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Abstract

The current standard of care (SOC) for hepatitis C virus (HCV) infection is the combination of pegylated interferon
(PEG-IFN), Ribavirin and protease inhibitor for HCV genotype 1. Nevertheless, this treatment is successful only in
70-80% of the patients. In addition, the treatment is not economical and is of immense physical burden for the
subject. It has been established now, that virus-host interactions play a significant role in determining treatment
outcomes. Therefore identifying biological markers that may predict the treatment response and hence treatment
outcome would be useful. Both IFN and Ribavirin mainly act by modulating the immune system of the patient.
Therefore, the treatment response is influenced by genetic variations of the human as well as the HCV genome.
The goal of this review article is to summarize the impact of recent scientific advances in this area regarding the
understanding of human and HCV genetic variations and their effect on treatment outcomes. Google scholar and
PubMed have been used for literature research. Among the host factors, the most prominent associations are
polymorphisms within the region of the interleukin 28B (IL28B) gene, but variations in other cytokine genes have
also been linked with the treatment outcome. Among the viral factors, HCV genotypes are noteworthy. Moreover,
for sustained virological responses (SVR), variations in core, p7, non-structural 2 (NS2), NS3 and NS5A genes are also
important. However, all considered single nucleotide polymorphisms (SNPs) of IL28B and viral genotypes are the
most important predictors for interferon based therapy of HCV infection.
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Introduction
HCV infects about 200 million people worldwide [1].
Approximately 20–30% of patients naturally clear the
virus. About 70–80% acute HCV infections become
chronic which leads to the development of cirrhosis in
20% of cases while the same percentage of those patients
becomes a victim of hepatocellular carcinoma. Acute
hepatitis C occurs during the first six months of HCV
infection [2]. Approximately 70-80% of acute hepatitis C
cases are without symptoms and hence difficult to diag-
nose. The remaining 20%-30% of cases are associated
with symptoms such as pain in joints and muscles, pain
in the right upper quadrant, poor appetite, nausea,
vomiting, and fever. The case of acute hepatitis C infec-
tion is converted into a chronic disease, if the individual
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reproduction in any medium, provided the or
is not capable of clearing the virus within few months of
infection [3]. Being the member of the Flaviviridae fa-
mily of viruses, HCV is a single stranded RNA virus. Its
size is 55 – 65 nm [2]. In 1989 it was realized that HCV
is the cause of most transfusion-associated non-A and
non-B hepatitis infections. There are about eleven diffe-
rent genotypes of HCV with various subtypes and strains
[3]. The virus encodes a poly-protein of 3010 amino
acids which is processed to generate four structural
(Core, E1, E2 and P7) and six non-structural (NS2, NS3,
NS4A, NS4B, NS5A, NS5B) proteins [4]. Recently, great
efforts have been made to develop interferon free the-
rapy against HCV infection but interferon is still ac-
cepted as a part of standard therapy [5]. Therefore, it
would be very helpful for clinical practitioners and re-
searchers to get information about viral and host factors
that influence interferon treatment of HCV infection.
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Interferon and its signaling pathway
About 50 years ago, IFN was discovered by Isaacs and
Lindenmann [6]. Currently, there are about 10 mammalian
IFN species with many subspecies. IFN possesses antiviral
activity and is categorized into three groups [7]. Type I IFNs
include IFN-α, IFN-β, IFN-ε, IFN-κ, IFN-ω and IFN-ν. All
these interferons interact with the interferon alpha/beta
receptor (IFNAR) [8,9].Type II IFN involves only IFN-γ
which interacts with a discrete receptor, the interferon
gamma receptor (IFNGR) [10]. IFN-λ1, IFN-λ2 and IFN-λ3
are grouped in type III IFNs. These interferons are also
known as IL29, IL28A and IL28B respectively. Type III
IFNs, signal through IFN-λ receptor which possesses an
IL-10R2 chain shared with the IL-10 receptor, and an ex-
ceptional IFN-λ chain [11]. IFNAR is the receptor for
type I IFNs. It possesses two major subunits: IFNAR1,
which bind styrosine kinase 2 (TYK2) [12], and IFNAR2c
which binds Janus kinase 1 (JAK1) [9]. Both TYK2 and
JAK1 are members of the Jak family. After binding the
receptor chains, TYK2 and JAK1 are stimulated and
transactivated leading to the initiation of phosphorylation
cascades involving all the members of the signaling path-
way and also the activators of transcription such as sig-
nal transducer and activator of transcription STAT1,
STAT2 and STAT3. STAT1, STAT2 and STAT3 are stimu-
lated by type I IFNs in most of cells. STAT1 and STAT2 in
combination with another transcription factor, interferon
regulatory factor 9 (IRF9), form interferon stimulated gene
factor 3 (ISGF3) which binds to the promoter region of
interferon stimulated genes (ISGs) as shown in Figure 1.
The ISGs are a set of genes used for antiviral protection.
Microarray analysis of human and murine cells treated with
interferons revealed that there are more than 300 ISGs [13].
Most important of these proteins are the double-stranded
RNA-dependent kinase “protein kinase RNA-regulated”
(PRKR), the 2′–5′ oligoadenylate synthetases and the Mx
proteins. These proteins are known to impede the growth
of certain viruses. However, if these genes are knocked out
from cells, they still retain their antiviral activities as there
are many of other genes stimulated by interferon possessing
antiviral activities [14]. Alternatively, STAT1 and STAT3
form homodimers or heterodimers which bind gamma acti-
vated sequence (GAS) elements. After binding, STAT pro-
teins activate these genes to generate an antiviral state [15].
Receptors and pathways involved in type III IFNs signaling
diverge from those mediating type I IFNs signals. IFN-λ1-3
signal through the JAK/STAT signaling pathway using the
IL28-R/IL-10R receptor complex that is mainly expressed
on hepatocytes and epithelial cells [16] as opposed to
IFNAR that are broadly expressed.

