
Gupta et al. Virology Journal 2014, 11:64
http://www.virologyj.com/content/11/1/64
REVIEW Open Access
Regulation of gene expression by microRNA in
HCV infection and HCV–mediated hepatocellular
carcinoma
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Abstract

MicroRNA (miRNA) exert a profound effect on Hepatitis C virus (HCV) replication and on the manifestation of HCV-
associated hepatocellular carcinoma (HCC). miR-122 in particular, is highly enriched in liver and has been shown to
interact with HCV, suggesting this virus has evolved to subvert and manipulate the host gene silencing machinery in
order to support its life cycle. It is therefore likely that miR-122 and other miRNAs play an important role in the
pathophysiology of HCV infection. The changes in post-transcriptional gene regulation by the miRNAs may play a key
role in the manifestation of chronic liver disease and hepatocellular carcinoma. Understanding of HCV-host miRNA
interactions will ultimately lead to the design of therapeutic modalities against HCV infection and HCV-mediated HCC
and may also provide important biomarkers that direct treatment options. Here, we review the current knowledge on
the role of miRNA and gene expression on HCV infection and hepatocellular carcinoma, in addition to the possible role
of miRNA as future therapeutic targets.
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Introduction
HCV infection is a prevalent disease with approximately
150 million individuals (3%) chronically infected worldwide
[1]. About 20–67% of patients experience spontaneous
clearance of the virus and this is an event occurring princi-
pally during the first 3 months after clinical onset of
disease [2-4]. Chronic disease should be considered if
viremia persists for more than 6 months. Progression of
liver disease occurs over 20–30 years and is accelerated in
the presence of cofactors such as alcohol consumption,
diabetes mellitus, older age of acquisition, human im-
munodeficiency virus (HIV) co-infection, or co-infection
with other hepatotropic viruses [5]. Depending on the
presence of co-factors, between 10% and 40% of patients
with chronic HCV infection will develop cirrhosis [6]. Ap-
proximately 4% per year may suffer death related to the
complications of cirrhosis, whereas HCC occurs in this
population at an estimated incidence of 1–5% per year [7].
In the absence of a protective vaccine against HCV
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infection, Interferon (IFN)/Ribavirin therapy is currently
the mainstay in the management of HCV infection. Be-
cause this therapy is poorly tolerated and is effective only
in a subset of HCV infections [8-11], there is a need of
interferon-free therapies or direct acting antiviral drugs e.g.
Telaprevir that inhibit the HCV NS3/4A protease and
achieve sustained viral clearance in combination with the
standard therapy.
miRNAs are small (17–23 nucleotide) non-coding

RNAs that serve as post-transcriptional regulators of gene
expression, many of which are conserved across meta-
zoans [12]. The first miRNA, lin-4, was discovered by Lee
et al. in 1993 in C. elegans, where it was found to nega-
tively regulate protein levels of LIN-14 [13]. miRNAs are
great candidates as regulators of host and viral gene ex-
pression because of their small size, flexibility in function.
The functions of miRNA are diverse ranging from devel-
opment control of central physiological processes such as
apoptosis, proliferation and differentiation to involvement
in disease e.g. cancer [14,15]. It has been estimated that
miRNAs regulate more than 60% of human protein cod-
ing genes using in silico approaches and over 2,000 human
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mature miRNAs have been annotated (miRBase v19.0;
http://www.mirbase.org/) [16].

Biogenesis of miRNA
Most miRNAs are transcribed from intergenic regions, in-
trons and exons by RNA polymerase II. The initial RNA
transcript is a RNA precursor called a primary miRNA
(pri-miRNA) [17-20] (Figure 1). pri-miRNA ranges from
200 nucleotides to several thousand nucleotides in length
and is known to form highly structured stem loop [21,22].
The cellular RNase III enzyme ‘Drosha’ cleaves this stem
loop with the help of cofactor DiGeorge syndrome critical
region gene 8 (DGCR8) in vertebrates and ‘Pasha’ in inver-
tebrates [23-25] (Figure 1). The cleavage produces an
RNA hairpin intermediate around 70 nucleotides, known
as the precursor-miRNA or pre-miRNA with a character-
istic two nucleotide 3′ overhang [23]. The next step in the
biogenesis of miRNA is the nuclear export of the pre-
miRNA hairpin by a heterodimer consisting of exportin 5
and the GTP bound form of cofactor Ras-related nuclear
protein (RAN), which recognize and bind the two- nt 3′
overhang of pre-miRNA [26,27] (Figure 1). In the cyto-
plasm, another cellular RNase III enzyme called Dicer
binds to the structured DNA with cofactor Transactiva-
tion response RNA binding protein (TRBP) to perform a
second cleavage. The end product is a two nt 3′ overhang
Figure 1 Biogenesis of miRNA.miRNAs are transcribed from the genes by
processes the primary miRNA transcripts into pre-miRNA. The pre-miRNA is th
duplex by ribonuclease Dicer in association with TRBP. The end product is 22
the dicer to form the mature miRNA while the other RNA strand is generally d
Ago 2 and can target gene silencing through either cleavage or translational
approximately 17–22 bp double stranded RNA. One
strand of the dsRNA remains bound to the Dicer to form
the mature miRNA while the other RNA strand is gener-
ally degraded. The remaining strand is then integrated
into a protein complex called the RNA-induced silencing
complex (RISC) with the help of dicer [28,29]. Argonaute-
2 (Ago-2) protein is a catalytically active ribonucleoprotein
and is a key component in RISC [30,31]. Mature miRNA
bound to the active RISC binds to the target sites at 3′
UTR of mRNA leading to direct inhibition of translation
or mRNA target degradation by Ago2 protein (Figure 1)
[30]. Vertebrates only need partial complementary miRNA
to recognize their targets, however, it is critical to have a
high degrees of complementary base pairing of miRNA
nucleotides through the nucleotides 2–8 referred to as the
“seed sequence” [32,33].

