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Abstract

than the exception.

Retroviruses are known to rely extensively on the expression of viral proteins from the sense proviral genomic
strand. Yet, the production of regulatory retroviral proteins from antisense-encoded viral genes is gaining research
attention, due to their clinical significance. This report will discuss what is known about antisense transcription in
Retroviridae, and provide new information about antisense transcriptional regulation through a comparison of
Human Immunodeficiency Virus (HIV), Human T-cell Lymphotrophic Virus (HTLV-1) and endogenous retrovirus-K
(ERVK) long terminal repeats (LTRs). We will attempt to demonstrate that the potential for antisense transcription is
more widespread within retroviruses than has been previously appreciated, with this feature being the rule, rather
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Main text

Retroviruses share a common genomic organization in
which the 5" long terminal repeat (LTR) is followed by the
gag, pro, pol and env genes, and terminates with the 3’
LTR. Accessory genes are encoded in ways unique to each
viral species. The majority of viral protein products stem
from the translation of sense-strand RNA transcripts.
Until recently, retroviral antisense transcription has been
largely overlooked as a source of viral RNA and proteins.
However, there is accumulating evidence of antisense
transcription in numerous exogenous retroviral genera,
including lentiviruses, deltaretroviruses, gammaretro-
viruses and betaretroviruses. Thus, the expression of anti-
sense proteins may be a broad phenomenon occurring
across Retroviridae, suggesting that antisense encoded
genes are an integral part of the viral genome. This report
contributes to our understanding of antisense trans-
cription by characterizing exogenous and endogenous
retroviral 3  (antisense) promoters. Our results highlight
that antisense transcription may be more widespread than
previously appreciated, with endogenous retroviruses
(ERVs) incapable of antisense transcription being the
exception, rather than the rule.
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Antisense transcription among exogenous
retroviruses

Antisense transcription is much better understood in ex-
ogenous retroviruses, as compared to their endogenous
counterparts. Human Immunodeficiency Virus (HIV)
and Human T-cell Lymphotrophic Virus (HTLV) are the
characterized retroviruses exhibiting this phenomenon.
The proteins encoded by their antisense strands serve
important functions, including control of viral sense
transcription, as well as viral latency, pathology, and
spread [1-4].

HIV antisense transcription

The ability of HIV-1 to encode an antisense protein was
suspected as early as 1988, when a conserved ORE, later
named asp-1, was identified in the region complemen-
tary to the env gene in many HIV-1 strains [5]. Since
then, many studies have confirmed the expression of
ASP-1 RNA and protein in vitro in various HIV-
expressing cell types, including monocyte-derived mac-
rophages, dendritic cells, and T cells [6-10]. Antibodies
recognizing an antisense protein derived from the env
gene have also been identified in HIV" patients [11]. Re-
cently, ASP-1 has been shown to induce autophagy,
which may explain its low abundance in HIV-1 infected
cells and the inherent difficulty in detecting this protein
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[12]. ASP-1 has been postulated to utilize this pathway
to enhance HIV-1 replication, as wild-type, but not mu-
tated forms of this antisense protein, resulted in optimal
viral replication through stimulation of autophagy [12].
In contrast, antisense transcript variants corresponding
to proviral asp have been shown to inhibit HIV-1 repli-
cation in vitro in acutely and chronically infected cell
lines, as well as in HIV-1 infected human PBMCs [8].
This suggests that HIV-1 antisense transcription may
have a critical role in establishing viral latency. More-
over, ASP-1 can form stable cytosolic aggregates, which
may sequester essential cellular proteins, and thus
modulate the function of cellular pathways in HIV-1 in-
fected cells [12]. Nonetheless, the precise functions of
viral antisense RNA and protein during HIV-1 infection
in vivo remain to be clearly elucidated.

The 3" LTR promoter is crucial for driving antisense
transcription in HIV-1. It has been experimentally dem-
onstrated that HIV-1 antisense transcription initiates at
multiple positions in the U3 region of the 3" LTR, as
well as at other downstream regions within the antisense
strand [8]. Other studies have reported that HIV-1 anti-
sense transcription is initiated in the U5 region of the 3’
LTR [7, 13]. The multiplicity of transcription initiation
sites may be a consequence of the lack of a TATA box in
the HIV-1 3" LTR [6], in which case transcription is ini-
tiated through alternative core promoter elements called
initiator (INR) motifs (YYANWYY) [7, 14]. The presence
of these multiple INR motifs serves to explain the vari-
ability observed in transcription initiation sites reported
by different studies.

