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Abstract

and diversification of hantaviruses.

Recently identified hantaviruses harbored by shrews and moles (order Soricomorpha) suggest that other mammals
having shared ancestry may serve as reservoirs. To investigate this possibility, archival tissues from 213 insectivorous
bats (order Chiroptera) were analyzed for hantavirus RNA by RT-PCR. Following numerous failed attempts,
hantavirus RNA was detected in ethanol-fixed liver tissue from two banana pipistrelles (Neoromicia nanus), captured
near Mouyassué village in Cote d'lvoire, West Africa, in June 2011. Phylogenetic analysis of partial L-segment
sequences using maximum-likelihood and Bayesian methods revealed that the newfound hantavirus, designated
Mouyassué virus (MOUV), was highly divergent and basal to all other rodent- and soricomorph-borne hantaviruses,
except for Nova virus in the European common mole (Talpa europaea). Full genome sequencing of MOUV and
further surveys of other bat species for hantaviruses, now underway, will provide critical insights into the evolution
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Findings

Discovery of phylogenetically divergent hantaviruses in
shrews and moles (order Soricomorpha, family Soricidae
and Talpidae) [1-13] raises the possibility that rodents
(order Rodentia, family Muridae and Cricetidae) may not
be the principal or primordial reservoirs. Moreover, new-
found hantaviruses harbored by soricomorphs of multiple
species, distributed in widely separated geographic regions
across four continents, suggest that their host diversity
may be far more expansive than previously assumed. Spe-
cifically, other mammals having shared ancestry or ecosys-
tems with soricomorphs may serve as reservoirs and may
be important in the evolutionary history and diversifica-
tion of hantaviruses. In particular, bats (order Chiroptera)
may be potential reservoirs by virtue of their rich diversity
and vast geographical range, as well as their demonstrated
ability to host myriad medically important, disease-causing
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viruses [14-18]. Surprisingly little attention, however, has
been paid to this possibility.

As in our previous investigations on the spatial and
temporal distribution of hantaviruses in soricomorphs
[2-13], we relied on the availability of archival tissues.
Using the PureLink Micro-to-Midi total RNA purifica-
tion kit (Invitrogen, San Diego, CA), total RNA was
extracted from 168 frozen and 45 ethanol-fixed liver
and other visceral tissues of 213 insectivorous bats
(representing 13 genera), collected during May 1981 to
June 2011 in Asia, Africa and the Americas (Table 1).
cDNA was then prepared with the SuperScript III First-
Strand Synthesis System (Invitrogen) using random hex-
amers, and PCR was performed as described previously,
using an extensive panel of oligonucleotide primers,
designed on conserved genomic sequences of rodent-
and soricomorph-borne hantaviruses [2-13,19,20]. Each
reaction mixture contained 250 u dNTP, 2 mM MgCl,,
1 U AmpliTaq polymerase (Roche, Basel, Switzerland)
and 0.25 p oligonucleotide primers. Initial denaturation
at 94°C for 5 min was followed by two cycles each of
denaturation at 94°C for 40 s, two-degree step-down
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Table 1 Detection of hantavirus RNA in tissues of insectivorous bats by RT-PCR

Genus species USA Bolivia Guyana Liberia Cote d’lvoire Mongolia Malaysia Total
Antrozous pallidus 0/20 0/20
Corynorhinus townsendii 0/19 0/1 0/20
Eptesicus fuscus 0/21 0/21
Eptesicus gobiensis 0/20 0/20
Eptesicus sp. 0/4 0/4
Hipposideros cafer 0/14 0/5 0/19
Hipposideros cervinus 0/1 0/11
Hipposideros cyclops 0/1 0/M
Hipposideros gambianus 0/5 0/5
Lasiurus cinereus 0/20 0/20
Mops condylurus 0/2 0/2
Neoromicia nanus 2/12 2/12
Nycteris arge 01 0/1
Nycteris major 0/1 0/1
Nycteris thebaica 0/1 01
Pipistrellus nanulus 0/9 0/9
Pteronotus parnellii 0/5 0/5
Rhinolophus trifolatus 0/8 0/8
Scotophilus sp. 0/3 0/3
Tadarida brasiliensis 0/10 0/10 0/20
Total 0/90 0/1 0/5 0/23 2/45 0/20 0/19 2/213

annealing from 48°C to 38°C for 40 s, and elongation at
72°C for 1 min or 1 min 20 s, then 32 cycles of dena-
turation at 94°C for 40 s, annealing at 42°C for 40 s, and
elongation at 72°C for 1 min, in a GeneAmp PCR 9700
thermal cycler (Perkin-Elmer, Waltham, MA). Ampli-
cons were purified using the QIAQuick Gel Extraction
Kit (Qiagen, Hilden, Germany), and DNA sequencing
was performed using an ABI Prism 377XL Genetic Ana-
lyzer (Applied Biosystems, Foster City, CA).