Ribavirin
Ribavirin (1-b-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide)
inhibits HCV replication. It is a synthetic guanosine
nucleoside analogue that inhibits inosine monophosphate
dehydrogenase leading to the depletion of the guanosine
pool [17]. It is also incorporated into the viral genome and
induces error catastrophe by the HCV non-structural-5B
(NS5B) polymerase [18]. In addition to these func-
tions, it is thought to have immune-modulatory func-
tions. It regulates macrophages, T helper cells and
Th1/Th2 produced cytokines, enhances the expression
of interferon stimulated genes (ISG) and also IFN-α
and MxA expression.

Protease inhibitors
Two important NS3 protease inhibitors are Boceprevir
and Telaprevir. Boceprevir inhibits NS3 by acting as a
non-covalent inhibitor. It inhibits CYP3A4 and acts also
as a mild inhibitor of P-glycoprotein. Therefore, the
plasma levels of the drugs that are metabolized by
CYP3A4 and P-glycoprotein are also increased when
given along Boceprevir [19].

Role of viral factors in determining the response
to interferon therapy
Genotype
Soon after the discovery and sequencing of HCV [20],
HCV isolates from different parts of the world with
varying sequences were obtained [21,22]. HCV se-
quences which varied up to 33-36% were classified as ge-
notypes; sequences which varied up to 20 – 27% were
classified as subtypes while genetic variants up to 12%
within individual isolates were classified as quasi species.
The HCV genotype is acknowledged as the most signifi-
cant independent response marker of interferon therapy
[23]. End-of-treatment response (ETR) and SVR are the
two important scales for measurement of treatment re-
sponse. An ETR is referred as undetectable hepatitis C
RNA at the end-of-treatment while SVR is referred as
undetectable hepatitis C RNA after 24 weeks of treat-
ment [24]. HCV genotypes 2 and 3 are more responsive
to interferon therapy than any other HCV genotype [25].
Meta-analyses of IFN-α monotherapy have shown that
SVR was obtained in 55% of patients with HCV geno-
types 2 and 3 and in 18% of patients with HCV genotype
1 [26]. It is suggested that HCV genotype 6 gives a treat-
ment response similar to genotypes 2 and 3 [24,25]. Al-
though HCV genotyping is an important predictor for
the treatment response, no patient should be left without
therapy on the basis of the genotype alone [27] because
the predictive value of HCV genotyping for interferon
based therapy is only 55%.