In comparison to that of its sense transcription, the
regulation of HIV-1 antisense transcription is not well
understood. Nonetheless, several host transcription fac-
tors have been shown to play key roles in inducing tran-
scription from the antisense strand of HIV-1, including
Specificity Protein-1 (Sp1) [15, 16] Upstream Stimulating
Factor (USF) [17], and Nuclear Factor-kappa B (NF-kB)
[8, 16]. Mutagenesis of a conserved USF site has been
shown to diminish the activity of the HIV-1 antisense
promoter in reporter constructs [17]. The HIV-1 3" LTR
also contains several conserved NF-kB binding sites,
which are known to drive HIV-1 antisense transcription.
Point mutations in these sites have been demonstrated
to down-regulate the activity of the antisense promoter
in HIV-1 LTR reporter constructs [8, 15, 17]. NF-kB-
activating agents, such as phorbol 12-myristate 13-
acetate (PMA) and tumor necrosis factor a (TNFa), are
also known to induce HIV-1 antisense transcription,
likely through increased binding of NF-«xB on the viral
3" LTR [6, 8, 15]. In line with this finding, HIV-1 anti-
sense LTR reporter plasmids containing mutated «B sites
demonstrate decreased responsiveness towards PMA
and TNFa stimulation [6, 8]. PMA stimulation of
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antisense transcription in a luciferase-expressing HIV-1
proviral DNA clone has also been demonstrated in both
transfection and infection experiments [6]. In compari-
son, TNFa-mediated induction of HIV-1 antisense tran-
scription remains debatable, as other studies have failed
to replicate this phenomenon [6]. Thus, accumulating
evidence illustrates an important role of NF-«xB in the
induction of HIV-1 antisense transcription. However,
our bioinformatics analysis of the HIV-1 antisense pro-
moter suggests many additional transcription factors
likely contribute to the overall regulation of negative-
sense transcripts in this retrovirus (Fig. 1, Table 1).

In addition, there is evidence of single nucleotide poly-
morphisms in transcription factor binding sites within
the LTRs of different HIV-1 subtypes [18-21]. This se-
quence variation leads to subtype-specific differences in
proviral gene expression, thereby imparting unique bio-
logical characteristics to a given strain. This is well illus-
trated for the 5" LTR of HIV-1 subtype E, which harbors
a shift from an NF-kB to a GABP binding site [20].
Abolished NF-«B binding to this LTR does not lead to a
loss of promoter function in vitro; instead, gain of GABP
binding to this mutated NF-«kB site enhances Tat-
mediated HIV-1 gene expression in several cell types, as
well as improves virus replication in SuPT1 cell line
[20]. Thus, variability in transcription factor binding
sites in retroviral LTRs can have a positive impact on
proviral gene expression under certain conditions — this
may serve to enhance retroviral fitness and spread. Like-
wise, subtype-specific variations in the HIV-1 3" LTR
may also exert another layer of control over the proviral
antisense transcription.

Further, retroviral proteins can also modulate proviral
antisense transcription. Conflicting results have been re-
ported on the potential role of the HIV-1 accessory pro-
tein Tat in regulating antisense transcription. Tat has
been reported to enhance HIV-1 antisense transcription
in cell lines co-transfected with a Tat expression vector
and luciferase reporter plasmids containing HIV-1 3’
LTR but not 5" LTR [6]. However, in studies utilizing lu-
ciferase reporter constructs containing both HIV-1 3’
LTR and 5" LTR, Tat was not shown to alter antisense
transcription [22, 23]. Likewise, in a separate study util-
izing HIV-1 3" LTR luciferase reporter plasmids, overex-
pression of Tat did not influence antisense luciferase
activity [8]. Thus, the role of Tat in regulating HIV-1
antisense transcription remains controversial and should
be confirmed in the context of full length proviruses in-
tegrated during HIV-1 infection, rather than in artificial
reporter assays. As there is no evidence of TAR RNA
synthesis during antisense transcription, the mechanism
by which Tat influences the activity of the HIV-1 anti-
sense promoter remains unknown. It is possible that the
interaction of Tat with cellular transcription factors,
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Fig. 1 In silico examination of transcription factor binding sites and response elements within the representative HIV-1 3" LTR using ALGGEN-
PROMO software [73]. The prototypic HIV-1 3" LTR sequence used was obtained from GenBank, accession number K03455 (HXB2 strain). The
known binding sites for NF-kB, Sp1, USF-1, and USF-2 transcription factors in the HIV-1 3" LTR are flagged with an asterisk. Initiator motifs (INRs)
are indicated in pink. Sequence annotations were performed using Geneious software [68]
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such as Spl, modulates their binding to the HIV-1 3’
LTR [6], which may affect the extent of HIV-1 antisense
transcription.