Evidence suggests that miRNAs play a significant role in
HCV replication
Several miRNAs have been identified in various studies to
play a key role in regulating the virus replication and
pathogenesis during HCV infection [34-39]. miR-122 is
the most abundant liver-specific miRNA and has been
demonstrated by several studies to be required for HCV
replication in infected cells [34,40,41]. Sequestration of
miR-122 in liver cell lines strongly reduced HCV
RNA polymerase II. The microprocessor complex (Drosha and DGCR8)
en exported into the cytoplasm by exportin-5 and processed into a RNA
bp double stranded RNA. One strand of the dsRNA remains bound to
egraded. The remaining strand is then assembled into the RISC with
repression.
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translation, whereas addition of miR-122 stimulated HCV
translation in liver cell lines [42]. Study on liver biopsies of
chronic hepatitis patients demonstrated that miR-122 level
in primary non-responding subjects was lower than in
early virological responding subjects, regardless of the
viral genotype [43].
miR-122 is the miRNA that exerts a positive effect on

viral replication in cell culture by binding to the viral 5′
Untranslated region (UTR), as shown by in vitro studies
[34,44]. miR-122 was shown to form an oligomeric com-
plex in which one miR-122 molecule binds to the 5′ UTR
of HCV RNA with 3′ overhanging nucleotides, masking
the 5′ terminal sequences of HCV genome [45] (Table 1).
This also suggested that these 5′ terminal viral sequences
are thus protected from nucleolytic degradation [45]. The
specific internal nucleotides and the 3′ terminal nucleo-
tides in miR-122 were shown to be absolutely required for
maintaining HCV RNA abundance rather than influen-
cing their function [45]. It was shown that overexpression
of miR-122 significantly suppressed the interferon-
stimulated response element (ISRE), that functions as an
enhancer to promote the induction of transcription by
alpha/beta interferons [46-51] (Table 1). Contrary to that,
suppression of miR-122 function enhanced the ISRE activ-
ity, by decreasing expression of suppressor of cytokine sig-
naling 3 (SOCS3) [51] (Table 1). The decrease in SOCS3
level was not mediated by the target gene expression, but
by enhanced methylation at SOCS3 gene promoter [51].
The authors also suggested that the data is supportive of
use of a combination therapy of IFN and silencing of miR-
Table 1 Selected miRNA and their cognate gene targets relev

miRNA Target

miRNAs that promote
HCV replication

miR-122 HCV 5'-UTR

SOCS3

Cyclin G1

Xrn1

miR-141 DLC

miR-130a IFITM

miR-21 MyD88 and IRAK1

miRNAs that inhibit
HCV replication

miR-196 NS5A region in HCV genome

BACH1

miR-448 Core region of HCV genome

let-7b NS5B and 5'UTR regions in HCV g

BACH1

miR-199a HCV 5'-UTR

miR-130a IFNα/IFN β ?

Abbreviations: UTR Un-translated region, SOCS3 suppressor of cytokine signaling 3, I
DLC-1 deleted in liver cancer 1, IFITM interferon inducible transmembrane protein, I
factor 88, BACH1 transcription regulator protein, ISGs interferon stimulated genes.
122 function (i.e. antisense oligonucleotides of miR-122)
as a therapeutic option in near future [51]. Interestingly,
Ago proteins were shown to be required for miR-122 to
activate translation via the HCV 5′-UTR [52,53]. Cyclin
G1 was shown to be a target for miR-122 and use of miR-
122 inhibitor was reported to prevent the alcohol-induced
increase in HCV RNA and protein levels [54] (Table 1).
miR-122 was also shown to protect HCV RNA from 5′
decay by targeting 5′ exonuclease Xrn1 [55] (Table 1).
Moreover, exogenous expression of miR-122 supports effi-
cient HCV RNA replication [56] and/or effective virus
propogation in non- permissive cell line [57,58]. miR-122
has been shown to be also involved in cell cycle progres-
sion in hepatoma cell line [59]. miR-141 mediated sup-
pression of Deleted in Liver Cancer (DLC-1) (a Rho
GTPase-activating protein) enhances viral replication in
HCV-infected primary human hepatocytes [35] (Table 1).
HCV replication was shown to be dependent on the miR-
141 induction and antagomir-mediated knockdown of
miR-141 severely inhibited the replication of HCV [35].
Interestingly, artificially increasing intracellular miR-141
induced virus replication in the infected hepatocytes,
thereby confirming its functional importance [35]. miR-
130a expression is up-regulated in liver biopsy from HCV-
infected patients and facilitated HCV replication by target-
ing antiviral Interferon inducible trans-membrane protein
(IFITM); knockdown of miR-130a inhibited HCV replica-
tion in hepatocytes [36] (Table 1). miR- 130a expression is
up-regulated in liver biopsy from HCV infected patients
and similar observation was also reported on miR-130a-
ant to HCV infection