5′UTR
The important role of 5′UTR (Untranslated Region) in
translation of HCV polyprotein demands the conserva-
tion of this region. There are four highly conserved



Figure 1 Interferon signaling pathway.
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structural domains in 5′UTR which are numbered I to
IV; all of these domains interact with the host factors
and are crucial for HCV polyprotein synthesis [28]. Do-
main III of 5′UTR binds eukaryotic initiation factor 3
(eIF3) by means of stem-loop 3b. It has been suggested
that insertions in domain 3 of 5′UTR causes altered
Watson-Crick base pairing leading to decreased RNA
stability and binding affinity to ribosomal proteins.
These mutations were more common in SVR than in
breakthrough (BT) patients. Thus, mutations within the
domain III of 5′UTR are important for the treatment
response in HCV infection [29].

Variations of core, p7, NS2, NS3 and NS5A
Inter-patient genetic variations within the genotype 1
HCV also exert an important influence on the treatment
response. Although sequencing of the HCV genome has
not shown any specific amino acid sequences that affect
the treatment outcome, the high levels of genetic varia-
tions, mostly in the core, p7, NS2, NS3 and NS5A genes,
are linked with SVR [30]. Recent data from the Chinese
population have also shown that increased genetic varia-
tions in the p7, NS2 and NS3 genes of HCV genotype 1b
were linked with SVR to the standard treatment [31].
Thus, there is more genetic diversity in HCV SVR pa-
tients than in NR patients receiving the standard treat-
ment. Analyses of different HCV sequences identified
many specific regions of core, p7, NS2, NS3 and NS5A,
which were significantly associated with the ultimate
treatment outcome. Among these regions, the most im-
portant region was the interferon sensitivity determining
region (ISDR) that is located in HCV NS5A [32,33]. The
sequence of HCV core region from 50 Swedish patients
infected with HCV genotype 1 revealed that substitu-
tions of core residue 70 were associated with poor re-
sponse to the standard treatment [34]. Moreover, it has
been shown that amino-acid (aa) substitution at core
residue 70 was the predictor of SVR to a triple therapy
of Telaprevir, pegylated interferon and Ribavirin in the
Japanese population [35]. How these variations of HCV
genome effect response to interferon therapy is still a
challenge.

Role of host factors in determining response to interferon
therapy
With the beginning of the human genetic era, it is anti-
cipated that the human genome may significantly influ-
ence the clinical management of infectious diseases. But
there are small numbers of studies showing the impor-
tance of such knowledge in regular clinical practices.
HCV infection is one of the most hopeful examples
where genetic information was used for therapy. Thus,
the treatment response to HCV infection not only de-
pends on the viral factors but also on the host factors.
Male sex, older age, insulin resistance, diabetes, African
or American ethnicity, cirrhosis, steatosis, and weight
(in terms of BMI) are all factors linked to poor response
to PEG-IFN plus RBV treatment [36]. Other infections
such as HIV, HBV and practices such as alcohol intake
and drug use are also responsible for low SVR rates
[37]. Currently, candidate gene approaches had been
implemented to discover the host factors associated
with the HCV treatment response [38]. Following are
some of the most important SNPs linked with the treat-
ment response to HCV infection, also shown in Table 1.

SNPs of host genes
Interferon-λ
The IFN-λ family was discovered in 2003. The three
members of this family, IFN-λ 1, 2, 3, (equivalent to IL-
29, 28A, 28B) show a high degree of homology to each
other i.e. more than 80%, but very low sequence hom-
ology to both IFN-α (15-19% identity, 31-33% similarity)
and IL-10 (11-13% identity, 22-23% similarity). Despite
this minimal homology, IFN-λ like IL-10 geneare com-
posed of five to six exons [39–41]. IFN-λ is produced by
many immune cells, neuronal cells, alveolar epithelial
cells, hepatocytes, and a variety of cell lines [42–44].
However, the primary sources of IFN-λ are dendritic
cells (DCs) [42–46]. Similar to IFN-α, these cytokines
are mainly produced in response to viral infection or by
activation of Toll-like receptors (TLRs) [16,47]. IFN-λ
showed antiviral activity against many viruses such as
Encephalomyocarditis virus (EMCV), vesicular stomatitis
virus, cytomegalovirus, herpes simplex virus 1, influenza
A virus, HIV, HBV, and HCV [39,40,47–49]. These stu-
dies revealed that IFN-λ mainly inhibits viral replication
but also has immune-modulatory functions. It modulates
both the maturation and differentiation of immune cells
[50–52]. In short, these cytokines have an important role
in regulation and development of the adaptive immune
response against viruses.
SNPs within chromosome 19, in the vicinity of the

