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Abstract

Background: Replication of the vaccinia virus genome occurs in cytoplasmic factory areas and is
dependent on the virus-encoded DNA polymerase and at least four additional viral proteins. DNA
synthesis appears to start near the ends of the genome, but specific origin sequences have not been
defined. Surprisingly, transfected circular DNA lacking specific viral sequences is also replicated in
poxvirus-infected cells. Origin-independent plasmid replication depends on the viral DNA
polymerase, but neither the number of additional viral proteins nor the site of replication has been
determined.

Results: Using a novel real-time polymerase chain reaction assay, we detected a >400-fold
increase in newly replicated plasmid in cells infected with vaccinia virus. Studies with conditional
lethal mutants of vaccinia virus indicated that each of the five proteins known to be required for
viral genome replication was also required for plasmid replication. The intracellular site of
replication was determined using a plasmid containing 256 repeats of the Escherichia coli lac
operator and staining with an E. coli lac repressor-maltose binding fusion protein followed by an
antibody to the maltose binding protein. The lac operator plasmid was localized in cytoplasmic viral
factories delineated by DNA staining and binding of antibody to the viral uracil DNA glycosylase,
an essential replication protein. In addition, replication of the lac operator plasmid was visualized
continuously in living cells infected with a recombinant vaccinia virus that expresses the lac
repressor fused to enhanced green fluorescent protein. Discrete cytoplasmic fluorescence was
detected in cytoplasmic juxtanuclear sites at 6 h after infection and the area and intensity of
fluorescence increased over the next several hours.

Conclusion: Replication of a circular plasmid lacking specific poxvirus DNA sequences mimics
viral genome replication by occurring in cytoplasmic viral factories and requiring all five known viral
replication proteins. Therefore, small plasmids may be used as surrogates for the large poxvirus
genome to study trans-acting factors and mechanism of viral DNA replication.
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Background

Vaccinia virus (VAC), the prototype for the family Poxviri-
dae, is a large double-stranded DNA virus that encodes
numerous enzymes and factors needed for RNA and DNA
synthesis, enabling it to replicate in the cytoplasm of
infected cells [1]. More than 20 viral proteins including a
multi-subunit RNA polymerase and stage specific tran-
scription factors are involved in viral RNA synthesis [2].
Genetic and biochemical studies identified five viral pro-
teins essential for viral DNA replication, namely the viral
DNA polymerase [3-8], polymerase processivity factor
[9,10], DNA-independent nucleoside triphosphatase [11-
13], serine/threonine protein kinase [14-17], and uracil
DNA glycosylase [18-21]. In addition, the virus encoded
Holliday junction endonuclease is required for the resolu-
tion of DNA concatemers into unit-length genomes [22].
Other proteins that may contribute to viral DNA replica-
tion, include DNA type I topoisomerase, single stranded
DNA binding protein, DNA ligase, thymidine kinase,
thymidylate kinase, ribonucleotide reductase and dUT-
Pase (reviewed in reference [1]).

The VAC genome consists of a 192 kbp linear duplex DNA
with covalently closed hairpin termini [23,24]. A model
for poxvirus DNA replication begins with the introduction
of a nick near one or both ends of the hairpin termini, fol-
lowed by polymerization of nucleotides at the free 3'-OH
end, strand displacement and concatemer resolution
[25,26]. Nicking is supported by changes in the sedimen-
tation of the parental DNA following infection, and labe-
ling studies suggested that replication begins near the
ends of the genome [27,28]. Efforts to locate a specific ori-
gin of replication in the VAC genome led to the surprising
conclusion that any circular DNA replicated as head-to-
tail tandem arrays in cells infected with VAC [29,30]. Ori-
gin-independent plasmid replication was also shown to
occur in the cytoplasm of cells infected with other poxvi-
ruses including Shope fibroma virus and myxoma virus as
well as with African swine fever virus [30,31]. In contrast,
studies with linear minichromosomes containing hairpin
termini provided evidence for cis-acting elements in VAC
DNA replication [32]. It was considered that plasmid rep-
lication might be initiating non-specifically, perhaps at
random nicks in DNA.