Function

Promote HCV replication [34,40,41] and IRES mediated HCV
translation [52]

Enhance methylation at SOCS3 gene promoter, inhibits
IFN-induced ISRE activity [51]

Promote viral replication induced by alcohol [54]

Inhibit 5′decay of HCV RNA [55]

Up-regulated in HCV infection [35]

Inhibits type I IFN signaling and promote HCV replication [36]

Negatively regulate IFN signaling [62]

Inhibition of HCV replication [37]

Inhibits HCV RNA and NS5A protein expression [63]

Inhibition of HCV replication [37]

enome Reduces HCV infectivity [38]

Repression of HCV expression [64]

Inhibits viral replication [39]

Inhibits HCV RNA replication by increased expression of
IFN-α/IFN- β and the ISGs [61]

SRE interferon stimulated responsive element, Xrn1 exoribonuclease enzyme,
RAK1 interleukin-1 receptor-associated kinase 1, MyD88 myeloid differentiation
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mediated regulation of viral replication in HCV-infected
cells [60]. Contrary to the above studies, a recent study by
Li et al. demonstrated that miR-130a inhibited HCV
replication by restoring the innate immune response
[61] (Table 1). miR-21 was shown to target myeloid differ-
entiation factor 88 (MyD88) and interleukin-1 receptor-
associated kinase 1 (IRAK1), which are involved in type I
IFN production induced by the HCV [62]. This subse-
quently leads to repressed IFN mediated antiviral response,
thereby promoting viral replication [62] (Table 1).
Finally, cellular miRNAs might indirectly promote or

limit virus replication through regulation of their en-
dogenous mRNA targets (Figure 2). In this case, viruses
could benefit from reshaping the cellular miRNA environ-
ment. Cellular miRNAs may mediate the recognition of
viral mRNAs (green) by RISC (blue circle) and thereby
limit virus replication (Figure 2). IFN- β was shown by the
researchers to modulate host miRNAs, five of which
showed anti-HCV effects in a viral sequence specific man-
ner [37]. IFN-induced miRNAs miR-196 and miR-448
have been shown to directly target CORE and NS5A cod-
ing region of HCV genomic RNA for inhibition of viral
replication [37] (Table 1). miR-196 has a target site in the
Figure 2 Mechanisms by which the cellular miRNA can affect the replica
promote the viral replication e.g. miR-122, a liver specific miRNA that can prom
genes and limit the HCV RNA replication e.g. miR-199a-3p and miR-196. Finall
of the cellular mRNAs.
NS5A coding region of HCV and has been shown to in-
hibit the viral replication by 50-80% [37] (Figure 2 and
Table 1). In addition to direct targeting of HCV RNA,
miR-196 has been shown to target Bach1, a repressor of
the anti-oxidative and anti-inflammatory heme oxygenase
1 (HMOX1) [63] (Table 1). The addition of miR-196
mimic in functional assays significantly down-regulated
Bach-1 levels with up-regulation of HM0X1, inhibiting
HCV expression [63]. let-7b has been shown to elicit anti-
HCV activity by targeting the NS5B and 5′-UTR of HCV
genome [38]. let-7 miRNA has been shown to target
Bach1 and thereby upregulate heme oxygenase gene ex-
pression and this action leads to the attenuation of the
liver injury [64] (Table 1). miR-199a-3p had 80-90% in-
hibitory effect on HCV replication and the identification
of miR-199a-3p binding sites in the 5′UTR internal ribo-
some entry site (IRES) of HCV RNA (genotypes 1b and
2a) suggested a direct interaction between these molecules
[39] (Table 1).

Significant role of miRNA expression in liver cancer
Specific changes in miRNA expression patterns have been
shown in HCC as compared with adjacent normal liver
tion of HCV. Cellular miRNAs may bind the viral mRNAs and thereby
ote HCV RNA replication. The cellular miRNAs can bind to the viral

y cellular miRNAs might promote or limit the viral replication by inhibition
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tumor tissues, or liver cirrhosis that correlated with the
disease outcome [39,65-67]. Using a human miRNA
microarray, Murakami et al. analysed the miRNA ex-
pression profiles in 25 pairs of hepatocellular carcin-
oma (HCC) and adjacent non-tumorous tissue (NT)
and nine additional chronic hepatitis (CH) specimens
[66]. This study found out that seven mature and one
precursor miRNAs exhibited significant differential ex-
pression patterns between the HCC and NT samples,
with miR-18, precursor miR-18, and miR-224 up-
regulated in HCC samples and miR-199a*, miR-195,
miR-199a, miR-200a, and miR-125a down-regulated in
HCC samples [66]. In addition, the analysis of a small
number of HCC samples also compared miRNA ex-
pression in tumors differing in differentiation state. The
expression levels of four miRNAs (miR-92, miR-20,
miR-18 and precursor miR- 18) were significantly
higher in poorly differentiated HCC samples suggesting
that these miRNAs can contribute to tumorigenesis and
the loss of tumor differentiation [66]. By contrast, miR-
99a expression exhibited a positive correlation between
expression levels and the degree of tumor differenti-
ation suggesting that this miRNA might contribute to
the differentiation of tumor [66].
The expression of 182 precursors and 196 mature miR-