IL29, IL28A, and IL28B genes, are importantly associ-
ated with the treatment response of HCV infection.
Three SNPs related to these genes, rs8099917,
rs12980275, and rs12979860, are very important. Previ-
ous studies have shown that these variants are significant
predictors of the treatment response [53]. The favorable
genotypes significantly predicting higher SVR rates
are CCrs12979860 irrespective of the race [54],
AArs12980275, and TTrs8099917. Nevertheless, the
association between IFN-λ production and SNPs in
close proximity of IL28 remains indistinct [16,55].
IFN-λ-based drugs are possible candidates for treating
HCV infection, and are presently being evaluated in
clinical trials. The adverse effects of IFN-λ are less
marked than all of IFNs α and β, regarding bone



Table 1 Association of host SNPs with treatment response to HCV infection

Gene symbol Function SNP Effect on interferon therapy

IFN –λ

IL-29 (IFN-λ1) rs8099917 TT genotype is favorable

IL-28A (IFN-λ2) Inhibit viral replication rs12980275 AA genotype is favorable

IL-28B (IFN-λ3) rs12979860 CC genotype is favorable

IFN - γ Inhibit viral replication -768G Enhances promoter activity 2-3 folds

MBL Pathogen recognition receptor O/A at exon 1 X or O mutations linked with non-
responsiveness

At promoter region: MBL2*H,
Land X,Y.

CTLA4 Down regulates T cell functions -318 C/T -318C, 49G are favorably linked with
therapy response.

IL-10 Anti-inflammatory, Down regulates MHC1and
MHC II molecules

-318 C/T −819T and −592A are positively associated

−819,

−592

IL-18 Pro-inflammatory cytokine 607 C/A, -607A and -137C are positively associated

Induces IFN-γ -137 G/C

TRAIL Induces apoptosis in virally infected cells rs 4242392 Poorly associated

TGFb1 Multifunctional cytokine codon 10T/C, codon 25G/C Positively associated

Mx1 Antiviral activities G/T at nt -88 Positively associated

Osteopontin Induces Th1 response nt 443, nt 1748 T/T at nt -443

G/G or G/A at 1748

Positively associated with SVR

LMP7 HLA-1 antigen presentation LMP7-K Positively associated with SVR

OAS1 converts ATP into 2'-5' linked oligomers of
adenosine

at exon 7 SAS AA genotype is poorly associated
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marrow suppression, probably because fewer cells
carry the receptor, thus permitting a more targeted
therapy [56].

Interferon-γ
IFN-γ is a cytokine produced by effector T cells and na-
tural killer cells. It is mainly involved in the development
of T helper 1 (Th1) cells [57]. Studies using a HCV rep-
licon system showed that IFN-γ is capable of inhibiting
the HCV replication [58]. Similar to other cytokines
there is no polymorphism reported in the coding region;
but the non-coding region possesses frequent polymor-
phisms which are implicated in several chronic inflam-
matory conditions and autoimmune diseases [59,60]. It
is reported that the SNP –764G of IFN-γ which is lo-
cated in the proximal promoter region was strongly as-
sociated with SVR in case of HCV infection because the
G allele conferred a two to three-fold increase in the
promoter activity. Moreover, the G allele also offers
stronger binding affinity to the heat shock transcription
factor (HSF1) than the C allele at this specific position.
Thus, IFN-γ promoter SNP –764G/C is functionally very
important which can influence the interferon therapy
and may be used as a therapeutic marker for HCV infec-
tion [61].