Although transfected plasmids were used to study the res-
olution of poxvirus concatemer junctions [33-37], the sys-
tem has not been exploited for studies of viral DNA
synthesis. The goal of the present study was to determine
how closely plasmid replication mimics viral genome rep-
lication. For example, if some viral proteins are needed for
initiating DNA synthesis at specific origins near the ends
of the viral genome, they might not be required for plas-
mid replication. In addition, we were curious as to
whether synthesis of plasmid DNA occurs diffusely in the
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cytoplasm, since the transfected DNA enters cells inde-
pendently of virus and contains no viral targeting
sequences. Contrary to these speculations, we found that
each of the five viral proteins known to be required for
viral genome replication was needed for origin-independ-
ent replication of plasmids. Moreover, both plasmid and
genome replication occurred in discrete viral cytoplasmic
factory areas. Thus, small circular plasmids are useful sur-
rogates for the large viral genome in studying the mecha-
nism of poxvirus DNA replication and the trans-acting
factors required.

Results

Determination of plasmid replication by real-time PCR
The replication of plasmids and linear minichromo-
somes, which were transfected into cells infected with
VAC, was previously demonstrated by autoradiography
following hybridization of 32P-labeled probes to Southern
blots [29,30,32]. Methylated input DNA prepared in E.
coli was distinguished from unmethylated DNA replicated
in infected mammalian cells by digestion with Dpnl and
Mbol, which cleave G®ATC and GATC sequences, respec-
tively. DeLange and McFadden [30] had reported an 8-
fold net increase of a circular plasmid lacking viral
sequences in rabbit cells infected with myxoma virus,
whereas Du and Traktman [32] had seen a 2-fold net
increase of a linear minichromosome containing VAC
genome termini in mouse L cells infected with VAC, but a
much lower increase of a circular plasmid lacking viral
sequences. We compared the replication of three types of
DNA (super coiled circular, linear, and linear minichro-
mosome) in African green monkey BS-C-1 cells, which
has become a standard cell line for VAC research. South-
ern blot analysis of the Dpnl-digestion products of DNA
isolated from cells infected with VAC and transfected with
super coiled pUC13 revealed a prominent high molecular
weight band migrating above the 23.1-kbp marker, pre-
sumably representing head-to-tail concatemers (Fig. 1A).
A prominent Dpnl-resistant band, migrating between the
4.4 and 6.6 kbp markers, was obtained by digestion of
DNA from infected BS-C-1 cells transfected with the cova-
lently closed minichromosome. However, only small
digestion products were obtained upon Dpnl-treatment of
DNA from cells transfected with linear pUC13. In addi-
tion, Dpnl-resistant bands were not detected by digestion
of DNA from mock-infected cells transfected with a linear
minichromosome or 10 times more super coiled plasmid
(Fig. 1A). This experiment confirmed the need for VAC
infection and either a circular plasmid or a linear mini-
chromosome template for DNA replication. Moreover, we
did not see greater replication of the linear minichromo-
some than the circular plasmid as had been reported (32).

To improve quantification of plasmid replication and to

establish a non-radioactive method for rapid analysis of
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Replication of transfected DNA in VAC-infected cells. (A) Southern blot of replicated circular plasmid and linear minichromo-
some. B-SC-| cells were infected with VAC and | h later transfected with equal molar amounts (20 fmol) of super coiled
pUCI 3 (sc pUC), pUCI 3 linearized by digestion with EcoRI (lin pUC), linear minichromosome containing pUCI3 and 1.3 kbp
viral telomeric sequences (lin mc). As a control, cells were mock infected and transfected with 20 fmol of linear minichromo-
some or |0 times that amount (200 fmol) of super coiled pUCI 3. At 24 h after infection or mock infection, cells were col-
lected and total DNA extracted. Total DNA (2 ng) was digested with Dpnl subjected to agarose gel electrophoresis and
analyzed by Southern blot hybridization using a 32P-labeled pUCI3 probe. Samples (0.5 fmol of lin pUC, 0.5 fmol of lin mc, |
fmol sc pUC) of the DNA used for transfections (input DNA) were also analyzed. The positions of marker DNA (kbp) are
shown on the left. (B) Real-time PCR of replicated plasmid. BS-C-| cells were transfected with the plasmid p716 at 24 h prior
to infection with VAC. At indicated hours post infection (hpi), cells were harvested and total DNA extracted. DNA was
untreated or treated with Dpnl or Mbol and analyzed by real-time PCR using primers specific to plasmid DNA. (C) Quantifica-
tion of Southern blot. DNA described in panel (B) was digested with EcoRI prior to Mbol or Dpnl treatment. The digested
DNA samples were subjected to gel electrophoresis, transferred to a Nylon membrane, hybridized to a 32P-labeled p716
probe, and the radioactivity quantified with a phospholmager.