NAs was profiled in 43 specimens of HCC, 43 adjacent
benign liver tissues, and in 12 normal liver tissues using
real time PCR [67]. A total of 16 miRNAs were differen-
tially expressed in HCC tissues as compared to the adja-
cent non-cancerous tissues. Dys-regulation of miR-199a,
miR-199a* was reported by both Murakami and Jiang,
supporting their role in the development of HCC [66,67].
miR-21 and miR-221 were also shown to be up-regulated
supporting their role in the hepato-carcinogenesis. Com-
paring the miRNA expression patterns with the survival
time revealed two general categories of patients – one
with predominantly lower miRNA expression and poor
survival and the other with higher miRNA expression and
good survival (P < 0.05) [67]. Jiang et al. thus characterized
a panel of 19 cell cycle related miRNAs as prognostic
markers of HCC because the expression of these miRNAs
correlated with survival in HCC patients [67].
In another study, miRNA expression profiles of HCC

and cirrhotic liver samples were analyzed by microarray
[68]. 35 miRNAs were significantly dysregulated when
compared to cirrhotic liver [68]. The majority of the
dys-regulated miRNAs were down-regulated in HCC tis-
sues, with the exception of miR-221 that was found to
be up-regulated [68]. miR-122 was shown to be down-
regulated in nearly 70% of the HCC specimens and all
examined HCC-derived cell lines, implicating its role as
tumor suppressor during the development of HCC [68].
In a comprehensive study, Pineau et al. performed

miRNA expression in tissue samples (104 HCC, 90
adjacent cirrhotic livers, 21 normal livers) as well as in 35
HCC cell lines [69]. A set of 12 miRNAs (including
miR-21, miR-221/222, miR-34a, miR-519a, miR-93,
miR-96, and let-7c) was identified and were linked to
disease progression from normal liver to cirrhosis to
full blown liver cancer [69].

Oncogenic and tumor suppressive miRNAs and their role
in HCV-mediated hepatocellular carcinoma
Both oncogenic and tumor suppressive miRNAs play a
significant role in HCV and HBV pathogenesis and liver
carcinoma development, but limited studies have exam-
ined these aspects, along with the role of miRNAs in
HCV infection-associated tumorigenesis and tumor
suppression.
Varnholt et al. did quantitative analysis of miRNA ex-

pression profiles from formalin-fixed paraffin-embedded
(FFPE) archival samples of HCV infected human primary
liver tumors, consisting of premalignant dysplastic liver
nodules and hepatocellular carcinomas [65]. 80 miRNAs
were examined in a subset of tumors, which yielded 10
up-regulated and 19 down-regulated miRNAs compared
to normal liver [65]. Five miRNAs (miR-122, miR-100,
miR-10a, miR-198, and miR-145) were further examined
in an extended tumor sample set of 43 hepatocellular car-
cinomas and 9 dysplastic nodules after selection [65].
miR-122, miR-100, and miR-10a were overexpressed
whereas miR-198 and miR-145 were up to 5-fold down-
regulated in hepatic tumors compared to normal liver par-
enchyma [65].
Expression levels of 188 miRNAs in liver tissues were

obtained from 12 patients with hepatitis B virus (HBV)-re-
lated hepatocellular carcinoma (HCC) and 14 patients
with HCV -related HCC with the help of real time PCR
[70] combined with mRNA revealed two types of miRNA,
one associated with HBV and HCV infections (n = 19), the
other with the stage of liver disease (n = 31) [70]. On
doing the pathway analysis of target genes for 13 down-
regulated miRNAs in HCV infected patients the involve-
ment of immune response, antigen presentation, cell cycle,
proteasome, and lipid metabolism pathways [70], whereas
the 6 down-regulated miRNAs in the HBV group regu-
lated pathways related to cell death, DNA damage and re-
combination, and transcription signals [70].
Peng et al. also simultaneously profiled the expression

of cellular miRNAs and mRNAs across 30 HCV positive
or negative human liver biopsy samples using microarray
technology [71]. They performed computational target
predictions in order to construct a miRNA: mRNA regula-
tory network [71], in which the DE miRNA predominantly
targeted the genes involved in chemokine (16 genes such
as CXCL12 (C-X-C motif ligand 12 etc.), B cell receptor,
Phosphatase and tensin homolog (PTEN) (13 genes),
Interleukin (IL)-6, ERK (Extracellular signal related
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kinase)/MAPK (Mitogen activated protein kinase) (18
genes; Ras, Erk3 and STAT3 (Signal transducer and activa-
tor of transcription 3) etc.) and JAK (Janus kinase)/STAT
signaling pathways, implying their important possible
role in viral replication, propagation and latency of viral
latency [71].