HTLV Antisense transcription

A large portion of our knowledge on retroviral anti-
sense transcription stems from studies of Human T-
Lymphotropic Viruses (HTLV), particularly HTLV-1.
The HTLV-1 antisense genomic strand encodes a
basic leucine zipper (bZIP)-containing protein, desig-
nated HBZ. Although HTLV-1 is capable of infecting
different cell types in vitro, HBZ protein is mainly de-
tected in CD4" T cells in vivo [3, 24, 25]. This cell-
type specific expression of HBZ has been shown to
play a variety of roles in the pathogenesis of HTLV-
mediated T-cell leukemia (reviewed in [3, 26]). For in-
stance, HBZ transforms T-cells into a cancerous
phenotype, in part by enhancing the expression of
chemokine receptor CCR4 in this cell type, which
promotes T-cell proliferation and migration [27]. HBZ
also inhibits HTLV-1 sense transcription by recruiting
essential transcription factors, such as CREB, away
from the proviral sense promoter — this process facili-
tates HTLV-1 latency in infected T cells [3]. HBZ also
affects many other cellular processes, including host
gene expression, innate immune signaling, apoptosis,
autophagy, and DNA repair — all of which further in-
fluence the pathology of the HTLV-1 infection
(reviewed in [3]). Similar to HTLV-1, HTLV-2, HTLV-
3, and HTLV-4 are equally capable of producing

antisense proteins — APH-2, APH-3, and APH-4, re-
spectively — though their functions have not been
clearly elucidated [4, 26, 28—30].

Despite the extensive research focused on decipher-
ing the role of HTLV-encoded antisense proteins in
disease pathogenesis, there are a limited number of
studies aimed at understanding the regulation of
HTLV antisense transcription at the level of the pro-
viral 3" LTR. It has been demonstrated that HTLV-1
hbz is transcribed starting from the 3" LTR of the
HTLV-1 provirus [31-33]. Initiation of transcription
is possible at several different positions within the R
and U5 regions of the 3" LTR [31]. Like HIV-1 anti-
sense promoter, the HTLV-1 3" LTR is a TATA-less
promoter harboring many INR motifs, thus leading to
a multitude of antisense transcription initiation sites
[31, 34, 35]. The transcription of /hbz relies heavily on
three Spl sites in the U5 region of the proviral 3’
LTR [23, 31, 34, 36]. In luciferase assays, HTLV-1
antisense promoter activity is markedly reduced upon
mutation of single or multiple Spl sites [34]. The
same study identified binding sites for GATA binding
protein-2 (GATA-2), cAMP responsive element bind-
ing protein (CREB), activating protein 1 (AP-1), and
nuclear factor-1 (NF-1) in the HTLV-1 3" LTR. How-
ever, mutations of each of these sites only reduced
promoter activity slightly in luciferase assays [34].
Other cellular transcription factors, including activat-
ing transcription factor (ATF), CCAAT-enhancer
binding protein (C/EBP), and histone acetyltransferase
p300 have also been shown to bind the HTLV-1
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Table 1 Comparison of the types of cellular transcription factors and the number of their cognate binding sites on the antisense
promoters of human-specific ERVK, HIV-1, and HTLV-1. Sequences of the consensus binding sites for cellular transcription factors
predicted to bind these retroviral antisense LTRs are also shown

Transcription Factor

Consensus binding site sequence

Number of putative binding

sites predicted in 3" LTR

ERVK HS HIV-1 HTLV-1

Activating Protein 1 (AP-1) c-Jun/c-Fos TGA (G/C) TCA 5 3 2
Activating Protein 2a (AP-2a) GCCNNNGGC 5 2 14
Activating Transcription Factor-3 (ATF-3) T (T/G) ACGT (A/C) (A/G) 1 — 3
Androgen Receptor (AR) GG (A/T) ACANNNTGTTCT (ARE) 1 — —
Aryl hydrocarbon receptor / AhR nuclear translocator (AhR/ARNT) TNGCGTG 2 3 4
CcAMP Response Element Binding Protein (CREB) TGACGTCA — — 2
CCAAT-Enhancer Binding Protein (C/EBP) A (A/G/T) C (C/A) AAT 7 3 3
Cellular Myeloblastosis virus protein (c-Myb) (T/O) AAC (G/T) G 12 7 8
Cellular Myelocytomatosis virus protein (c-Myc) NNNCACGTGNN (E-box) 10 1 2
Chicken Ovalbumin Upstream Promoter Transcription (A/G) G (G/T) TCA 7 15 13
Factor-1 (COUPT or COUPTF-1)
E2 Factor-1 (E2F-1) TTT (C/G) (¢/G) CGC — — 2
Early B-cell Factor (EBF) CCCNNGGG 9 7
EGFR-specific Transcription Factor (ETF) G/C rich regions 14 19
Enkephalin Transcription Factor-1 (ENKTF-1) TGGCGTA 1 — —
Estrogen Receptor (ER-a; ER-B) GGTCANNNTGACC (ERE) 1 — —
E-twenty six (ETS-1; ETS-2) GGA (A/T) 12 8 7
ETS-like Transcription Factor 1 (Elk-1; ELF-1) CAGGAA (C/G) (PU Box) 5 1 2
Forkhead Box P3 (FOXP3) (G/A) (T/C) AAACA 14 1 3
GATA binding proteins (A/T) GATA (A/G) (GATA Box) (A/T) 3 2 1