multiple samples, we devised a real-time PCR assay using
primers 152 bp apart that flanked two Dpnl/Mbol sites in

replicated DNA increased with time, suggesting that entry
of DNA into the cell occurred continuously even though

a circular plasmid lacking VAC DNA sequences. In initial
experiments, we followed the protocol of previous studies
by transfecting the plasmid after infection [29,30]. How-
ever, Mbol-resistant input DNA as well as Dpnl-resistant

the medium was changed at 4 h (data not shown). To
avoid this problem in subsequent experiments, DNA was
transfected 24 h prior to infection. Total DNA was isolated
at various times, digested with Dpnl, Mbol, or left uncut
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and subjected to real-time PCR. Under these conditions,
Mbol-resistant DNA did not increase, whereas Dpnl-resist-
ant DNA increased ~18 fold between 3 and 6 h and ~400
fold by 24 h (Fig. 1B). Moreover, total DNA increased ~10
fold. Increased Dpnl-resistant DNA was not detected in
mock-infected cells (data not shown).

Previous Southern blotting studies had indicated that
plasmid replication paralleled genome replication [30].
We compared the kinetics of plasmid replication obtained
by real-time PCR with Southern blotting. For the latter
analysis, total DNA was first digested with EcoRI to resolve
head-to-tail concatemers into linear units followed by
digestion with Mbol or Dpnl. After electrophoresis, the
DNA was transferred to a nylon membrane, hybridized to
a 32P-labeled plasmid probe, and the amount of DNA
quantified using a Phosphorlmager. The Dpnl-resistant
and total DNA increased with time, whereas the Mbol-
resistant DNA did not (Fig. 1C). The Southern blot analy-
sis suggested that the amount of replicated plasmid pla-
teaued after 12 h, whereas it continued to increase slightly
as determined by PCR (Fig. 1B), suggesting that the latter
method has the greater dynamic range as well as being
more convenient.

Determination of the trans-acting factors required for
plasmid replication

The dependence of VAC genome replication on expres-
sion of five viral early proteins was previously determined
by analysis of conditional lethal mutants. Because of the
absence of cis-acting VAC DNA sequences, we considered
that plasmid replication might only mimic DNA elonga-
tion steps and therefore require only a subset of viral pro-
teins. To test this hypothesis, the plasmid was transfected
into BS-C-40 cells (a derivative of BS-C-1 cells that have
been passaged at 40°C), which were subsequently
infected with a VAC ts mutant under permissive and non-
permissive conditions. Plasmid replication was quantified
by real-time PCR. Wild type VAC strain WR and Cts16,
which has a mutation in the I7 gene encoding a protease
required for VAC morphogenesis but not DNA synthesis
[38], served as positive controls. Plasmid DNA synthesis
was higher at 39.5°C than 31°C for both WR and Cts16
(Fig. 2A). In contrast, the reverse was true for each muta-
tion known to impair DNA replication at the non-permis-
sive temperature. Indeed, plasmid replication was barely
detected at 39.5°C in cells infected with Cts24, Cts42, and
ts185, which have defects in the D5 nucleoside triphos-
phatase, the E9 DNA polymerase, and the A20 processiv-
ity factor (Fig. 2A). The reduction in plasmid replication
was less complete at 39.5°C in cells infected with Cts25,
which has a defect in the B1 serine/threonine protein
kinase, which is consistent with previous observations
that showed viral genome accumulation was only moder-
ately reduced in BS-C-40 cells at non-permissive tempera-
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tures [15]. The relatively low replication of plasmid at
31°C in cells infected with Cts42 and ts185 (Fig. 2A) sug-
gested that the mutated DNA polymerase and processivity
factor were still somewhat defective even under "permis-
sive" conditions.

Previous studies had shown that expression of VAC uracil
DNA glycosylase was required for genome replication
[39]. To determine whether this protein is required for
plasmid replication, we used mutant virus vD4-ZG, in
which the uracil DNA glycosylase gene was deleted [39],
and rabbit cell lines lacking (RK-13) or stably expressing
(RKD4R) VAC uracil DNA glycosylase [39]. We found that
plasmid DNA replication was only detected in the cell line
stably expressing the viral uracil DNA glycosylase (Fig.
2B), indicating a requirement for this protein as well as
each of the other four factors.