After innumerable failed attempts, hantavirus RNA
was detected by RT-PCR in ethanol-fixed liver tissues
from two of 12 banana pipistrelles (Neoromicia nanus
Peters 1852), captured during June 2011 near Mouyas-
sué village (5°22’07"N, 3°05’37"W) in Aboisso District,
130 km from Abidjan, in the extreme southeastern
region of Cote d'Ivoire in West Africa (Figure 1). The
taxonomic identity of the hantavirus-infected vesper
bats was confirmed by phylogenetic analysis of the cyto-
chrome b gene of mtDNA (GenBank JQ287717), ampli-
fied by PCR as previously described [8,9]. Despite
similarly exhaustive efforts, hantavirus RNA was not
detected in any of the other bat species tested (Table 1),
including frozen liver tissue of six tiny pipistrelles (Pipis-
trellus nanulus), collected in Parc National du Mont
Péko, 700 km northwest of Mouyassué, in February
1992, and ethanol-fixed liver tissue of three tiny pipis-
trelles, collected in December 2009 in Azagny, where a
hantavirus was previously found in the West African
pygmy shrew (Crocidura obscurior) [8].

A 423-nucleotide region of the RNA-dependent RNA
polymerase-encoding L segment, amplified using a
hemi-nested primer set (outer: 5-GAAAGGG-
CATTNMGATGGGCNTCA GG-3’, 5-AACCADT-
CWGTYCCRTCATC-3’; inner: 5-GNAAAYTNATGT-
ATGTNAGT GC-3’, 5-AACCADTCWGTYCCRT-
CATC-3’), was aligned and compared with hantavirus
sequences available in GenBank, using ClustalW
(DNASTAR, Inc., Madison, WI) [21] and transAlign
[22]. The newfound hantavirus, designated Mouyassué
virus (MOUYV), exhibited low nucleotide and amino acid
sequence similarity of less than 69% to all representative
soricomorph- and rodent-associated hantaviruses, except
for the 76.3% sequence similarity with Nova virus
(NVAYV), previously reported in the European common
mole (Talpa europaea) [12]. Interestingly, MOUV
sequences were identical in the two banana pipistrelles
(KB576 and KB577), a male-female pair captured simul-
taneously and presumed to be a mating couple, suggest-
ing horizontal virus transmission or common-source
infection.

MOUYV formed a uniquely divergent lineage, distant
from all other hantaviruses identified to date, except for
NVAV (Figure 2), in phylogenetic trees based on L-seg-
ment sequences, generated by the maximum-likelihood
and Bayesian methods, implemented in PAUP* (Phylo-
genetic Analysis Using Parsimony, 4.0b10) [23], RAxML
Blackbox webserver [24] and MrBayes 3.1 [25], under
the best-fit GTR+I+I" model of evolution established
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Figure 1 (A) Banana pipistrelle (Neoromicia nanus) in which
hantavirus RNA was detected. (B) Capture site of banana
pipistrelles near Mouyassué village in Aboisso District. (C) Map of
Cote d'lvoire, showing Mouyassué, Azagny and Mont Péko, where
insectivorous bats were captured. The geographic range of the
banana pipistrelle extends throughout sub-Saharan Africa (shaded
area in inset).

using jModeltest 0.1.1 [26]. Topologies were well sup-
ported by bootstrap analysis of 100 iterations, and pos-
terior node probabilities based on two runs each of 2
million generations sampled every 100 generations with
burn-in of 25%.
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Despite the overall success of our brute-force RT-PCR
approach at identifying previously unrecognized hanta-
viruses in frozen tissues [2,3,5-7,10-13] and tissues pre-
served in RNAlater® RNA Stabilization Reagent [4,8],
designing universal primers for the amplification of sori-
comorph-borne hantaviruses has presented continuing
challenges. Thus, while it is likely that many more han-
taviruses await discovery, overcoming technical barriers
is essential to facilitating their detection. Viewed in this
context, the failure to detect hantavirus RNA in all but
one bat species was not altogether unexpected and may
be attributed simply to suboptimal primer design and
imperfect cycling conditions. Also, low RNA vyields and
poor RNA preservation in tissues fixed in ethanol under
field conditions may have thwarted our efforts at obtain-
ing more of the MOUV genome. That said, the success-
ful amplification of hantavirus RNA from ethanol-fixed
tissues is highly instructive and augments the pool of
archival tissues for future exploratory studies of hanta-
viruses in bats, and possibly other insectivorous small
mammals that share ancestral lineages with sorico-
morphs, such as hedgehogs (order Erinaceomorpha,
family Erinaceidae).

Dating to the seminal discovery of Hantaan virus in
lung tissue of the striped field mouse (Apodemus agrar-
ius) [27], lung has been the preferred tissue in studies
aimed at finding new hantaviruses [28-30]. However,
lung is not the only tissue in which hantaviruses can be
detected [27,31]. In our search of genetically distinct
hantaviruses in long-stored archival tissues from shrews
and moles, lung tissue was frequently unavailable.
Instead, liver tissue was more often accessible and
proved to be quite suitable [4,5,12,13]. Similarly, liver
tissues were more often available in the present study.
As in reservoir rodents and soricomorphs, hantavirus
RNA is likely to be present in many tissues of persis-
tently infected bats. Real-time quantitative RT-PCR ana-
lysis of lung, liver and other viscera will clarify the
tissue distribution of MOUYV in newly captured banana
pipistrelles from Mouyassué.