Mannan-binding lectin
Mannan-binding lectin (MBL) also known as mannose
binding protein plays a significant role inthe innate im-
mune system. It is a pathogen recognition receptor [62].
MBL deficiencies are ascribed to a certain extent to
three SNPs in the first exon of the gene: MBL2*D
(Arg52Cys), B(Gly54Asp) and C (Gly57Glu). These SNPs
are collectively marked as O. The major allele at these
loci is A. The polymerization of the polypeptide is dis-
turbed by O amino acid which causes low levels of high
order oligomeric MBL in plasma [63]. MBL concentra-
tion in the serum is also adjusted by two promoter
SNPs: MBL2*H/L and X/Y [64,65]. The linkage disequi-
librium between the promoter and exon 1 SNPs of MBL
produces seven haplotypes which are associated with a
decreased level of MBL in the plasma. The frequency of
YA/YO genotype was significantly higher in the HCV
patients as compared to the controls suggesting that
these genotypes are involved in the development of
chronic hepatitis C. MBL genotypes XA/XA, XA/YO
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and YO/YO were associated with a decreased level of
MBL in the plasma. The levels of these genotypes were
considerably decreased in patients with advanced fibrosis
as compared to patients with moderate fibrosis and to
the control group. Thus, MBL has not only an important
role in the development of chronic hepatitis C, but also
an important role in the treatment outcome [63,66].

Cytotoxic T lymphocyte antigen–4
Cytotoxic T lymphocyte antigen–4 (CTLA4) also re-
ferred as cluster of differentiation 152 (CD152) is a
protein receptor that is mainly expressed on activated
CD4+ and CD8+ T cells [67]. It binds to the ligands B7-
1 (CD80) and B7-2 (CD86) and down-regulates the im-
mune system by switching off T cells [68]. There are
reported two important transition mutations in CTLA4,
C→T at position −318 and G→A at position 49 in exon
1 [69,70]. It is well established by recent findings that
these transition mutations of CTLA-4 have a very signifi-
cant influence on the down regulation of T cells [71].
Sustained responders (SRs) had a higher frequency of 49G
alone and were highly associated with −318C in a haplo-
type. SRs had a higher homozygosity for the −318C−49G
haplotype. Moreover, it was also reported that the immune
systems of −318C−49G haplotype carriers were declining
the viral load more rapidly as compared to other patients.
On the other hand, patients which possessed -318 T and
49A showed a reciprocal effect (poor response). There may
be several suggested reasons for these effects of CTLA4
polymorphisms. One of these may be the polymorphism of
either a single gene or haplotype, which may be responsible
for differential expression of a gene. It is also noted that
-318 T [72] and 49A [73] are associated with the increased
expression of CTLA4. Haplotype -318 T-49A also
showed increased expression of CTLA4 [74]. Studies up
till now have suggested that polymorphisms at -318C
-49G of CTLA4 gene are linked with down regulation of
CTLA4 expression that leads to the amplification of T cells
response. Alternatively, as CTLA4 acts as a ligand for
CD80 and CD86, it may have a role in the developmental
pathway of Th1/Th2 cells and may shift their balance
[75–77]. Another possibility is that these polymorphisms
are in linkage disequilibrium with some adjacent markers
that have influence on the expression of CTLA4. HCV
genotypes and ethnicity have important effects on the treat-
ment outcome. As the reported study was conducted only
on white patients infected with HCV genotype 1, these ana-
lyses have to be confirmed in other populations effected
with different HCV genotypes [78].