GATA-1,4,5 GAT (A/Q) (A/G) (A/T) GAT (T/C) (A/G) 6 6 )

GATA-2,3

GATA -6 7 5 2
GC Binding Factor (GCF) GCGGGGC — — 1
Glucocorticoid Receptor (GR-a; GR- ) GGTACANNNTGTTC (GRE) 1 —
Hepatocyte Nuclear Factor-3/4 (HNF3; HNF4) GGTCA repeats 3 — 3
Hepatocyte Nuclear Factor-1 (HNF1) GTTAATNATTAAC 1 — —
Hypoxia Inducible Factor-1 (HIF-1) (A/G) CGTG (flanked by (A/C) ACAG) 3 1 2
lkarose-1 (IK-1) TGGGA (A/T) 16 5 6
Interferon Regulatory Factors (IRF) GAAANN repeats (ISRE) 2 — 2
Lymphoid Enhancer-binding Factor 1 (LEF-1) CTTTGAA 3 — —
Myc Associated Zinc finger protein (MAZ) GGGAGGG 9 1 6
Nuclear Factor of Activated T cells (NFAT) GGAGAA 10 — 7
Nuclear Factor | (NFI; NFI/CTF) TTGGCNNNNNGCCAA — — 2
Nuclear Factor Kappa B (NF-kB) GG (G/A) (G/A) NN (C/T) (C/T) CC 9 7 6
Nuclear Factor-Y (NF-Y) CCAAT 2 — 3
Polyomavirus Enhancer Activator 3 (PEA or PEA-3) GGA (A/T) 12 8 7
Progesterone Receptor (PR-A; PR-B) GNACANNNTGTNC (PRE) 1 — —
Protein 53 (p53) CATTAG 8 1 1
Recombination signal Binding Protein-Jk (RBP-Jk) (C/T) GTGGGAA 1 — —
Retinoid X Receptora (RXRa) AGGTCA 11 7
Serum Response Factor (SRF) C (/M) (A/MeGG 2 4 2
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Table 1 Comparison of the types of cellular transcription factors and the number of their cognate binding sites on the antisense
promoters of human-specific ERVK, HIV-1, and HTLV-1. Sequences of the consensus binding sites for cellular transcription factors
predicted to bind these retroviral antisense LTRs are also shown (Continued)

Sex-determining Region Y (SRY) (A/T) (A/T) CAA (A/T) 12 4 3
Signal Transducers and Activators of Transcription (STAT) TTCNNNNGAA 10 4 8
Specificity Protein-1 (Sp1) GGGCGG 15 1 14
TATA Binding Protein (TBP) TATAAA 1 — 1

T cell Factor-4E (TCF-4E)
Thyroid Hormone Receptor (TRB)

(G/C) ATCAAAGG 1 — —
TGAGGTCA (TRE) 1 — 1

Transcription Factor II-D (TFII-D) TATAAA 1 — 1
Transcription Factor II-| (TFII-) CANNTG 13 3 1
Upstream Transcription Factor (USF-1, USF-2) CACGTG (E-box) 10 1 2
Vitamin D Receptor (VDR) G (G/T) TCA 25 20 21
X-box binding protein (XBP-1) CCACG 9 9 9
Yin Yang 1 (YY1) GCCATNTT 1 — 1