Having their fossil origins in the Eocene epoch,
approximately 50 million years before present, bats
occur on every continent except Antarctica and are
among the most speciose orders of mammals, with
more than 1,100 extant species [32]. The banana pipis-
trelle, which is distributed widely in forests and savannas
across sub-Saharan Africa (Figure 1C, inset), is one of
13 species in the genus Neoromicia of the family Ves-
pertilionidae and subfamily Vespertilioninae. Like other
vesper bats, the banana pipistrelle is insectivorous.
Unlike large fruit bats, such as the straw-colored fruit
bat (Eidolon helvum) and hammer-headed bat (Hyp-
signathus monstrosus), which are sold as bush meat, the
banana pipistrelle, weighing approximately 3 g, is not
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Figure 2 Phylogenetic trees were generated by maximum-likelihood and Bayesian methods, under the GTR+I+I" model of evolution,
based on a 423-nucleotide L-genomic segment of Mouyassué virus (MOUV KB576) (GenBank JQ287716). Since tree topologies were
similar using RAXML, PAUP* and MrBayes, the tree generated by MrBayes was displayed. The numbers at each node are posterior probabilities.
The scale bar indicates nucleotide substitutions per site. The phylogenetic position of MOUV is shown in relation to representative soricomorph-
borne hantaviruses, including Thottapalayam virus (TPMV VRC66412: EU001330) from the Asian house shrew (Suncus murinus), Imjin virus (MJNV
Cl05-11: EF641806) from the Ussuri white-toothed shrew (Crocidura lasiura), Jeju virus (JJUV SH42: HQ663935) from the Asian lesser white-toothed
shrew (Crocidura shantungensis), Tanganya virus (TGNV Tan826: EF050454) from the Therese's shrew (Crocidura theresae), Azagny virus (AZGV
KBM15: JF276228) from the West African pygmy shrew (Crocidura obscurior), Cao Bang virus (CBNV CBN-3: EF543525) from the Chinese mole
shrew (Anourosorex squamipes), Ash River virus (ARRV MSB73418: EF619961) from the masked shrew (Sorex cinereus), Jemez Springs virus (JMSV
MSB144475: FJ593501) from the dusky shrew (Sorex monticolus), Seewis virus (SWSV mp70: EF636026) from the Eurasian common shrew (Sorex
araneus), Kenkeme virus (KKMV MSB148794: GQ306150) from the flat-skulled shrew (Sorex roboratus), Qiandao Lake virus (QDLV YNO5-284:
GU566021) from the stripe-backed shrew (Sorex cylindricauda), Camp Ripley virus (RPLV MSB89863: EF540771) from the northern short-tailed
shrew (Blarina brevicauda), Asama virus (ASAV N10: EU929078) from the Japanese shrew mole (Urotrichus talpoides), Oxbow virus (OXBV Ng1453:
FJ593497) from the American shrew mole (Neurotrichus gibbsii), Rockport virus (RKPV MSB57412: HM015221) from the eastern mole (Scalopus
aquaticus), and Nova virus (NVAV MSB95703: FJ593498) from the European common mole (Talpa europaea). Also shown are rodent-borne
hantaviruses, including Hantaan virus (HTNV 76-118: NC_005222), Soochong virus (SOOV SOO-1: DQ562292), Dobrava virus (DOBV Greece:
NC_005235), Seoul virus (SEOV HR80-39: NC_005238), Tula virus (TULV M5302v: NC_005226), Puumala virus (PUUV Sotkamo: NC_005225), Prospect
Hill virus (PHV PH-1: EF646763), Andes virus (ANDV Chile-9717869: NC_003468), and Sin Nombre virus (SNV NMH10: NC_005217).
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consumed as food. However, because banana pipistrelles
occasionally roost within houses or reside near human
habitation, rare human encounters raise the possibility
of hantavirus exposure.

Previously, serological evidence of hantavirus infection
was reported in the common serotine (Eptesicus seroti-
nus) and greater horseshoe bat (Rhinolophus ferrumequi-
num) captured in Korea [33], but genetic analysis of
hantaviral isolates from these insectivorous bat species
proved to be indistinguishable from prototype Hantaan
virus [34], suggesting laboratory contamination. In the
present study, the strikingly divergent lineage of MOUV
precluded any possibility of contamination and lends
support to our earlier conjecture that the ancient origins
of hantaviruses may have involved insect-borne viruses
[7,10], with subsequent adaptation to and host switching
between early soricomorph and chiropteran ancestral
hosts in the mammalian superorder Laurasiatheria.
However, since the biological and evolutionary implica-
tions of bats as reservoirs of hantaviruses are consider-
able, studies are underway to establish that the banana
pipistrelle is the natural host of MOUV. Moreover,
high-throughput sequencing technology is being applied
to obtain the full genome of MOUYV and to ascertain
the geographic range and genetic diversity of hanta-
viruses harbored by bats.
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