Oncogenic miRNAs
Role of oncomir-miR-21 in cancer
miR- 21 is one of the first miRNAs detected abundantly in
certain human cancers [72-75], and has been widely studied
as an oncogenic miRNA and in relation to HCV mono-
infection. Overexpression of miR-21 in variety of cancers
[76-79] and tumors along with its role in increasing cell
proliferation, migration and suppressing apoptosis in a can-
cer xenograft model suggests its vital role in different types
of cancers, defining its role as an oncomir [80-84].
miR-21 has also been noted to be highly overexpressed

in HCC tumors and cell lines leading to increased cell
proliferation and migration [85-87]. Meng et al. analysed
miRNA expression profile in HCC tumor tissue versus
normal liver and showed a greater than 5-fold increased
miR-21 expression in the tumor compared to normal tis-
sue samples [85]. Inhibition of miR-21 in cultured HCC
cells was shown to increase the expression of the PTEN
tumor suppressor, and decreased tumor cell prolifera-
tion, migration, and invasion [85]. Figure 3 shows the in-
volvement of miR-21 and its notable validated targets in
Figure 3 Increased expression of miR-21 and its validated targets. mi
miR-21 has negative downstream effects on the targets resulting in differen
diamond represents the protein/transcription factor. The red bars represent
various signaling pathways related to cancer. PTEN was
shown to be a direct target of miR-21, and to contribute
to miR-21 effects on cell invasion [85] (Figure 3). An-
other validated target of miR-21 is Sprouty2 (SPRY2),
which has also been shown to up-regulate PTEN [88,89]
(Figure 3). Another target of interest tumor suppressor
gene Ras Homolog gene family, member B (RHOB) was
validated by Connolly et al. who demonstrated that
down-regulation of miR-21 was associated with an up-
regulation of RHOB in Huh-7 and HepG2 cell lines
[90] (Figure 3). RHOB overexpression has been shown
to inhibit tumor formation and reduction in migration,
invasion and cell elongation [91]. miR-21 has also been
shown to down-regulate the Programmed cell death
protein 4 (PDCD4) tumor suppressor and its overex-
pression can cause stimulation of invasion and metasta-
sis in colorectal cancer [80] (Figure 3). PDCD4 has also
been shown to be up- regulated in apoptosis and cellu-
lar senescence, in addition to its tumor suppressive
properties [92,93]. Another validated target for miR-21
is Maspin [94], implicated in cell invasion and metasta-
sis (Figure 3). AP-1 (activator protein 1) is known to be
an important regulator of cell proliferation, apoptosis
and invasion [95,96] and has potential binding sites in
precursor of miR-21, pri-miR-21 (Figure 3). These sites
in pri-miR-21 suggest that miR-21 is a possible tran-
scriptional target of AP-1. It also been shown to acti-
vate miR-21 transcription [97] (Figure 3).
R-21 expression can be activated by transcription factor AP-1, while
t biological outcome. The targets are represented as blue circles, while
down-regulation and the green arrows indicate the up-regulation.
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Role of miR-221 in HCC
miR-221 is up regulated in human hepatocellular carcin-
oma (HCC) and proven target is cyclin-dependent kinase
inhibitor CDKN1B/p27, whose down-regulation affects
HCC prognosis [98]. Fornari et al. proved that the cyclin-
dependent kinase inhibitor (CDKI) CDKN1C/p57 is also a
direct target of miR-221 [99]. Up-regulation of miR-221
and miR-21 was shown to promote cell cycle progression,
reduce cell death, and favour angiogenesis and invasion
[100]. miR-221 has been demonstrated to function as an
anti-apoptotic miRNA and its silencing can lead to in-
creased apoptotic cell death. With the help of luciferase
reporter assay and western blot analysis, pro-apoptotic
protein Bcl-2-modifying factor (BMF) was identified as a
direct functional target for miR-221 [101]. Inhibition of
miR-221 led to an increase in expression of BMF and cas-
pase 3 cleavage and vice versa. It was concluded that BMF
plays a pro-apoptotic role by modulating the susceptibility
of HCC cells to apoptotic stimuli through a caspase 3
dependent pathway.

miR-222 and oncogenesis
Microtranscriptome profiles of miRNA expression in
HCC, adjacent cirrhotic tissue, and normal liver showed
consistently high expression levels of miR-221 and miR-
222 in tumor suggesting that both miRNAs can serve as
oncogenic miRNAs [69]. To investigate the role of miR-
222 in HCC, Wong et al. performed a detailed analysis on
99 primary HCC tumors and 94 tumor adjacent cirrhotic
livers [102]. A 40-miRNA signature was identified that
could discriminate tumors from adjacent cirrhotic liver
tissue, and a step wise increase in miR-222 overexpression
from cirrhotic livers to early HCC corroborated common
miR-222 overexpression [102]. Increased miR-222 expres-
sion was also shown to correlate significantly with ad-
vanced stage HCC and with the shorter disease-free
survival of patients [102]. Inhibition of miR-222 in Hep3B
and HKCI-9 cell lines significantly retarded cell motility
suggesting that miR-222 is a metastatic related miRNA
[102]. Further investigations suggested that AKT (also
known as Protein kinase B) signaling was the major path-
way influenced by miR-222 [102]. The AKT protein
PPP2R2A (Protein-coding, protein phosphatase 2A sub-
unit B) was identified as a direct functional target for miR-
222 [102]. It was suggested that the pro-metastatic effect
of miR-222 is due to the ability to activate AKT signaling
in HCC.

