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Abstract

Background: Influenza pandemic remains a serious threat to human health. Viruses of avian origin, H5N1, H7N7
and H9N2, have repeatedly crossed the species barrier to infect humans. Recently, a novel strain originated from
swine has evolved to a pandemic. This study aims at improving our understanding on the pathogenic mechanism
of influenza viruses, in particular the role of non-structural (NS1) protein in inducing pro-inflammatory and
apoptotic responses.

Methods: Human lung epithelial cells (NCI-H292) was used as an in-vitro model to study cytokine/chemokine
production and apoptosis induced by transfection of NS1 mRNA encoded by seven infleunza subtypes (seasonal
and pandemic H1, H2, H3, H5, H7, and H9), respectively.

Results: The results showed that CXCL-10/IP10 was most prominently induced (> 1000 folds) and IL-6 was slightly
induced (< 10 folds) by all subtypes. A subtype-dependent pattern was observed for CCL-2/MCP-1, CCL3/MIP-1a,
CCL-5/RANTES and CXCL-9/MIG; where induction by H5N1 was much higher than all other subtypes examined. All
subtypes induced a similar temporal profile of apoptosis following transfection. The level of apoptosis induced by
H5N1 was remarkably higher than all others. The cytokine/chemokine and apoptosis inducing ability of the 2009
pandemic H1N1 was similar to previous seasonal strains.

Conclusions: In conclusion, the NS1 protein encoded by H5N1 carries a remarkably different property as compared
to other avian and human subtypes, and is one of the keys to its high pathogenicity. NCI-H292 cells system proves
to be a good in-vitro model to delineate the property of NS1 proteins.
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Background
Influenza A viruses are major animal and human patho-
gens with potential to cause pandemics. Avian subtypes
H5N1, H7N7 and H9N2 have repeatedly crossed the
species barrier to infect humans [1-8]. Since 2003, there
have been repeated outbreaks of H5N1 in poultries and
sporadic human infections associated with high mortal-
ity [8,9]. The recently emerged swine-origin influenza A
virus (2009 pandemic H1N1 influenza virus - 2009
pdmH1N1) has spread globally within a few months

following the initial detection in Mexico and United
States in April 2009, resulting in another influenza pan-
demic as declared by the World Health Organization
(WHO) on June 11 2009 [10]. Although most of the
infections are associated with a mild, self-limiting influ-
enza-like illness; the fact that some severe and even fatal
outcomes have been observed in individuals without
underlying medical conditions poses concerns regarding
the pathogenesis of 2009 pdmH1N1 [11,12].
Previous data on human infection with avian influenza

virus indicate that cytokine storm is a key mediator, as
well as a predictor, for adverse clinical outcomes; espe-
cially the haemophagocytic syndrome commonly seen in
severe human influenza A H5N1 infections [4,13-16]
The preferential infection of deeper lung cells and the
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prompt induction of apoptosis may also explain the
rapid deterioration in lung function [17]. In short, influ-
enza infection can go through a direct pathogenic path-
way by inducing apoptosis, and hence cell death and
loss of critical function; and alternatively or most prob-
ably at the same time through an indirect pathogenic
pathway by inducing excessive cytokine/chemokine pro-
duction from the infected cells. The state of hypercyto-
kinaemia will then trigger adverse consequences such as
haemophagocytic syndrome [18].
The virulence of influenza A virus is a polygenic trait.

Multiple molecular interactions are involved in deter-
mining the outcome of an influenza infection in certain
host species [19-28]. The genome of influenza virus is
segmented, consisting of eight single-stranded, negative
sense RNA molecules, which encode eleven proteins
[29]. These are polymerase basic protein 1 (PB1), PB1-
F2 protein, polymerase basic protein 2 (PB2), polymer-
ase acidic protein (PA), hemagglutinin (HA), nucleopro-
tein (NP), neuraminidase (NA), matrix protein 1 (M1),
matrix protein 2 (M2), non-structural protein 1 (NS1)
and non-structural protein 2 (NS2) [17]. This study
focused on NS1 protein which carries multiple functions
including the control of temporal synthesis of viral-spe-
cific mRNA and viral genomic RNAs [30,31], and inter-
action with the cellular protein phosphatidylinositol-3-
kinase (PI3-kinase) [32-34]; which may cause a delay in
virus-induced apoptosis [35]. NS1 protein also has an
ability to circumvent the host cell antiviral responses by
blocking the activation of RNaseL [36], limiting the
induction of interferon (IFN)-b [37-39], interacting with
the cellular protein retinoic acid-inducible gene product
I (RIG-I) [40-42], blocking host cell mRNA polyadenyla-
tion [43,44], blocking the double-stranded-RNA-acti-
vated protein kinase (PKR)-mediated inhibition of
protein synthesis [31,45], and interacting with cellular
PDZ-binding proteins [46]. Furthermore, it has been
shown that NS1 protein prevents the maturation of
human primary dendritic cells, thereby limiting host T-
cell activation [47].
To improve our understanding on the pathogenic

mechanism of the newly emerged pandemic strain as
well as for influenza viruses in general, we set on this
study to examine the property of NS1 proteins encoded
by different influenza virus subtypes.