Interleukin 10
Interleukin 10 (IL-10) is a strong immunoregulatory T
helper type 2 (Th2) cytokine which is produced by the ma-
jority of cells [79–81]. Its main function seems to be the
regulation of the proliferation and differentiation of diffe-
rent immune cells via influence on the expression of major
histocompatibility complex (MHC) class I and class II mo-
lecules [82]. It also induces the production of Th1 cytokines
[83]. The level of IL-10 varies among individuals and these
variations are mostly attributed to polymorphisms in the
promoter region of the IL-10 gene [84]. Particularly, 3 SNPs
in the promoter region of IL-10 at positions −1082, −819,
and −592 are very important [85]. The combination of
these 3 SNPs (ATA, ACC, and GCC) is linked to differen-
tial expression of IL-10 gene [84]. As IL-10 production
affects HCV replication or the host immune system, it is
likely to affects the treatment outcome [86]. Many stu-
dies have shown that the carriage of the −592A or the
−819 T SNP was linked with a sustained virological re-
sponse. These two sites have a reciprocal effect. The haplo-
type consisting of the 108-bp IL-10.R microsatellite and
−3575 T, −2763C, −1082A, −819 T, −592A were also
connected to the treatment response. The IL-10 (108)
TCATA haplotype was positively associated with the treat-
ment response. Its frequency was higher in responders
than in non-responders while the other haplotype IL-10
(110) TCATA was equally distributed among responders
and non-responders suggesting no effect on the treat-
ment response. The most probable reason for this effect
of haplotype IL-10 (108) TCATA against HCV infection
and treatment response may be the diminished expres-
sion of IL-10 [87].
Interleukin 18
Interleukin 18 (IL-18) also known as interferon (IFN)-γ
inducing factor is a pro-inflammatory cytokine which is
produced as a pro-IL-18 by the immature dendritic cells,
monocytes and macrophages. Pro-IL-18 is activated by
caspase1 to generate IL-18 which in turn induces the pro-
duction of TNF-α and IFN-γ. TNF-α is an anti-
inflammatory cytokine which stimulates the production of
IL-18 binding protein (IL-18BP) to overcome the in-
creased production of IL-18 in chronic HCV patients for
the regulation of inflammation and fibrosis development
[88]. Interferon therapy of HCV infection also increases
the level of IL-18BP 3–24 folds [89]. The level of IL-18
and its receptors is highly increased in chronic HCV pa-
tients and was correlated with a poor treatment outcome
[90]. Moreover, an elevated level of IL-18 was also linked
with hepatic injury suggesting that it has an important
role in liver disease [91]. Earlier studies have shown two
important SNPs (−607 C/A and −137 G/C) in the pro-
moter region of IL-18. Lower promoter activity was asso-
ciated with minor alleles (−607A and -137C) while higher
promoter activity was linked with more common alleles
(−607C and -137G). These two SNPs are also reported to
be associated with Crohns disease [92], cardiovascular
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diseases [93], HBV [94,95] human immuno deficiency
virus (HIV) infection [96] and HCV [97].

Tumor necrosis factor-related apoptosis inducing ligand
receptor 1
Tumor necrosis factor-related apoptosis inducing ligand
receptor 1 (TRAIL) also known as CD253 is mostly
expressed on effector T cells [98]. It induces apoptosis in
virus infected cells [99]. However, there is an increasing
evidence to support the dual role of TRAIL in the im-
mune system. It may also play a role in either proviral or
antiviral ability. If TRAIL will finally act as a proviral or
antiviral is mainly dependent on the overall cytokine
situation and also on the type of virus [100]. It has been
demonstrated that the SNP, rs4242392 of TRAIL gene is
negatively associated with the interferon-based therapy
outcome of HIV/HCV co-infected patients [101].

Transforming growth factor- β
Transforming growth factor (TGF-β) is a multifunctional
cytokine. Its main function is to control cellular prolife-
ration and differentiation [102]. Three different isoforms
of TGF-β are expressed in mammals; each one is
encoded by a unique gene [103]. Among these isoforms,
TGF-β1 is the most abundant. There are significant dif-
ferences between individuals in their ability to produce
TGF-β1 because its production is under genetic control.
Genetic polymorphism at the codon 10T/C and codon
25G/C of TGF-β1 is linked with differential cytokine se-
cretion. It was reported that treatment response rates to
interferon-α therapy in HCV/HIV co-infected patients
were enhanced in those patients carrying a ‘high-producer’
genotype of TGF-β. The most probable reason for this
high response rate may be attributed to partial compensa-
tion of HCV NS5A-induced inhibition of TGF-β1 signa-
ling [104]. It was suggested that the polymorphism at
codon10T/C of TGF-β1 was linked to ‘high-producer’
state but this is still controversial [105].