miR-17/92 and tumorigenesis
miR-17/92 cluster, which is composed of miR- 17-5p,
miR-17-3p, miR-18a, miR-19a, miR-20a, miR-19b, and
miR-92-1. miR-17-5p, was reported to be overexpressed in
HCC. It has been noted in various tumors [78,103,104],
and this overexpression has been shown to enhance the
migration and proliferation, in addition to its involvement
in both human and woodchuck hepatocellular carcinoma
cell line [105]. Interestingly, the silencing of this miRNA
cluster in vitro resulted in a 50% reduction in the prolifer-
ation and growth of hepatocytes [105]. Whereas, the spe-
cific inhibition of miR-17-5p resulted in decrease of the
proliferation of HCC cells, supporting its role as an onco-
genic miRNA [106]. miR-17-5p was shown to significantly
activate the p38 mitogen-activated protein kinase (MAPK)
pathway and increases the phosphorylation of heat shock
protein 27 (HSP27) [106].

miR-30d in intra-hepatic metastasis
miR-30d was shown to be up-regulated in HCC and its
expression was show to be highly associated with the
intra-hepatic metastasis of HCC [107]. Galphai2
(GNAI2) was identified as a direct functional target of
miR-30d [107]. Restoring the expression of GNAI2 in
miR-30d-overexpressing cells inhibited the miR-30d me-
diated HCC cell growth and migration [107].

miR-192/miR-215 and miR-491 and enhancement of HCV
replication
miR-192/miR-215 and miR-491 were shown to be capable
of enhancing HCV replication in replicon cells [108]. miR-
491 specifically suppressed the phosphoinositol-3 (PI3)
kinase/Akt pathway [108]. The suppressive effect of miR-
491 on HCV replication was abolished upon inhibition of
PI3 kinase by LY294002 indicating that suppression of
HCV replication by miR-491 was dependent on the PI3
kinase/Akt pathway [108].

Tumor suppressive miRNAs in Human HCC
It is now known that overexpressed miRNAs in cancers
may function as oncogenes promoting cancer develop-
ment by negatively regulating tumor suppressor genes
and/or genes that guide cell differentiation or apoptosis.
In contrast, the under-expressed miRNAs in cancers
function as tumor suppressors and may inhibit cancers
by regulating oncogenes and/or genes that guide cell dif-
ferentiation or apoptosis. Several miRNAs have been de-
scribed to be tumor suppressors.

miR-122
miR-122 has been demonstrated to be down-regulated in
primary HCC tissues and in most hepatoma cell lines,
suggesting its role as a tumor-suppressive miRNA in liver
carcinoma [109-111]. miR-122 appears to play an import-
ant role in the regulation of metastatic characteristics such
as cell migration and invasion as revealed by in vitro ex-
periments on the HCC cell lines [109,112]. miR-122 has
been shown to target a known promoter of metastasis, A
Disintegrin and Metalloprotease 17 (ADAM17) and
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known to inhibit both tumor angiogenesis and cancer cell
migration/invasion [113].

miR-29
Roderburg et al. performed a systematic analysis of miRNA
regulation in a mouse model of carbon tetrachloride in-
duced hepatic fibrogenesis [114]. The study demonstrated
that miR-29 family (miR-29a, miR-29b and miR-29c) is
down-regulated both in livers of CCl4-treated mice as well
as in mice that underwent bile duct ligation [114]. This
down-regulation of miR-29 in murine model correlated
with lower expression from miR-29 in liver from patients
with advanced liver fibrosis [114]. In murine hepatic stel-
late cells (HSCs), down-regulation of miR-29 was mediated
by transforming growth factor beta (TGF-β), inflammatory
signals lipopolysaccharide (LPS) and nuclear factor kappa
B (NF-κB) [114] (Figure 4A). Furthermore, overexpression
of miR-29b in murine HSC resulted in down-regulation of
collagen expression indicating its role as a regulator of liver
fibrosis [114].
miR-29 family members (miR-29a, miR-29b and miR-

29c) have been shown to be significantly down-regulated
in HCC tissues [115]. In their study, Xiong et al. demon-
strated that down-regulation of miR-29 was associated
with poor disease free survival of HCC patients [116]. Re-
introduction of miR-29 was associated with suppressed
Figure 4 Role of miR-29. A. TGF-β, LPS and NF-κB stimulation leads to de
with increased collagen production leading to fibrosis. B. Increased express
molecules, Bcl-2 and Mcl-1. Cytochrome c is released in the cytoplasm with
apoptosis through a mitochondrial pathway that involves Mcl-1 and Bcl-2.
the protein/transcription factor. The red bars represent down-regulation an
tumorigenicity and increased sensitivity of the HCC cells
to apoptotic stimuli [116]. In addition to the above find-
ings, B-cell lymphoma2 (Bcl-2) and Myeloid cell leukemia
sequence 1 (Mcl-1) were validated as direct targets for
miR-29 and the mitochondrial pathway shown to be acti-
vated in miR-29–promoted apoptosis (Figure 4B). Bcl-2
and Mcl-1 are anti-apoptotic proteins functioning through
mitochondrial pathways and are shown to be up-regulated
in different forms of cancer [117-119]. Their overexpres-
sion is associated with poor prognosis, causing the resist-
ance of cells to apoptosis, favoring tumor progression
[120,121]. While miR-29 down-regulates both of these
gene targets thus promoting apoptosis, overexpression of
the proteins encoded by the gene targets was shown to at-
tenuate the effect of miR-29 [116].