Transfected plasmid DNA accumulates in viral factories
VAC genomic DNA accumulates in specialized cytoplas-
mic factory areas near the nucleus. However, the intra-
cytoplasmic location of plasmid replication had not been
determined. We needed a specific tag to distinguish viral
and plasmid DNA in order to locate the latter in infected
cells. Several studies have used multimerized E. coli lac
operator (lacO) binding sites and lac repressor (lacl)
fusion protein interactions to examine chromatin organi-
zation and chromosome dynamics in living cells [40-43].
To apply this strategy, we transfected cells with a 10.5 kbp
plasmid pSV2-dhfr-8.32 [44] containing 256 lacO repeats
and infected the cells 24 h later. Initial experiments con-
firmed that plasmid replication occurred following VAC
infection as described above for smaller plasmids (data
not shown). Next we transfected cells with pSV2-dhft-
8.32 and then infected them with vV5D4, a recombinant
VAC that expresses V5 epitope-tagged uracil DNA glycosy-
lase. At 12 h after infection, DNA in the nucleus and cyto-
plasmic factories was visualized by Hoechst staining (Fig.
3). The plasmid appeared to be excluded from the nucleus
and present exclusively in cytoplasmic viral factories as
determined by staining the cells with a maltose binding
protein (MBP)-lacl fusion protein and an antibody to
MBP (Fig. 3). In addition, the plasmid sites contained the
VAC DNA glycosylase, as shown by staining with anti-
body to the V5 tag of the latter protein (Fig. 3). No MBP
staining was detected when a control plasmid lacking lacO
sequences was transfected (data not shown).

Visualization of replicating plasmid DNA in live cells

In the above experiment, the cells were fixed and stained
in order to visualize the plasmid DNA. We considered that
these steps might be avoided by expressing a GFP-lacl
fusion protein with a nuclear localization signal (NLS).
The GFP tag allowed visualization of lacl by fluorescence
microscopy while the NLS served to translocate GFP-lacl,
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Viral protein requirements for plasmid replication. (A) Conditional lethal ts mutants. BS-C-40 cells were transfected with p716
and 24 h later were mock infected or infected with 3 PFU per cell of wild type VAC (WR) or ts mutant Cts24, Cts25, ts185, or
Cts| 6 at permissive (31°C) and non-permissive (39.5°C) temperatures for 24 h. DNA was then isolated, digested with Dpnl
and quantified by real-time PCR. (B) D4R deletion mutant. RKD4R and RK-13 cells were transfected with p716 and 24 h later
were infected with 3 PFU of vD4-ZG. At 24 after infection, DNA was isolated, digested with Dpnl, and the amount of DNA

quantified by real-time PCR.

which was not specifically bound to lacO sequences in
DNA, from the cytoplasm to the nucleus. In order to
express the fusion protein prior to and during DNA repli-
cation, we constructed the recombinant vGFP-lacl with
the open reading frame encoding the GFP-lacI-NLS fusion
protein regulated by a viral early/late promoter. HeLa cells
were transfected with pSV2-dhfr-8.32 and infected 24 h
later with vGFP-lacl. Bright green fluorescence was
detected over the viral factory areas and nuclei, which cor-
related with Hoechst staining (Fig. 4). In cells with multi-
ple viral factories, however, not every one exhibited green
fluorescence. The viral factory regions were also visualized
by staining with an antibody to viral RNA polymerase,
which surrounded and included the DNA sites at 12 h
after infection (Fig. 4). When a control plasmid (p716)
lacking lacO sites was transfected, the green fluorescence
was strictly localized to the nucleus (Fig. 4).

Having established the specificity of the GFP-lacl binding
by co-localization, we examined fluorescence of live cells
by time-lapse microscopy following transfection with
pSV2-dhfr-8.32 and infection with vGFP-lacl. Weak GFP
fluorescence was detected at about 5.5 h after infection
(not shown) and was largely over the nucleus, reflecting

the targeting due to the NLS. A region of juxtanuclear flu-
orescence corresponding to a viral factory was seen clearly
at 7.5 h and over the next several hours increased in inten-
sity (Fig. 5). The time course suggested that the factory
region was the site of replication as well as accumulation
of the plasmid DNA.