Myxovirus resistance protein A
The interferon-induced GTP-binding protein, Myxovirus
resistance protein A (MxA), is an abundant ubiquitous
cytoplasmic protein which is encoded by the MX1gene
[106]. It influences IFN-induced antiviral activities of the
host cells against several viruses by acting as mediators
for interferons [107]. MxA protein is considered as the
most precise surrogate parameter for the action of inter-
ferons [108]. The level of mRNA or protein of the MxA
gene varied among individuals and it was noted to be
significantly associated with the treatment response
[109]. The variations of MxA at transcriptional or trans-
lational level suggest that its expression is under a strong
genetic control. Polymorphism at the nt −88 (G/T) in
the promoter region of the MxA gene was linked to IFN
response in HCV patients. Patients with the higher SVR
rates were mostly MxA-TT [110]. Another study on the
Japanese population showed that the rate of G
Ghomozygosity was 31% in the SVR patients, signifi-
cantly lower than in the NR patients. Thus, MxA SNP at
the nt −88 affects the expression of MxA protein, and
may also affects the treatment response to HCV infec-
tion [111].

Osteopontin
Osteopontin (OPN) is highly phosphorylated sialoprotein.
It is an important element of extracellular matrices of
bones and teeth [112]. It is also secreted by activated T-
lymphocytes, leucocytes and macrophages [113]. This
protein plays various physiologic roles in the immune
system by interacting with cellular adhesion molecules.
Overexpression of this protein was notified in various dis-
eases. OPN has been implicated in the pathogenesis of
rheumatoid arthritis (RA). It was found that its level is
increased in RA., Its exact role in RA is however still un-
clear. It was noticed by one group that OPN knocked out
mice were protected against RA [114], yet another group of
researchers failed to produce the same conclusions [115].
Overexpression of OPN is also noticed in a variety of can-
cers, including lung, breast, colorectal and stomach cancer.
Thus, manipulation of plasma OPN levels provides new op-
portunities for the treatment of various diseases [116,117].
It was also shown that OPN was essential for the initiation
of the Th1 response in mice [118]. SNP at nucleotide the
(nt) -443 of osteopontin was associated with hepatitis acti-
vity in patients of chronic hepatitis C [119]. Moreover, the
response rate was significantly higher in patients with the
G/G or G/A alleles at the nt −1748 as compared to those
possessing A/A at this position. The response rate was also
significantly higher in patients withT/T at the nt −443 than
in those with C/C or C/T at this position of OPN [120].

Low molecular mass polypeptides 7
There is an important role of low molecular mass poly-
peptides (LMP) in human leukocyte antigen (HLA) class
I-restricted antigen presenting systems [121,122]. Ge-
netic variations of LMP gene have a significant influence
on the treatment outcome of HCV infection. Genetic
variations of LMP gene in 175 HCV patients showed
that the frequency of LMP7-K gene in the sustained-
responders was significantly higher than in the non-
responders. LMP7-K and HCV-RNA quantity were
established as an independent factor affecting the out-
come of interferon therapy [123].

Oligoadenylate synthetase 1
IFN therapy against HCV infection is mediated by the
stimulation of intracellular antiviral proteins. 2′–5′
oligoadenylate synthetase (OAS) is a critical protein with
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antiviral activity [124]. It has discriminating activity
against several viruses. It is activated by double stranded
RNA (dsRNA) to polymerize adenosine triphosphate
(ATP) into 2′–5′ linked oligoadenylates which bind and
stimulate latent ribonuclease L (RNaseL). RNaseL de-
grades viral RNA and inhibits protein synthesis [125].
There is a strong genetic control of OAS1 basal activity
and the genetic polymorphism at exon 7 splice accepter
site (SAS). This makes OAS1 an excellent candidate
gene that can importantly affect the host susceptibility
to viral infection, disease progression and the treatment
response. Recent studies have shown a significant associ-
ation between the polymorphism at exon 7 SAS of
OAS1 gene and the response to interferon therapy in
HCV infected patients. It was found that patients
possessing the AA genotype at this specific position of
the OAS1 gene demonstrated a progressive disease and
resistance to the standard treatment [126].