miR-101
miR-101 was shown to be significantly down-regulated in
HCC tissues [115]. It was also shown that the forced ex-
pression of miR-101 suppresses colony formation in vitro
and tumor formation in vivo [115]. Mcl-1 was identified
as a bona fide target of miR-101 [115]. Down-regulation
of miR-101 was associated with up-regulation of Mcl-1,
which is an anti-apoptotic molecule [115]. miR-101 was
also shown to repress the expression of v-Fos FBJ murine
osteosarcoma viral oncogene homolog (FOS) oncogene, a
creased miR-29 levels. Decreased miR-29 expression level is associated
ion of miR-29 is associated with down-regulation of two anti-apoptotic
the activation of caspases, suggesting that miR-29 may promote

The targets are represented as blue circles, while diamond represents
d the green arrows indicate the up-regulation.



Table 2 Deregulated miRNA in hepatocellular carcinoma

List of oncogenic and tumor suppressive miRNAs deregulated in
hepatocellular carcinoma

Oncogenic miRNA

Name Expression
in HCC

Target References

miR-21 Up PTEN, SPRY2, PDCD4,
RHOB, MASPIN

[80,85,88,90,94]

miR-221 Up CDKN1B/p27,
CDKN1C/p57,BMF

[98,99,101]

miR-222 Up PPP2R2A [102]

miR-17/92 Up HSP-27 [106]

miR-30d Up GNAI2 [107]

Tumor suppressive
miRNA

Name Expression
in HCC

Target References

miR-122 Down ADAM17 [113]

miR-29 Down BCL-2, MCL-1 [116]

miR-101 Down MCL-1, FOS [115]

miR-139 Down ROCK2 [123]

let-7 g Down C-myc, p16INK4A, COL1A2 [125,127]

Abbreviations: PTEN phosphatase and tensin homolog, SPRY2 sprouty 2, PDCD4
programmed cell death protein 4, RHOB ras homolog gene family, member B,
CDKN1B cyclin-dependent kinase inhibitor 1B, CDKN1C cyclin-dependent kinase
inhibitor 1C, BMF BCL-2 modifying factor, PPP2R2A protein-coding, protein
phosphatase 2A subunit B, HSP-27 heat shock protein 27, GNAI2 galphai2,
ADAM17 A disintegrin and metalloprotease 17, BCL-2 B cell lymphoma 2, MCL-1
myeloid cell leukemia sequence 1, FOS v-fos FBJ murine osteosarcoma viral
oncogene homolog, ROCK2 rho kinase 2, COL1A2 collagen type I alpha2.
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key component of the activator protein-1 (AP-1) tran-
scription factor [122].

miR-139
Wong et al. demonstrated miR-139 was found to be sig-
nificantly down-regulated in HCC patients and the ex-
pression was reduced much further in metastatic HCC
samples when compared to primary HCC samples [123].
The role of miR-139 was investigated further with the help
of HCC cell lines and with implantation mouse model
[123]. miR-139 overexpression reduced the cell migration
and invasion in vitro and also reduced the severity of lung
metastasis from liver tumors in mice [123]. It was also
demonstrated in the study that miR-139 interacts with 3′
un-translated region of Rho-kinase 2 (ROCK2) and re-
duced its expression in HCC cells [123]. ROCK2 is an im-
portant metastatic gene found to be up-regulated in HCC
samples [124], therefore miR-139 can exert its tumor sup-
pressive function through inhibiting of ROCK2.

let-7 g
Lan et al. demonstrated in their study that let-7 g may act
as a tumor suppressor miRNA [125]. When HepG2 cells
were transfected with let-7 g mimic, the proliferation of
HCC cells was inhibited via the down-regulation of c-Myc
[125]. Both mRNA and protein levels were reduced after
transfection suggesting that the down-regulation occurred
at both transcriptional and post-transcriptional level [125].
This effect was reversed after the introduction of a let-7 g
inhibitor [125]. Over-expression of let-7 g also caused the
up-regulation of p16INK4A, suggesting that the effect
may be mediated through its direct regulation of c-Myc in
the c-Myc-Bmi-1-p16 regulatory circuit [126]. These find-
ings imply that let-7 g might function as an inhibitor of
HCC cell proliferation through direct repression of c-Myc,
which may lead to re-expression of the tumor suppressor
p16INK4A [125]. In another study, Ji et al. demonstrated
collagen type I alpha2 (COL1A2) as a direct target of let-
7 g and addition of COL1A2 counteracted the inhibitory
effect of let-7 g on cell migration [127].
The list of oncogenic and tumor suppressive miRNAs

de-regulated in hepatocellular carcinoma is summarized
in Table 2.

miRNA as future therapeutic targets
Therapeutic targeting of miRNA in HCV infection
While current standard therapy of HCV is pegylated IFN- α
in combination with Ribavirin [128], success of the therapy
depends upon the viral load before and during therapy and
the genotype of the virus. Despite therapy, half of the pa-
tients fail to completely eradicate the virus [129,130] and
both interferon and ribavirin are expensive and can
cause severe side effects, limiting their clinical utility
[128,131,132]. Numerous clinical trials have been
undertaken to test promising new therapies including
viral enzyme inhibitors, monoclonal and polyclonal
antibodies, antisense RNA and therapeutic vaccination
[133,134].
The discovery of positive regulatory role of miR-122 in