— indicates no putative binding sites

ARE androgen response element, E-box enhancer box, ERE estrogen response element, PU Box purine box, GRE glucocorticoid response element, /SRE interferon
stimulated response element, PRE progesterone response element, TRE thyroid hormone response element

antisense promoter in HTLV-1 transformed cell lines,
as well as in cells derived from patients with Adult
T-cell Leukemia/Lymphoma (ATL) [3, 37]. Thus,
these transcription factors are postulated to play a
role in regulating antisense HTLV-1 transcription.
Whether they promote or inhibit antisense gene ex-
pression remains to be elucidated. In addition, T-cell
factor 1 (TCF-1) and Lymphoid enhancing factor 1
(LEF-1) have been shown to slightly enhance hbz
transcription and HTLV-1 3" LTR activation in lucif-
erase assays [38]. In line with these studies, bioinfor-
matics analysis of the consensus HTLV-1 3" LTR has
not only confirmed the presence of intact binding
sites for the aforementioned transcription factors, but
has also revealed putative sites for numerous other
antisense transcriptional regulators (Fig. 2, Table 1).
Interestingly, some of the identified binding sites for
transcription factors, notably ATF, CREB, and NF-],
are unique to the 3’ LTR of HTLV-1, and are not
predicted within the HIV-1 3' LTR. Thus, HTLV-1
antisense gene expression is likely regulated by a
multitude of cellular and retroviral transcription fac-
tors. There is an evident need for future research
characterizing the transcriptional regulators that
broadly and selectively modulate antisense gene ex-
pression in the various tissue types targeted by
retroviruses.

The transcription of HTLV-1 proviruses is further
modulated by the antisense-encoded HBZ protein. HBZ
binding to the 5 LTR of HTLV-1 promotes viral latency
by suppressing sense transcription [39]. Conversely,
HTLV-1 antisense transcription is positively regulated by
HBZ. HBZ has the capacity to form heterodimers with a

cellular transcription factor JunD [36]. Co-expression of
JunD and HBZ has been shown to significantly increase
HTLV-1 3’ LTR activity in luciferase assays as compared
to the expression of JunD or HBZ alone [36]. Also, lucif-
erase activity was not enhanced with HBZ overexpres-
sion in knockout cells lacking JunD [36]. It was further
shown that HBZ/JunD dimers are recruited to Spl-
bound regions of the HTLV-1 3" LTR, due to the inter-
action of JunD with Spl [36]. Accordingly, mutation of
one of these Sp1 sites in the HTLV-1 reporter construct,
or the overexpression of Spl mutants lacking DNA-
binding ability, resulted in a significant decrease in lucif-
erase expression [36]. Therefore, HTLV-1 antisense
transcription is regulated through interactions between
HBZ, JunD, and Sp1 at the 3" LTR.

As suggested for HIV-1 Tat interaction with its 3°
LTR, the HTLV-1 accessory protein Tax can also up-
regulate the proviral antisense transcription. Overex-
pression of Tax has been shown to markedly enhance
luciferase activity from transiently expressed, as well
as stably integrated, HTLV-1 3" LTR reporter con-
structs in human cell lines [40]. Tax responsive ele-
ments (TxREs) containing near-consensus CREB
binding sites have been reported in the HTLV-1 anti-
sense promoter [3, 34, 40]. Mutations of these
TxREs, which render them incapable of interacting
with CREB, exhibited a dramatically reduced lucifer-
ase activity from the 3" LTR in the presence of Tax
[34, 40]. Thus, viral Tax protein has been shown to
drive HTLV-1 antisense transcription by cooperating
with CREB at TxREs at the 3" LTR. In stark contrast,
several reports using similar methodology, but differ-
ent host «cells, have not detected Tax-mediated
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was obtained from GenBank, accession number AB513134 (B1033-

. Initiator motifs (INRs) are indicated in pink. ISRE sites are indicated in blue.

regulation of viral antisense transcription [23, 32, 41].
Thus, the discrepancies between these studies suggests
that Tax-mediated regulation of antisense gene expression
likely depends on the cell type being investigated, and
consequently, the availability of cell-specific transcription
factor complexes required for this process. This would be
consistent with similar cell-type specific observations sur-
rounding Tax-dependent transactivation of HTLV-1 sense
transcription [41].

Antisense transcription among other exogenous
retroviruses

Antisense transcription is not exclusive to HIV and
HTLYV, and has also been reported in the deltaretro-
viruses bovine leukemia virus (BLV) [42] and simian
T-cell leukemia virus (STLV) [43], the lentiviruses fe-
line immunodeficiency virus (FIV) [44] and bovine
immunodeficiency virus (BIV) [45], as well as the

gammaretrovirus murine leukemia virus (MLV) [46].
However, the regulation of antisense transcription re-
mains poorly studied in these retroviruses. A recent
report has demonstrated that the antisense transcrip-
tion of BLV, a close relative of HTLV-1, is regulated
by an Interferon Regulatory Factor (IRF) binding site
and an E-box in its 3" LTR [42]. Through BLV 3’
LTR luciferase reporter assays, mutation of this IRF
binding site or the E-box resulted in modest to sig-
nificant downregulation of antisense luciferase activity,
respectively. Bioinformatics analysis has revealed the
presence of two putative intact IRF binding sites in
the HTLV-1, but not HIV-1, representative 3" LTR, as
well the presence of intact E-boxes in both antisense
promoters (Fig. 2, Table 1). This suggests that IRF
may regulate the antisense transcription of select ret-
roviruses, whereas E-boxes may be a broader feature
of retroviral 3" LTRs.
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Antisense transcription among endogenous
retroviruses

