ clustering of Mimivirus putative virion packaging ATPase L437 with its best 
matching (≈45% identity) environmental homologues (Sargasso1 and Sargasso2) and closest viral orthologues (34% identical). 
Abbreviations: Phyco: Phycodnavirus; PBCV: Paramecium bursaria chlorella virus 1; EsV: Ectocarpus siliculosus virus; FsV: Feld-
mannia sp. virus; HaV: Heterosigma akashiwo virus; Irido: Iridovirus; LCDV: Lymphocystis disease virus 1; Frog: Frog virus 3; 
Amby: Ambystoma tigrinum stebbensi virus; Rana: Rana tigrina ranavirus; Chilo: Chilo iridescent virus. Bootstrap values larger than 
50% are shown. Branches with lower values were condensed.
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logues in other NCLDVs (see Materials and Methods). Fig-
ure 1a–c exhibits three independent phylogenic trees
computed using the MEGA3 software [10] for Mimivirus
ORFs R449 (unknown function), R429 (unknown func-
tion) and L437 (putative virion packaging ATPase). Figure
1a shows that the closest environmental R449 homo-
logues cluster with Mimivirus separately from the known
phycodnaviruses, while other Sargasso Sea homologues
cluster in a way suggesting the presence of a new clade dis-
tinct from Phycodnaviridae. The tree based on R429 and
L437 (Fig. 1b,c) similarly suggests the presence of close
Mimivirus relatives not belonging to the Phycodnaviridae
or Iridoviridae clades.

Another piece of evidence substantiating the existence of
an unknown Mimivirus relative in the Sargasso Sea is the
discovery of contigs built from the data that contain mul-
tiple genes with a high degree of similarity to Mimivirus
genes. A spectacular case is illustrated in Figure 2. Here, a
4.5 kb scaffold (See Materials and Method) exhibits 4
putative ORFs. When compared to the whole nr database,
each of them has as a best match 4 distinct Mimivirus
ORFs: thiol oxidoreductase R368 (29% identical, E-value
< 10-9), NTPase-like L377 (25% identical, E-value < 10-20),
unknown function L375 (34% identical, E-value < 10-30),
and DNA repair enzyme L687 (40% identical, E-value <
10-62). Moreover, the gene order is conserved for three of
them (R368, L375, L377). Such colinearity is rarely
observed between viral genomes except for members of
the same family. Unfortunately, the sequences of these
genes are not conserved enough to allow the construction
of informative phylogenic trees that would include other
NCLDV orthologues.

As of today, genes encoding capsid proteins are among the
most unequivocal genes of viral origin. Except for cases of
integrated proviral genomes, no cellular homologues of
viral capsid proteins have ever been found. During our
study, the closest homologues of Mimivirus capsid pro-
teins were found to be capsid protein genes of environ-
mental origin. For example, Mimivirus capsid protein
(R441) was found to be 48.5% identical to an unknown
environmental sequence, when it is only 36.2% identical
to the major capsid protein Vp49 of Chlorella virus CVG-
1, its best match among known viruses (Figure 3). As the
environmental capsid protein sequence also shares 44.5%
identical residues with the CVG-1 Vp49, the correspond-
ing uncharacterized virus appears to lie at an equal evolu-
tionary distance from the Mimiviridae and the
Phycodnaviridae.

Discussion
Our results predict that DNA viruses of 0.1 to 0.8 microns
in size exist in the Sargasso Sea that are evolutionarily
closer to Mimivirus than to any presently characterized
species. These viruses are abundant enough to have been
collected by environmental sampling. It must be noticed
that a similar approach attempting to find relatives to two
other unique NCLDVs, the African swine fever virus (the
unique member of Asfarviridae) and the White spot
syndrome virus, a major shrimp pathogen (the sole
Nimaviridae), failed to provide convincing results (Clav-
erie, data not shown). The identification of numerous
Mimivirus-like sequences in the Sargasso Sea data is thus
not simply the result of a large number of sequences been
compared, but truly suggests that viruses from this clade
are specifically abundant in the sampled marine environ-
ment. It is actually expected that many novel viruses will
be encountered in natural waters in which they constitute
the most abundant microrganisms [11,12]. There might
be as many as 10 billion virus particles per litre of ocean
surface waters [13]. Interestingly, the specialized literature
abounds of descriptions of large virus-like particle associ-
ated with algae [e.g. [14-16]], or various marine protists
[17,18]. With the exception of Phycodnaviruses [19-21],
the genomic characterization of these viruses has not been
attempted. Guided by the results presented here, their iso-
lation and genome sequencing could prove invaluable in
understanding the diversity of DNA viruses and the role
they eventually played in the evolution of eukaryotes.

Materials and methods
The protocols used to collect Sargasso Sea environmental
micro-organisms and generate DNA sequences from these
samples has been described elsewhere [7]). The data ana-
lyzed here correspond to "bacteria-sized" organisms that
have passed through 3 µm filters and been retained by 0.8
µm to 0.1 µm filters. Mimivirus-like particles (0.8–0.4
µm) belong in this range.

Organization of four Mimivirus ORF best matching homo-logues in a 4.5 kb environmental sequence scaffold (approxi-mately to scale)Figure 2
Organization of four Mimivirus ORF best matching 
homologues in a 4.5 kb environmental sequence scaf-
fold (approximately to scale). The three colinear Mimivi-
rus homologues are in green. Unmatched ORF extremities 
are indicated by dots. The two diagonal lines indicate where 
the two contigs are joined on the scaffold.