Methods
Virus isolates
This study examined the NS1 proteins encoded by seven
strains of influenza A viruses including the newly
emerged 2009 pandemic H1N1 (A/Auckland/1/2009)
(2009 pdmH1N1), an H2 subtype (A/Asia/57/3) (H2N2),
an H5N1 isolated from a fatal case in Thailand (A/Thai/
KAN1/2004) (H5N1/2004), an H7N3 isolate (A/Canada/

504/2004) (H7N3/2004) which caused conjunctivitis and
mild upper respiratory tract infection in humans in
Canada, an H9N2 isolate (A/Duck/Hong Kong/Y280/
1997) (H9N2/1997) that was closely related to those
strains found in human H9N2 infections in Hong Kong,
and two previous circulating seasonal influenza strains
isolated in 2002 (A/HongKong/CUHK-13003/2002)
(H1N1/2002) and 2004 (A/HongKong/CUHK-22910/
2004) (H3N2/2004). Stocks of these viruses grown in
Mandin-Darby canine kidney (MDCK) cells were used.

Cell cultures
The bronchial epithelial cell line, NCI-H292, derived
from human lung mucoepidermoid carcinoma cells
(ATCC, CRL-1848, Rockville, MD, USA), were grown
as monolayers in RPMI-1640 medium (Invitrogen,
Carlsbad, CA) supplemented with 10% fetal bovine
serum (FBS), 100 U/mL penicillin and 100 μg/mL
streptomycin (all from Gibco, Life Technology, Rock-
ville, Md., USA) at 37°C in a 5% CO2 incubator. NCI-
H292 cells were used to study the host cellular
response to NS1 proteins.

In-vitro transcription of NS1 mRNA
Viral NS1 mRNA was prepared from an in-vitro tran-
scription system. Total RNA was extracted from virus-
infected cell lysates using the TRIzol-total RNA extrac-
tion kit (Invitrogen). The extracted RNA was eluted in
30 μL of nuclease-free water, and stored in aliquots at
-80°C until used. In order to avoid contamination with
genomic DNA, the extracted preparation was treated
with DNA-Free DNase (Invitrogen). The quality of
extracted RNA preparation was assessed by measuring
optical density at 260/280 nm with the NanoDrop ND-
1000 spectrophotometer (NanoDrop Technologies, Wil-
mington, DE). cDNA were reversely transcribed from
RNA using the SuperScript™ III reverse transcriptase
(Invitrogen). DNA fragments containing the coding
region of the NS1 gene were linked to a T7 promoter
sequence, with or without “hexa histidine-tag” and a
polyA tail was created at the end of the fragment by
PCR. The PCR was performed using the Platinum® Taq
DNA polymerase high fidelity (Invitrogen). The primers
used for the amplification are listed in Table 1. In-vitro
transcription was performed using the mMESSAGE
mMachine T7 Ultra kit (Ambion, Austin, TX, USA)
with 2 h incubation at 37°C. The mRNA was TURBO
DNase treated for 15 min at 37°C. Polyadenylation was
also performed. The mRNA products were then purified
using the MEGAclear kit (Ambion). The quantity and
quality of capped mRNA produced was analyzed by
measuring optical density at 260/280 nm with the Nano-
Drop ND-1000 spectrophotometer (NanoDrop Technol-
ogies) and by denaturing gel electrophoresis.
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Transient transfection system
Approximately 1 × 106 NCI-H292 cells were transfected
with 4 μg of NS1 mRNA in a six-well plate using Lipo-
fectamine™ 2000 (Invitrogen). Briefly, NS1 mRNA and
Lipofectamine™ 2000 were incubated together for 30
min in 500 μL of Opti-MEM I before adding to the
cells. The transfection efficiency was calculated from the
percentage of fluorescent cells that were observed using
florescence microscopy after the transfection of fluores-
cein isothiocyanate (FITC)-labeled short nucleotide pri-
mers in separate controls. The transfection efficiency
was about 70%. In another control, the effect of the
transfection of synthetic double-stranded RNA polyri-
boinosinic polyribocytidylic acid [poly(I:C)] (Sigma, St
Louis, MO), on cytokines/chemokines and apoptosis
induction were also observed and took into account for
the net effect of mRNA transfection of the experimental
cells. The experimentally transfected cells were then col-
lected at 3, 6, 18 and 24 h post-transfection; washed
with phosphate-buffered saline (PBS) and trypsinized.
After harvesting by centrifugation, the cells were resus-
pended in a small volume (200-400 μL) of PBS for pro-
pidium iodide (PI) staining and FITC-conjugated
annexin V (Annexin V-FITC) staining of apoptotic cells.