Antisense transcription has been emerging as a com-
mon, but generally underappreciated, feature of ERV
gene expression patterns. Several human ERVs, particu-
larly ERV9 and ERVK loci, exhibit transcription from
the antisense strand. Above and beyond the potential of
antisense products to modulate endogenous retrovirus
expression patterns, the impact of antisense viral prod-
ucts on human biology is becoming apparent. Most not-
ably, antisense transcription of ERVs may play important
roles in the regulation of human gene expression or
modulation of cellular pathways.

ERV9 antisense transcription

Among human endogenous retroviruses, antisense tran-
scriptional regulation of ERV9 loci is the best under-
stood. Several cellular transcription factors are known to
induce the expression of antisense RNA from the U3 re-
gion (referred to as the U3 AS RNA) of the ERV9 LTR.
This includes CREB, glucocorticoid receptors (GR), IRF,
signal transducers and activators of transcription
(STAT), and activating protein 2 (AP-2) [47]. Interest-
ingly, the AUUGG motifs within the ERV9 antisense
transcripts have been experimentally demonstrated to
interact with and sequester select cellular transcription
factors — NF-Y, p53 and Sp1l [47]. We have predicted the
presence of similar motifs in the antisense RNA originat-
ing from the ERVK 3’ LTR (data not shown). By seques-
tering the aforementioned cellular transcription factors,
ERV9 U3 AS RNA serves to repress the expression of
genes involved in cell cycle activation, thereby inhibiting
uncontrolled cellular proliferation. Accordingly, deregu-
lation of this ERV-derived antisense RNA has the poten-
tial to promote tumor formation and propagation [47].
Thus, the production of endogenous AS RNA decoys
may be an important phenomenon among endogenous
retroviruses, and may serve essential regulatory and pro-
tective functions for their human hosts.

ERVK antisense transcription

The human genome is ubiquitously populated with
ERVK sequences including solitary LTRs and partial pro-
viral sequences, as well as full-length proviruses. Solitary
LTRs are the most abundant ERVK elements within the
human genome, and are estimated to number over
25,000 [48]. They are frequently present in close proxim-
ity to our genes, and therefore may be involved in the
regulation of neighbouring genes by acting as promoters
or enhancers. It is estimated that at least 50% of human-
specific ERVK (HML-2) LTRs serve as promoters for the
transcription of human genes [49]. ERVK LTRs have
been experimentally shown to activate the expression of
promoter-less reporter genes in luciferase assays when
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inserted in both forward and reverse orientations, indi-
cating their bidirectional promoter activity [48]. Such bi-
directional activity lends plausibility to antisense viral
RNA transcription mediated by the 3" LTR of ERVK.

Recently, several ERVK loci present outside human in-
tronic regions have been demonstrated to exhibit tran-
scription of the proviral antisense strand in prostate
cancer cell lines. These include ERVK(I), ERVK-106, an
un-named ERVK within locus 7q34, and multiple loci of
solo LTRs [50]. When inserted in an opposite transcrip-
tional orientation to that of their host intron, antisense
transcription of ERVK proviruses can be explained as a
consequence of host gene transcription. In contrast, the
basis of transcription of the antisense strands of ERVK
loci, such as ERVK-106, situated outside of human genes
remains unclear. Though the regulation of antisense
transcription driven by the ERVK 3’ LTR is poorly
understood, it is likely mediated by a complex of TFs
binding to the 3" LTR (Fig. 3).

As a first step to better understand putative antisense
ERVK transcription from its 3" LTR, we performed an
extensive bioinformatics analysis of 92 full-length ERVK
HML-2 sequences, and predicted intact and conserved
binding sites for numerous human transcription factors
within 3" LTRs of human-specific ERVK HML-2 provi-
ruses (Fig. 3 shows transcription factor binding sites on
five prototypic ERVK 3" LTRs, and Table 1). Similar to
antisense promoters of other retroviruses, conserved sig-
natures of ERVK 3" LTR include absence of a TATA-box
and the presence of multiple conserved INR motifs scat-
tered throughout the LTR (Fig. 3). This suggests that
these putative alternative core promoter elements may
initiate transcription from the ERVK proviral antisense
strand at multiple sites. Additionally, in the absence of a
TATA box (TATAAA), select subtypes of exogenous ret-
roviruses, such as HIV-1 subtype E, have been shown to
utilize a CATA box (CATAAA) to initiate proviral gene
transcription [51]. Since the ERVK 3’ LTR contains a
conserved putative CATA box (Fig. 3), ERVK may simi-
larly use this promoter element to initiate antisense
transcription.