Discussion

The replication of circular DNA lacking viral sequences as
head-to-tail concatemers in the cytoplasm of cells infected
with a poxvirus was reported nearly 20 years ago [29,30].
Fortuitous poxviral origins were ruled out by the replica-
tion of 5 different circular DNAs and no evidence was
obtained for integration into the viral genome by non-
homologous recombination. These data strongly sug-
gested autonomous plasmid replication by a rolling circle
or theta mechanism. The significance of sequence non-
specific DNA replication was called into question by Du
and Traktman [32], who reported only low-level replica-
tion of a super coiled plasmid compared to a linear mini-
chromosome containing specific telomere sequences
[32]. However, our determination of a 10-fold increase in
net plasmid DNA compares favorably to the 2-fold
increase  achieved  with  the most efficient
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Intracellular localization of replicated plasmid containing tandem lacO repeats by staining with an MPB-lacl fusion protein. Hela
cells were transfected with pSV2-dhfr-8.32 containing lacO tandem repeats and 24 h later were infected with 3 PFU per cell of
vV5D4 expressing V5-tagged uracil DNA glycosylase. At 12 h after infection, cells were fixed, permeabilized, incubated with

MBP-lacl and rabbit antibody to MBP (anti-MBP) and mouse monoclonal antibody to the V5 epitope (anti-V5) followed by Cy5-

conjugated donkey anti-mouse IgG and Texas red dye conjugated donkey anti-rabbit IgG. Cells were counterstained with
Hoechst dye and analyzed by confocal microscopy. Colors: deep blue, Hoechst dye; red, Texas red; white, Cy5; light blue,
overlap of Texas red and Cy5; yellow, overlap of Hoechst and Cy5.

minichromosome construct [32]. Moreover, our finding
was similar to the 8-fold increase in net plasmid DNA
reported by DelLange and McFadden [30]. There are sev-
eral procedural differences that might account for the dis-
parate results. One difference was the type of virus and cell
used: Du and Traktman used mouse L cells infected with
VAC, DeLange and McFadden principally used rabbit cells
infected with myxoma virus or Shope fibroma virus and
we used monkey or Hela cells infected with VAC. A sec-
ond difference was the method of DNA isolation.
Whereas we and Delange and McFadden proteinase
digested whole cell lysates, Du and Traktman lysed cells
with cold hypotonic buffer containing a non-ionic deter-

gent and removed nuclei by sedimentation prior to DNA
extraction. VAC DNA replication occurs in juxtanuclear
factories and loss of high molecular weight protein-DNA
complexes, especially those containing long head-to-tail
plasmid DNA concatemers upon centrifugation is a con-
cern. Indeed, Du and Traktman [32] reported that the
presence of the telomere resolution sequence was
required for high efficiency replication of linear minichro-
mosomes and that only monomeric products were recov-
ered. Further studies are needed to determine whether the
cis-acting sequences in the linear minichromosomes are
serving as origins of replication or as concatemer resolu-
tion sites or both.
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anti-RNAP Hoechst + anti-RNAP GFP + anti-RNAP

Figure 4

Intracellular localization of replicated plasmid containing tandem lacO repeats using a lacl-GFP fusion protein. Hela cells were
transfected with pSV2-dhfr-8.32 containing tandem lacO repeats (top 2 panels) or p716 control plasmid (bottom 2 panels) and
infected with vGFP-lacl. At 12 h after infection, cells were fixed, permeabilized, and stained with antibody to VAC RNA
polymerase (anti-RNAP), followed by Alexa 594-conjugated goat anti-rabbit IgG. Cells were then stained with Hoechst dye and
analyzed by confocal microscopy. Blue, Hoechst; red, Alexa 594; and green, GFP fluorescence.
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Visualization of plasmid replication in live Hela cells. HelLa cells were transfected with pSV2-dhfr-8.32 containing tandem lacO
repeats and infected with vGFP-lacl. Images were made at 5 min intervals starting at 5.5 h and ending at 10 h post infection.

Selected images at the indicated time points are shown starting at 6 h time point. Arrow at 7.5 h time point indicates cytoplas-
mic site of replicated plasmid.