HCV replication has led to the basis of developing
miRNA–targeted therapeutic strategies for HCV infection.
Inhibition of miR-122 can be achieved by the use of anti-
sense technology, which can act at multiple levels to affect
miR-122, such as binding to the mature, pre or pri-miR-
122. The conventional antisense oligonucleotides (ASO)
are low in efficacy and often require additional modifica-
tion to improve their biological activity. The earliest report
of miRNA inhibition using 2′–O-methyl (OMe) ASO de-
scribed the injection of DNA oligonucleotides of the same
length and complementary to the target let-7 miRNA in
Drosophila embryos [135]. ASO were used to inhibit miR-
122 in mice and termed as ‘antagomiRs’ [136]. Antagomirs
were shown to reduce HCV RNA up to 84% in two in-
dependent subgenomic models, respectively [137]. An-
other approach 2′–O-methoxyethyl phosphorothioate
(2′- MOE – RNA) modification is the oldest, simplest
method and has been shown to effectively inhibit miR-
122 activity in the liver [138]. Locked nucleic acid (LNA)
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modification represents a more advanced approach and is
a class of ASO in which the 2′-0-oxygen is linked to 4′- C
atom by the methylene bridge to form a rigid bicycle,
locked into a C3′ –endo (RNA) sugar conformation. This
modification leads to the formation of a thermodynamic-
ally strongest duplex formation with the complementary
RNA known. miR-122 silencing can be achieved by LNA/
2′–O-methyl mixmer, peptide nucleic acids (PNA), PNA–
peptide conjugates, or a chimeric 2′Fluoro/2′OMe modi-
fied ASO. 2′Fluoro/2′OMe modified ASO is shown to be
highly efficacious and has eight- fold potency compared to
2′-MOE ASO and can be further developed as a potential
anti-HCV therapeutic agent [139]. LNA modified phos-
phorothioate drug, Miravirsen works by inhibiting miR-
122 required for HCV RNA accumulation and replication
[140]. Miravirsen is the first drug targeted against any
miRNA that has entered into the clinical trials-Phase 2a.
It was safe, well tolerated and provided prolonged antiviral
activity with no signs of viral resistance and adverse effects
being mild and infrequent [140].
To put into perspective, a recent study by Sendi; has

suggested that miR-122 can have a dual role in the mo-
lecular pathogenesis of viral hepatitis [141]. While miR-
122 has been shown to be involved in increasing HCV
RNA replication [34,40,41], it can also decrease HBV
replication through an inhibitory effect of p53 on HBV
transcription through blocking of the binding of tran-
scription factors like hepatocyte nuclear factors (HNFs)
to HBV enhancer [142]. p53 can act as a tumor suppres-
sor by inhibiting HBV replication and directly targeting
cyclin-G1 [142], as well as Wnt/β-catenin [143], and N-
myc downstream-regulated gene (NDRG3) pathways
[144]. Thus while silencing of miR-122 has suggested as
a treatment for HCV infection, on the flip side, miR-122
may also be considered as novel therapeutic targets for
HBV by decreasing HBV replication. Although the re-
sults of this study are interesting, more studies need to
be done and the results combined to further understand
the mechanisms of actions of miR-122 in both HBV and
HCV induced HCC.

Conclusions
miRNAs play a remarkable role in regulating gene expres-
sion in both normal cellular processes and in viral infec-
tion. Viruses have evolved mechanisms to manipulate and
subvert the host gene machinery by modifying both the
gene expression and its regulatory machinery including
miRNAs. HCV, particularly, appears to be influenced by
the host cellular miRNA machinery to benefit its own rep-
licative cycle- a classic example being miR-122, which is
highly enriched in liver cells where it has been shown to
be involved in the pathophysiology of HCV infection.
miR-122 has also been tested in therapeutic clinical trials
to treat HCV-infected chimpanzees [145] or human
(Santaris, Phase-II) [140]. This documents for the first
time that the miR 122 antagonist (Miravirsen) induced
a prolonged, dose dependent reduction in virus titres in
HCV-infected patients, which will probably lead to the
first miRNA based therapy licensed for use [140]. Other
miRNAs of interest miR-196b, 199a-3p, miR-141 and
the miR-29 family can be used as miRNA therapy in the
future. The combination miRNA therapy could also be
used in conjunction with existing strategies, and possibly
increase the efficiency of treatment. Even in the absence
of miRNA-based therapeutics, miRNAs may serve as use-
ful biomarkers for diagnosis, prognosis and possibly in de-
fining response to therapy for HCV infection and may
therefore become an important consideration in the future
management of HCV. As the miRNAs are also the
novel regulators of numerous immunological and non-
immunological functions vital in the host immune re-
sponse, a clear understanding of the role of these small
molecules in the antiviral immunity may open doors to
the development of new generation of biomarkers and
antiviral treatment strategies, in addition to elucidating
the mechanisms underlying virus-host interaction.
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