It is noteworthy that we identified multiple Sp1 bind-
ing sites in the ERVK 3" LTR, as they are critical for in-
ducing transcription from TATA-less promoters. This is
due to Spl recruitment of transcription factor II-D
(TFII-D) which promotes the formation of transcription
initiation complexes [16]. Since Spl binding to both
HIV-1 and HTLV-1 antisense LTRs activates expression
of their respective antisense proteins, this ubiquitous
transcription factor may also have a key role in driving
antisense transcription from the TATA-less ERVK 3’
LTR. Indeed, the ERVK 3’ LTR is laden with multiple
conserved potential Spl binding sites; a total of 15 were
identified, a similar density to that found of the HTLV-1
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antisense promoter (Fig. 3). The ERVK antisense pro-
moter harbors putative binding sites for other transcrip-
tion factors known to induce the activity of 3" LTRs of
exogenous retroviruses and ERV9. These include dock-
ing sequences for STAT, AP-2, AP-1, USF, GATA, NE-Y,
ATE, CBP, TCF, LEF, and E-box (Fig. 3).

In addition, the ERVK 3" LTR contains multiple putative
NEF-kB binding sites (Fig. 3). Thus, this pro-inflammatory
transcription factor may drive ERVK antisense transcrip-
tion under select conditions, as documented for exogen-
ous retroviruses [17, 26]. Another interesting feature of
the ERVK 3’ LTR is the presence of two conserved con-
sensus interferon stimulated response elements (ISREs).
We have recently demonstrated the ability of IRF1 and
NE-kB p65/p50 to synergistically enhance transcription

from the ERVK sense promoter in the presence of select
pro-inflammatory cytokines [52, 53]. Of note, ERVK 3’
LTR ISRE sequences are more similar to canonical ISREs
as compared to their 5° LTR counterparts, suggesting
stronger IRF/NF-«B binding potential [54, 55]. Thus, in-
flammatory stimuli that enhance the activity of IRFs and
NF-«B have the potential to provide an additional level of
regulation on the ERVK antisense transcriptome.
Bioinformatics analysis further revealed select transcrip-
tion factor binding profiles unique to ERVK antisense pro-
moters, notably the presence of hormone responsive
elements that were absent from both HIV-1 and HTLV-1
3" LTRs. This includes the presence of putative binding
sites for androgen (AR), estrogen (ER), glucocorticoid
(GR), and progesterone (PR) receptors (Fig. 3, Table 1).
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Since these hormonal receptors are known to drive the ac-
tivity of the ERVK 5" LTR [53, 56, 57], they may also
modulate the activity of its 3" LTR.

The TF profile of the ERVK 3" LTR may also point to
cell-specific activation of antisense transcription. As with
the HTLV-1 3" LTR, the ERVK 3" LTR contains putative
binding sites for FOXP3, a transcription factor specific
to regulatory T cells. Expression of antisense HTLV-1
transcripts in T regulatory cells is associated with the
development of Adult T-cell Leukemia (ATL) [3, 24], po-
tentially suggesting a shared mechanism for ERVK-
associated leukemia [58]. In addition, several GATA
family transcription factor binding sites are found within
the ERVK antisense LTR. Owing to the importance of
GATA family transcription factors in regulating immune
cells [59], our data indicate that antisense ERVK expres-
sion may be modulated in hematopoietic cells, More-
over, impairment of GATA transcription factors are a
hallmark of many cancers [60]. If ERVK were to employ
an antisense product whose expression was i) driven by
GATA proteins, and ii) held a similar latency-inducing
function as HTLV-1 HBZ, the lack of GATA protein ex-
pression in cancers could explain the enhanced expres-
sion of sense-encoded ERVK protein products in
transformed cells [58, 61].

Understanding the activity of the ERVK 3" LTR pro-
moter may be the key to elucidating the basis of anti-
sense transcription of endogenous proviruses; however,
it should be noted that not all ERVK LTRs are equally
intact. Evaluation of human-specific and older 3" ERVK
LTRs in the HML-2 family reveals conserved, alternative
and unique TF binding site profiles, when comparing re-
cent and older provirus LTRs (data not shown). There-
fore, developing an understanding of ERVK antisense
transcription, especially in the context of specific gen-
omic loci, is an area of research that clearly requires
more investigation.