The temporal coincidence of plasmid and viral DNA rep-
lication suggested that viral proteins were needed for each.
Indeed, we found that each of the five trans-acting viral
proteins known to be important for viral genome replica-
tion was similarly required for plasmid replication. Either
none of these proteins have a sequence-specific role or
some have dual roles and are also required for origin-
independent replication. The proteins also may have
structural roles in assembling the replication complex, the
existence of which is suggested by the interaction of A20
with the D4 and D5 proteins [45] and the co-purification
of the A20, D4 and E9 proteins with a processive form of
DNA polymerase [46,47].

VAC cores containing genomic DNA and an early tran-
scription system travel from the cell entry site along
microtubules to the juxtanuclear area where synthesis of
early viral proteins and DNA replication result in the
formation of discrete factories [48]. It is believed that each
factory arises from a single infectious particle [49]. It was
interesting to determine whether plasmid replication
occurred in factories or dispersed throughout the cell. To
investigate this, we transfected cells with a plasmid con-
taining multiple repeats of the E. coli lacO, which tightly

binds lacl. In one approach, the lacO DNA was located in
discrete juxtanuclear regions by staining fixed and perme-
abilized cells with an MBP-laclI fusion protein followed by
an antibody to MBP. The regions were identified as viral
factories by Hoechst DNA staining and localization of the
viral uracil DNA glycosylase, a protein required for repli-
cation of both plasmid and viral DNA. LacO DNA was not
detected in the nucleus or in diffuse areas of the cyto-
plasm. A second approach involved the construction of a
recombinant VAC that expresses a GFP-lacl fusion protein
with a NLS to remove unbound protein from the cyto-
plasm. Again, the lacO DNA was found in viral factories
identified with Hoechst staining and viral RNA polymer-
ase antibody. The data suggest that for plasmid replication
to occur, the DNA must be at the right place i.e. a site con-
taining viral replication proteins. Presumably the plasmid
diffuses into the factory region and is captured by DNA
binding proteins. By taking time lapse images of live cells,
plasmid DNA was detected in juxtanuclear sites at 6 to 7 h
after infection and increased in intensity as the factories
enlarged over the next several hours. Factory enlargement
appeared to occur from within rather than by fusion of
multiple small factories. We suspect that the latter might
occur if higher multiplicities of virus were used.
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In contrast to the cytoplasmic replication of genome and
plasmid DNA in VAC-infected cells, Sourvinos et al. [50]
visualized nuclear replication of herpes simplex virus
amplicons containing tetracycline operator sequence and
Fraefel et al. [51] incorporated lacO sites into the genome
of adenovirus associated virus and visualized discrete rep-
lication sites in the nucleus that fused to form larger struc-
tures. The latter study encouraged us to try to incorporate
long tandem arrays of lacO repeats in the VAC genome,
but they were unstable.

Conclusion

We described a sensitive and quantitative real-time PCR
method of measuring plasmid replication in cells infected
with VAC and demonstrated that origin-independent
replication requires all known viral replication proteins.
In addition, we visualized the plasmid in living and fixed
cells by incorporating tandem lacO sequences and deter-
mined that replication occurred in cytoplasmic viral facto-
ries. This system should be useful for studying the
mechanism and minimal requirements of poxvirus DNA
replication.

Methods

Cells, plasmids, and viruses

RK-13, BS-C-1, BS-C-40, HuTK- 143B, and HelLa cells were
maintained in Eagle's minimal essential medium (EMEM;
Quality Biologicals, Inc. Gaithersburg, MD) or Dulbecco's
modified Eagle's medium (DMEM; Quality Biologicals,
Inc.) containing 10% fetal bovine serum (FBS). A rabbit
kidney cell line (RKD4R) stably expressing the VAC uracil
DNA glycosylase and recombinant VAC vD4-ZG lacking a
functional D4R gene [39] were gifts of F.G. Falkner. Plas-
mid pSV9 contains two copies of a 2.6 kbp insert derived
from the VAC concatemer junction and two copies of
pUC13 DNA [33]. Linear minichromosomes containing
1.3 kbp of VAC telomere sequences were prepared by liga-
tion of snap cooled, EcoRI digested pSV9 essentially as
described by Du and Traktman [32]. Ligation resulted in
three products of 8 kbp, 2.6 kbp and 5.3 kbp. The 5.3 kbp
minichromosome fragment was isolated by gel electro-
phoresis and the Qiaex II gel extraction kit (Qiagen). Plas-
mid p716 [52] was kindly provided by A. McBride;
plasmids pSV2-dhfr-8.32 and p3'SS dimer-CI-EGFP [44]
were gifts of A. Belmont. The temperature sensitive (ts)
replication mutants Cts16, Cts24, Cts42, Cts25 with muta-
tions in the 17, D5, E9 and B1 open reading frames,
respectively were obtained from R. Condit [53,54];
mut185 has a ts mutation in the A20 ORF [10].