R368

L377L375
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Database similarity searches were performed using the
Blast suite of programs [8] (default options) as imple-
mented on the http://www.giantvirus.org web server and
as implemented at The Institute for Genomic Research.
Final similarity searches were performed on the non-
redundant peptide sequence databases (nr) and environ-
mental data (env-nr) downloaded from the National
Institute for Biotechnology Information ftp server ftp://
ftp.ncbi.nlm.nih.gov/blast/db/ on March 14, 2005. To
avoid missing potential better matches with annotated
virus ORFs, all Mimivirus ORFs exhibiting a best match
(blosum62 scoring scheme) in env-nr were also searched
against all DNA virus genomes using TblastN (peptide
query against translated nucleotide sequence). The com-
prehensive list of Mimivirus ORFs exhibiting a best match
in the env-nr database is given in Additional file: 1.
Phylogenetic analyses were conducted using MEGA ver-
sion 3.0 [10] (option: Neighbor joining, 250 pseudo-rep-

licates, and gaps handled by pairwise deletion). Tree
branches were condensed for bootstrap values <50%.

Only Mimivirus ORFs with best matching homologues in
DNA viruses and belonging to the nucleo-cytoplasmic
large DNA virus core gene set (2, 6) were analyzed in
detail. These ORFs (and matching status) are listed in
Table 1. Phylogenetic analyses were limited to viral homo-
logues and environmental sequences exhibiting a recipro-
cal best match relationship with the corresponding
Mimivirus ORF (putative orthologues) (YES in the
rightmost column). The three cases (red lines in Table 1)
exhibiting the best bootstrap values are shown in Figure 1.
Cases of complex relationships, for instance due to the
presence of many paralogues (e.g. capsid proteins), are
also indicated. These cases of non-reciprocal best matches
are frequent (i.e. the closest homologue of a Mimivirus
ORFs being an environmental sequence, but the latter

Partial 3-way alignment (N-terminus region) of Mimivirus capsid protein (R441) with it best matching homologues in the NR and Environmental sequence databasesFigure 3
Partial 3-way alignment (N-terminus region) of Mimivirus capsid protein (R441) with it best matching homo-
logues in the NR and Environmental sequence databases. The Mimivirus R441 protein shares 83/229 (36.2%) identical 
residues (colored in red or blue) with the major capsid protein Vp49 of Chlorella virus CVG-1 and 111/229 (48.5%) identical 
residues (indicated in red or green) with the N-terminus of a capsid protein from an unknown large virus sampled from the 
Sargasso Sea (Accession: EAD00518). On the other hand, the CVG-1 Vp49 and the Sargasso Sea sequence share 44.5% identi-
cal residues. By comparison, the CVG-1 Vp49 protein share 72% of identical residue with PBCV-1 Vp54, its best matching 
homologue among known phycodnaviruses.

CVG1-vp49       MAGGLSQLVAYGAQDVYLTGNPQITFFKTVYRRYTNFAVESIQQTINGSV 
MIMI-R441 MAGGIIQLVAYGIQDLYLTGDPQITFFKVVYRRHTNFSVESIIQNFTSVP
Sargasso1       MGGGLMQLVAYGAQDIYLTGNPQITFFKVVYRRHTNFSVESIKQTFNGTA 

CVG1-vp49       GFGNKVSTQISRNGDLITDIVVEFVLTKQGPTFY----------------
MIMI-R441 DFGSTVSCTLSKSGDMINKIYVYIELPSVNVFYDESG------NLDKFKK
Sargasso1       DFGKKVSCTISRNGDLVHRIFLQTTLPAQKYDYASAGGGTVTYNSNSNMK 

CVG1-vp49 ---------CAEQLLQDVELEIGGQRIDKHYADWFRMYDSLFRMD-----
MIMI-R441 ---FAWVRNIGYALIKDVSIEIGGKLIDKQYGEWMYIWSQVTNKS--DEG
Sargasso1       DGILRWINWVGEKLINYAEIEIGGQRIDKHYGEWLHIWGQLTNTASHDEG 

CVG1-vp49 --NDRQNYRRM-----TDFVNDEPATAVKRFYVPLIFFFNQTPGLALPLI
MIMI-R441       LDKMIGNIPLL-----YDFSNGKP---KYSLYVPLEFWFCRNSGLSLPLV
Sargasso1       YQRMVGNIPALTTNVSTNTVAGAAEIKAQDLYVPLQFWFCRNPGLALPLI 

CVG1-vp49 ALQYHEVKLYFTLAST--------------VNGITAVEGGAAVTAVAP
MIMI-R441 ALSSSEVKITISFRSAEECYRIGPTHSIEIMEDIVPFEFGDYIEQKIG
Sargasso1       ALQYHEVKINIEFEEL--------------KNLFIAQEKTTAATAVTN 
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sequence exhibiting a better match with a different ORF in
the nr database).

Two environmental sampling contigs – contig
IBEA_CTG_1979672 (AACY01022731, GI:44566181)
and contig IBEA_CTG_1979673 (AACY01022732,
GI:44566179) – are linked in a 4,465 bp scaffold (scaffold
IBEA_SCF = 2208413) found to contain four ORFs with
strong matches to Mimivirus peptides (R368, L377, L375,
and L687). The three colinear ORFs (R368, L377, L375)
are found on one contig while the orthologue to Mimivi-
rus ORF L687 is found in the second contig. It is conceiv-
able that the lack of colinearity for this fourth ORF is due
to an assembly error.

Additional material
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