Western blot analysis
The mRNA-transfected or non-transfected cell mono-
layers were lysed, and the total protein concentration was
determined by the bicinchoninic acid assay (BCA)
(Sigma, St. Louis, MO). Proteins with equivalent concen-
tration were heated for 5 min at 100°C in sample buffer
containing b-mercaptoethanol, and were then resolved
by 12% or 15% SDS-PAGE. The resolved proteins were
transferred to PVDF membrane (Bio-Rad, Richmond,
CA) and blocked with 1% powdered milk in Tris-buffered
saline with 0.1% Tween 20 (Amersham Pharmacia,
Uppsala, Sweden) for 1 h at room temperature. Mouse or

rabbit antibodies were then used to probe for His-tagged
NS1 (Invitrogen), with overnight incubation at 4°C. The
membrane was subsequently incubated for 1 h at room
temperature with 1:1000 anti-mouse IgG horseradish
peroxidase-linked whole secondary antibody (Amersham
Pharmacia, Uppsala, Sweden). The membrane was also
probed for GAPDH as a loading control (Chemicon,
Temecula, CA).

Quantification of cytokine/chemokine protein expression
using cytometric bead array (CBA)
Cell culture supernatant was collected at 0, 3, 6, 18 and
24 h post-transfection for cytokine/chemokine measure-
ment by the Cytometric Bead Array (CBA) Soluble Pro-
tein Flex Set system (BD Biosciences, San Jose, CA)
using the BD FACSAria Flow Cytometer System (BD
Biosciences) according to the manufacturer’s instruc-
tions. Six cytokines/chemokines (CCL-2/MCP-1, CCL-3/
MIP-1a, CCL-5/RANTES, CXCL-9/MIG, CXCL-10/IP-
10, IL-6) were measured. The results were expressed as
number of fold changes with reference to the levels of
non-transfected cell controls. All experiments were per-
formed in triplicates.

Propidium iodide (PI) staining and DNA content analysis
by flow cytometry
The overall (early and late phases together) proportion
of apoptotic cells was measured by PI flow cytometric
assay which is based on the principle that apoptotic
cells are characterized by DNA fragmentation and the
consequent loss of nuclear DNA content at the late
phase of apoptosis. Briefly, transfected cells (106) were
washed with PBS and fixed with 70% ethanol overnight
at 4°C. The fixed cells were then stained with 50 μg/mL
of PI (Sigma, St. Louis, MO) with 1 μg of RNase A/mL
at 4°C for 1 h. PI binds to DNA by intercalating
between the bases, with no sequence preference. The

Table 1 Primers used for amplification of NS1 genes.

Influenza subtypes Primer sequences

H1N1/2002 Forward: 5’- GATCCTAATACGACTCACTATAGGGAGGAGCAAAAGCAGGGTGGCAA-3’
Reverse: 5’- TTTTTTTTTTTTTTTTTTGTAGAAACAAGGGTGTTTTTTATCATT-3’

2009 pdmH1N1 Forward: 5’- GGATCCTAATACGACTCACTATAGGGAGGAGCAAAAGCAGGGTGACAA-3’
Reverse: 5’- TTTTTTTTTTTTTTTTTTGTAGAAACAAGGGTGTTTTTTATCATT-3’

H2N2 Forward: 5’- GGATCCTAATACGACTCACTATAGGGAGGAGCAAAAGCAGGGTGACAA-3’
Reverse: 5’- TTTTTTTTTTTTTTTTTTGTAGAAACAAGGGTGTTTTTTATCATT-3’

H3N2/2004 Forward: 5’- GGATCCTAATACGACTCACTATAGGGAGGAGCAAAAGCAGGGTGACAA-3’
Reverse: 5’- TTTTTTTTTTTTTTTTTTGTAGAAACAAGGGTGTTTTTTATCATT-3’