Antibodies

Cy5-conjugated affinipure F(ab')2 fragment of donkey
anti-mouse IgG and Texas red dye conjugated affinipure
F(ab')2 of donkey anti-rabbit 1gG were obtained from
Jackson ImmunoResearch laboratories. Alexa Fluor 594
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goat anti-rabbit IgG was from Molecular probes. New
England Biolabs and Invitrogen supplied the rabbit anti-
body to MBP and mouse anti-V5 monoclonal antibody,
respectively.

Transfection, infection and isolation of DNA

For experiments analyzed by real-time PCR, 0.1 ug of
p716 DNA and 3.9 ug of salmon sperm carrier DNA were
mixed with 10 pg of lipofectamine 2000 (Invitrogen) and
uninfected cells were transfected according to the manu-
facturer's instructions. After 24 h, the cells were infected
with VAC strain WR, vD4-ZG or a ts mutant at a multiplic-
ity of 3 PFU per cell. Cells were then washed twice with
Opti-MEM (Invitrogen) and overlaid with EMEM with
2.5% FBS. At various times, cells were harvested and the
DNA isolated using the Qiamp DNA Blood Kit (Qiagen)
according to the manufacturer's instructions. DNA was
digested with restriction enzymes Dpnl or Mbol (New Eng-
land Biolabs).

Southern blotting

DNA (2 ng) was digested with EcoRI and Dpnl or Mbol,
resolved on a 0.8% agarose gel, and transferred to Immo-
bilon-Ny+ (Millipore) transfer membrane. Southern blot-
ting was carried out as described by Maniatis [55].
Plasmid DNA was detected with a DNA probe that was
32P-labeled using a random-priming kit (Invitrogen). Pre-
hybridizations and hybridizations were carried out using
Quik-Hyb (Stratagene) according to the manufacturer's
recommendation. The blot was exposed to a Phosphor
screen and data acquired on a Storm 860 Phospholmager
(Molecular Dynamics, Sunnyvale, CA) and quantified
with ImageQuant software (Molecular Dynamics).

Real-time PCR

Oligonucleotides P1
(5'CAACTAAATGTGCAAGCAATGTAATTC3') and P2
(5'CATCCTGCCCCITGCTGT3') were designed with
Primer Express software supplied by Applied Biosystems.
Reactions were carried out using SYBR Green PCR master
mix (Applied Biosystems), 10 UM of each primer, and 1 ng
of DNA in a total volume of 50 pl in an Applied Biosys-
tems Prism 7900HT sequence detection system with
v2.1.1 software. For amplification 40 cycles at 95°C for 15
s and 60°C for 60 s were used.

Construction of recombinant viruses

vGFP-lacl: the open reading frame that encodes GFP-lacl
was cloned by PCR using primers
5'CAGGCTGCGCAACTGTTGGGAAGGGCGA3' and
5'AAAAGTACTAGCCTGGGGTGCCTAATGAGTGAGC3'
with p3'SS dimer-CI-EGFP [44] as a template. The PCR
product was digested with Xhol and Scal and then ligated
to Xhol and Stul digested pSC59 [56] to form the plasmid
pSC59gfplacl. BS-C-1 cells were infected with VAC strain
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WR at 0.05 PFU per cell for 1 h and then transfected with
2 ug pSC59gfplacl using 10 ng of Lipofectamine 2000.
After 5 h, the medium was replaced with EMEM plus 2.5%
FBS and the incubation continued for 2 days. Cells were
harvested and lysed, and the diluted lysates were used to
infect HuTK- 143B cell monolayers. The cells were over-
laid with medium containing low melting point agarose
and 25 pg of 5-bromodeoxyuridine per ml. After three
rounds of plaque purification, the viral DNA was screened
for the presence of the inserted DNA by PCR. The recom-
binant virus was propagated and titrated as described pre-
viously [57]. vV5D4: primers
5'ACTAGATACGTATAAAAAGGTATCTAATTTGATATAAT

GGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATT
CTACGAATTCAGTGACTGT3' and
5'CTCCTGGACGTAGCCTTCGGG3' and DNA from plas-
mid pER-GFP [21] were used to add a V5 tag to the VAC
D4R gene. After double digestion of the PCR product and
plasmid with SnaBI and Smal, the products were ligated
together to form the new plasmid pERV5-GFP. Approxi-
mately 10° RKD4R cells were infected with vD4-ZG at a
multiplicity of 0.05 PFU per cell for 1 h at 37°C. The
infected cells were washed twice with Opti-MEM and
transfected with 2 pug of pERV5-GFP using 10 ug of Lipo-
fectamine 2000. After 5 h, the transfection mixture was
replaced with EMEM containing 2.5% FBS, and the cells
were harvested at 48 h in 0.5 ml of EMEM-2.5% FBS.
Lysates were prepared by freezing and thawing the cells
three times and sonicating them twice for 30 s. Recom-
binant viruses that expressed GFP were plaque purified
five times on RKD4R cells. The genetic purity of recom-
binant viruses was confirmed by PCR and sequencing. The
recombinant virus was propagated and titrated as
described previously [57].

Construction and expression of MBP-lacl
The lac repressor gene was PCR amplified using the fol-

lowing primers
5'CGGAATTCTCATCGGGAAACCTGTCGTGCCAGCTGC
3' and

5'CGCGGATCCTAGTGAAACCAGTAACGTTATACGS'

and template DNA from p3'SS dimer-CI-EGFP. The ampli-
fied fragment was cloned into the BamHI and EcoRI sites
of the expression vector pMal-c2x (New England Biolabs)
resulting in the plasmid pMalc2x-lacl. Luria-Bertani
medium (500 ml) supplemented with ampicillin (100
pg/ml) and glucose (0.2% w/v) was inoculated with 5 ml
of an overnight culture of the E. coli ER2507 (New Eng-
land Biolabs) containing the recombinant pMalc2x-lacl
plasmid. The culture was grown at 37°C to a cell density
of 0.5 at A600 nm and the expression of protein was
induced for 2 h at 37°C by adding isopropyl-f-D-thioga-
lactopyranoside to a final concentration of 0.3 mM. The
culture was then centrifuged at 4000 x g for 20 min at
4°C. A cell extract was prepared using B-PER reagent

http://www.virologyj.com/content/2/1/23

(Pierce) according to the manufacturer's recommendation
and the protein purified using the pMAL protein fusion
and purification kit (New England Biolabs).

Confocal microscopy and live cell imaging

Cells were plated on glass cover slips in 12 well plates and
transfected with 1 pug of pSV2-dhfr-8.32 using 5 pg of
Lipofectamine 2000. After 24 h, cells were infected with
recombinant VAC at 3 PFU per cell. At 12 h after infection,
cells were fixed with cold 4% paraformaldehyde in phos-
phate buffered saline (PBS) at room temperature for 20
min. Fixed cells were permeabilized for 5 min with PBS
containing either 0.2% Triton X-100 at room temperature.
Permeabilized cells were incubated with primary antibod-
iesata 1:100 dilution in10% FBS for 30 min, washed with
PBS three times, and then incubated with secondary anti-
body at a 1:100 dilution in 10% FBS for 30 min at room
temperature. After washing with PBS three times, cover
slips were incubated with Hoechst dye for 10 min at room
temperature to visualize DNA staining. Stained cells were
washed extensively with PBS and cover slips mounted in
20% glycerol. Cellular fluorescence was examined under a
Leica TCS NT inverted confocal microscope and images
were overlaid using Adobe Photoshop version 5.0.2.

For live cell imaging, HeLa cells were plated at ~80% con-
fluence onto TC3 dishes (Bioptechs, Inc.) and infected
with 3 PFU of virus per cell on the next day. Cells were
imaged by either confocal or video microscopy. For video
microscopy, a Hammumatsu C5985 camera and control-
ler were attached to a Leica DMIRBE inverted fluorescence
microscope. Images were digitized using an IC-PCI video
capture card (Coreco Imaging, Inc.) controlled by Image
Pro Plus software. Cells were maintained on a heated TC3
stage (Bioptechs, Inc.) with the temperature set at 37°C.
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