Patient characteristics
Age
Patient age is an important factor linked to the treat-
ment response to HCV infection. In general, it is as-
sumed that younger individuals below forty respond
better to interferon therapy [127] than older ones. The
obvious justification for this association is that aged pa-
tients are more likely to have other liver diseases, such
as fibrosis and cirrhosis. Moreover, in older age there are
more imbalances of cellular, humoral, and innate im-
munity [128].

Race
Race is another important host factor that is linked with
the treatment outcome [129]. There is increasing evidence
that African-American patients respond poorly to inter-
feron therapy compared to non-African-Americans. The
range of sustained response for African-Americans was
19%-28% while those for non-African-Americans were 39-
52%. Moreover, the viral breakthroughs were also more fre-
quent in African-Americans [130]. The mechanisms behind
these observed differences in the treatment response are
not properly cleared. It may be due to higher body weight
and the HCV genotype 1 prevalence in African-Americans
[131]. Another important reason for this low treatment re-
sponse among the African-American population is the low
prevalence of IL28B polymorphism (rs12979860). The
prevalence of this SNP among the African-American is only
16% with SVR rate of 47% while among the Caucasians its
prevalence is 39% with SVR rate of 81% [132].

Sex
Initially it was shown that there were significant diffe-
rences in SVR rate with the female. Female sex is posi-
tively associated with SVR [133]. However, large
prospective studies showed that there was no effect of
sex in achieving SVR [134].

Obesity
It has been shown that a body mass index (BMI)
> 25 kg/m2 was linked with fibrosis [135]. Approxi-
mately, 30% of HCV patients are obese and they respond
poorly to interferon therapy [136,137]. The poor treat-
ment response in these patients is mostly attributed to
altered metabolism due to cytokine production by adipo-
cytes. Moreover, there is also a poor absorption of inter-
feron in obese patients [138]. On the contrary, a recent
large study showed that there is no significant effect of
BMI on the treatment outcome [139]. However, weight
loss plays an important role in HCV treatment because
it down regulates liver enzymes and the progression of
fibrosis [140].

Alcohol
The use of alcohol induces increased histological activity
and fibrosis of the liver. Histological lesions of the liver
are accelerated even by moderate use of alcohol in
chronic HCV patients [141]. Thus, alcohol intake is re-
lated to poor response to interferon therapy [142].

Insulin resistance
Multiple studies have shown that HCV infection is also
linked with insulin resistance [143]. The risk of develo-
ping diabetes mellitus is increased up to 11 times in pa-
tients with chronic HCV infection [144]. Interferon
therapy is also affected by insulin resistance in chronic
HCV patients. Insulin resistance causes up-regulation of
SOC3 which hinders interferon-mediated signaling path-
ways [145].

Hepatic steatosis
Hepatic steatosis accelerates disease progression in HCV
patients [146]. There is an involvement of both host and
viral factors in steatosis development. In case of HCV
genotype 3, steatosis is most commonly induced by the
virus while in case of non-genotype 3; it is mostly associ-
ated with BMI and central adiposity. Large scale clinical
studies have shown that steatosis weakens the treatment
response [147].

Conclusion
Interferon responsiveness is still a main clinical problem
in the treatment of HCV. The precise prediction which
patient will respond to this therapy is very important,
both from the point of the patient care and of the costs.
There are both host and viral factors which can signifi-
cantly predict the probable treatment outcome of HCV
patients. HCV genotype other than 1 is the most impor-
tant predictor of SVR. A number of host factors
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including SNPs of interferons IL28A, IL28B, IL29,
interferon-γ, MBL, IL −10, IL-18, CTLA4, TRAIL,
TGF-β, MX1, Osteopontin, LMP7, OAS1 genes, insulin
resistance, obesity and ethnicity, have been found to
modulate the treatment response. There is still a strug-
gle for discovering new direct-acting inhibitors of HCV
that will be used in combination with interferon or
without the application of interferon, so further future
studies of factors that may predict the treatment out-
come of combinational therapies are required.
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