ERVK genome harbors ORFs for putative
antisense proteins

Since the ERVK antisense promoter contains con-
served putative enhancer elements and consensus
binding sites for numerous human transcription fac-
tors, it puts forth the question as to whether the
ERVK antisense genomic strand contains open read-
ing frames (ORFs) for putative antisense proteins. We
have been able to identify conserved regions of ERVK
antisense genome that resemble motifs found within
glycosyltransferases (GTs) and thioredoxin/thioredoxin
reductase (TRX) complexes (data not shown). Inter-
estingly, one of these conserved motifs is located in a
region complementary to the sense strand of ERVK
env — a position similar to that of the open reading
frames for hbz in HTLV-1, aph-2 in HTLV-2, and asp
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in HIV-1 [9]. Interestingly, the production of viral-derived
GTs or TRXs would be consistent with the needs of vi-
ruses [62], and more specifically retroviruses [63—65].

However, due to several limitations, it is currently dif-
ficult to predict with confidence whether the ERVK gen-
ome encodes antisense products. Notably, the primary
structures of GTs and TRXs are extremely diverse and
lack signature features [66, 67]. This lack of specificity in
the predicted protein domains creates further issue for
sequence alignment and does not lend assurance to
current predictions without further bioinformatic and
experimental investigation. It would further be worth-
while to employ whole transcriptome sequencing to
examine the production of ERVK antisense transcripts
in tissue specimens from patients with ERVK-associated
diseases versus healthy controls. In the future, tech-
niques developed to study antisense transcription in ex-
ogenous retroviruses will be useful in characterizing the
expression of ERV antisense genomes.

Conclusions

In the light of this report, further research on antisense
transcription in endogenous retroviruses is warranted.
We have shown that the exogenous and endogenous
antisense LTRs share many regulatory similarities. Thus,
it would be interesting to examine whether regulatory
and pathological processes associated with exogenous
retroviral antisense transcription are also applicable to
ERVs. The presence of potentially new antisense-
encoded transcripts and proteins would provide a more
complete understanding of the biology of endogenous
retroviruses, such as ERVK, and their roles in health and
disease. A reconsideration of the nature of exogenous, as
well as endogenous, retroviral transcription is required
for a better understanding of Retroviridae as a whole.

Methodology

The sequences of antisense promoters (3" LTR) of ex-
ogenous retroviruses (HIV-1 and HTLV-1) and endogen-
ous retrovirus-K (HML2) were obtained from GenBank,
and reverse complemented in Geneious [68]. For HIV-1
and HLTV-1 3" LTRs, the prototypic sequences used
were that of the HXB2 and B1033-2009 strains, respect-
ively, as these are the most commonly used reference se-
quences for these exogenous retroviruses [69-71]. The
92 ERVK (HML2) 3" LTRs analyzed were grouped into
human-specific or old sequences [72]. These were
aligned separately in Geneious and a consensus se-
quence was obtained for each of the two groups. The
human specific ERVK 3" LTRs were further refined into
five prototypic sequences, as each of the remaining
ERVK 3’ LTRs exhibited transcription factor binding site
patterns similar to one of these prototypic antisense pro-
moters. These prototypic LTRs were aligned in
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Geneious-R6° software (version 6.1.7), and a consensus
sequence was obtained. The binding sites for human-
specific transcription factors within consensus HIV-1,
HTLV-1, and ERVK (HML2) 3° LTR sequences were
predicted through ALGGEN PROMO database, which
uses version 8.3 of TRANSFAC [73]. PROMO can be
accessed at http://alggen.Isi.upc.es/cgi-bin/promo_v3/
promo/promoinit.cgi?dirDB=TF_8.3. The search param-
eters used were: factor’s species — Homo sapiens, and
site’s species — Homo sapiens. Each binding site for a
given transcription factor was compared to the sequence
of its known consensus binding site (listed in Table 1).
The consensus binding sites for transcription factors
predicted to interact with these retroviral promoters
have been previously described [53]. The consensus
binding sites for ATF3, AhR/ARNT, COUPTFI1, E2F1,
ETF, ENKTF1, FOXP3, GATA family, GCF, HNF, HIF,
NE-Y, RxRa, SRE, TCF-4E, and TR were obtained from
[74-90]. Only those sites with a maximum of one base
pair deviation from the consensus binding sequence (or
two for large hormonal response elements) were anno-
tated on the target retroviral 3° LTR. All annotations
were performed in Geneious-R6°.
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