H5N1/2004 Forward: 5’- GGATCCTAATACGACTCACTATAGGGAGGAGCAAAAGCAGGGTGACAAAG-3’
Reverse: 5’- TTTTTTTTTTTTTTTTTTAGTAGAAACAAGGGTGTTTTTTATCAT-3’

H7N3/2004 Forward: 5’- GGATCCTAATACGACTCACTATAGGGAGGAGCAAAAGCAGGGTGACAA-3’
Reverse: 5’- TTTTTTTTTTTTTTTTTTGTAGAAACAAGGGTGTTTTTTATCATT-3’

H9N2/1997 Forward: 5’- GGATCCTAATACGACTCACTATAGGGAGGAGCAAAAGCAGGGTGACAA-3’
Reverse: 5’- TTTTTTTTTTTTTTTTTTGTAGAAACAAGGGTGTTTTTTATCATT-3’
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DNA contents of the cells were then analyzed by flow
cytometry (FACSAria; BD Biosciences, San Jose, CA).
Cells at the late phase of apoptosis, i.e., sub-G1 (hypodi-
ploid) cells, will have DNA contents lower than those of
G1 cells. The proportions of these apoptotic cells, i.e.,
sub-G1 cells, at different time points post-transfection
were determined. Staurosporine-treated cells were also
used as a positive control. All experiments were per-
formed in triplicates.

Annexin V-FITC staining of apoptotic cells and analysis by
flow cytometry
Annexin V-FITC staining was used to measure the pro-
portion of cells that were at the early phase of apoptosis.
Cells were collected, washed with PBS, and stained with
FITC-conjugated annexin V (BD Biosciences, Franklin
Lakes, NJ) and PI for 20 min at room temperature in
dark. The stained cells were then analyzed by flow

cytometry (FACSAria; BD Biosciences). FITC-conjugated
annexin V binds to surface phosphatidylserine translo-
cated from the intra- to the extracellular plasma mem-
brane early in apoptosis. Cells were simultaneously
stained with PI to discriminate membrane-permeable
necrotic cells from FITC-labeled apoptotic cells. Apop-
totic cells were identified as those with annexin V-FITC
staining only, and the results were expressed as the pro-
portion of these cells among the total number of cells
analyzed. Staurosporine-treated cells were also used as a
positive control. All experiments were performed in
triplicates.

Results
Cytokine/chemokine expression profiles
Different profiles of cytokine/chemokine expression
were observed following the transfection of NS1 mRNA
derived from various influenza subtypes (Figure 1).

Figure 1 Cytokines/chemokines induced by transfection of NS1 mRNA of different influenza subtypes. NCI-H292 cells were transfected
with NS1 mRNA derived from seven subtypes of influenza A including seasonal H1N1 (H1), H2N2, H3N2, H5N1, H7N3, H9N2 and 2009 pandemic
H1N1 (pdmH1). Cytokine/chemokine levels are expressed as fold-changes compared to the non-transfected cell controls ± SD (p* < 0.05)
measured at the same time points.
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Overall, the most prominent induction was observed for
CXCL-10/IP-10 regardless of influenza subtype, and
with > 1,000-fold increase at peak induction. IL-6 was
also induced by all subtypes but to a much lower extent
(< 10-fold increase at peak induction). A distinct pattern
in induction between H5 and other subtypes was
observed for CCL-2/MCP-1, CCL-3/MIP-1a, CCL-5/
RANTES and CXCL-9/MIG. For all these four cyto-
kines/chemokines, the level of expression induced by H5
was much higher than other subtypes.
The six studied cytokines/chemokines can be divided

in to two groups according to the time to reach peak
level of induction. The “early” group included CCL-2/
MCP-1, CCL-3/MIP-1a and CCL-5/RANTES showing a
peak at 6 h post-transfection. All members of the “early”
group showed a strong response to H5, but they were
only induced to low levels by other subtypes (Figure 1).
The “late” group included IL-6, CXCL-9/MIG and
CXCL-10/IP-10 showing a peak at 18-24 h post-trans-
fection. No obvious correlation between the time to
reach peak level and the subtype of virus was observed.
Among the seven subtypes of influenza examined,

only H5 showed a distinct profile of cytokine/chemokine
induction; and being the strongest inducer for all the six
cytokines/chemokines. The cytokine/chemokine induc-
tion profiles observed for the recently emerged 2009
pdmH1N1-NS1 were similar to previous seasonal
strains.

