Skip to main content
Figure 5 | Virology Journal

Figure 5

From: Comprehensive profiling of Epstein-Barr virus-encoded miRNA species associated with specific latency types in tumor cells

Figure 5

Clustering analysis of the EBV miRNA transcriptome helps to identify a latency switch. (A) Clustering analysis of the three latency types based on traditional EBV latency biomarkers (the EBNA1 promoters Cp, Wp, and Qp and LMP1) indicated that Daudi cells belonged to the EBV latency I group (upper left). However, unsupervised clustering analysis based on all of the EBV miRNA species alone (lower left) and in combination with classical latency biomarkers (right) suggested that Daudi cells might have undergone a transition from latency I to III. The three heat maps above were constructed based on normalized qPCR data. (B) Phenotypic observation of the Daudi cells in culture. Bright-field photomicrograph of three BL cell lines: B95-8 (left), Akata(+) (middle) and Daudi (right). The Daudi cells grew as macroscopic clumps, as was observed for the LCL B95-8 cells (the latency III control), whereas Akata(+) cells (latency I control) grew as a single-cell suspension. (C) Genotypic evaluation of the latency transition in Daudi cells. In contrast to Akata(+) cells, which exhibit latency I, Daudi cells had slightly higher levels of EBNA1 Wp activity and LMP1 expression (left). In addition, the average expression level of the BHRF1 family was slightly higher than that of the BART family in Daudi cells, which was in contrast to their patterns in Akata(+) cells (right).

Back to article page