Apoptosis
The overall (early and late phases together) proportion
of apoptotic cells for H5N1/2004-NS1 was the highest
at all time points as compared to other subtypes (Figure

2). At 24 h post-transfection, 44% of H5N1-NS1-trans-
fected cells had entered apoptosis, compared to 20-28%
of other subtypes. The 2009 pdmH1N1-, H3N2-, and
H9N2-transfected cells showed a relatively higher pro-
portion of apoptosis (25-29%) at 18 h post-transfection;
however these subtypes reached similar levels as com-
pared to other non-H5 subtypes at 24 h post-transfec-
tion (Figure 2).
Figure 3 shows the proportion of cells at the early

phase of apoptosis at different time points post-transfec-
tion. Overall, apoptotic activity was the highest at 6 h
post-transfection, and then decreased gradually. This
time course of apoptosis was similar among the different
subtypes of influenza viruses examined. Figure 3 displays
the distinct apoptotic induction ability of H5N1 as com-
pared to other subtypes. At the peak of apoptotic activ-
ity (6 h post-transfection), the proportion of apoptotic
cells for H5N1 was about twice higher than those for
other subtypes. The newly emerged 2009 pdmH1N1-
NS1 showed a moderate ability in inducing apoptosis.
At both 6 h and 18 h post-transfection, the proportion
of early apoptotic cells ranked second, just following
H5N1/2004-NS1, among the subtypes examined.

Discussion
In this study, the pathogenic properties of NS1 proteins
encoded by different subtypes of influenza A viruses
were compared by measuring cytokine/chemokine
expression and apoptosis induced in transfected cells.
While the key target of influenza virus is lung epithe-

lial cells [48,49], most studies on influenza pathogenesis
have been based on macrophages and monocytes
infected in-vitro or in-vivo [50-52]. It is important to

Figure 2 Proportion of overall apoptotic cells induced by transfection of NS1 mRNA of different influenza subtypes. NCI-H292 cells
were transfected with NS1 mRNA derived from seven subtypes of influenza A including seasonal H1N1 (H1), H2N2, H3N2, H5N1, H7N3, H9N2
and 2009 pandemic H1N1 (pdmH1). CC represents non-transfected controls. The overall proportion of death cells was measured by propidium
iodide staining using flow cytometry with the sub-G1 cell proportion counted ± SD (p* < 0.05).
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note that at the time of early infection these immune
cells would not be present in great numbers until they
have been recruited into the area. The mechanism con-
cerning bronchial infiltration of inflammatory cells, par-
ticularly lymphocytes and eosinophils, and the
subsequent hyperresponsiveness of the bronchial wall
induced by viruses remain unclear [53]. Therefore, in
this study we have used a cell line derived from human
lung epithelial cells as an in-vitro model to study the
pathogenicity of influenza NS1 proteins.
Previous in-vitro studies have shown that influenza

infection induces the production of cytokines IFN-a,
tumor necrosis factor (TNF)-a, IL-1, IL-6, IL-8 and the
mononuclear cell attractant chemokines CCL-3/MIP-1a,
CCL-4/MIP-1b, CCL-2/MCP-1, CCL-7/MCP-3, CXCL-
10/IP-10 and CCL-5/RANTES in human monocytes,
epithelial cells, rat alveolar or murine macrophages
[48,50,53-62]. Based on the findings of these studies, we
identified the six key cytokines/chemokines for the cur-
rent study.
Recently, it has been shown that the inflammatory

response is played out over time in a reproducible and
organized way with different induction kinetics after an
initiating stimulus [63]. Cytokines released following
infection can be classified broadly into “early” and “late”
cytokines. Our results showed that CCL-2/MCP-1,
CCL-3/MIP-1a and CCL-5/RANTES were produced
early post-transfection; while IL-6, CXCL-10/IP-10 and
CXCL-9/MIG were produced later. This time course of
cytokine/chemokine production was consistently

observed across different subtypes of influenza viruses
with different pathogenicity. It would be worthwhile to
further investigate whether this temporal sequence is
unique to influenza or generally true for other acute
respiratory viruses.
The most remarkable observation in this study was

the distinct cytokine/chemokine profiles induced by the
NS1 protein of H5N1. Our in-vitro observation is in line
with previous reports that the peripheral blood of
patients infected with H5N1 have much higher serum
levels of CXCL-10/IP-10 and CCL-2/MCP-1 than
patients infected with seasonal influenza [13,15].
Furthermore, the in-vitro model used in our study by
measuring the levels of cytokines in lung tissue may be
more relevant to pathogenesis than levels in blood [15].
Another in-vitro study in macrophages also showed a
stronger cytokine induction by H5N1/1997 viruses com-
pared to H3N2 [51].
We found that NS1 protein encoded by 2009

pdmH1N1 virus induced similar levels of cytokine/che-
mokine compared to seasonal H1N1 and H3N2 strains.
This observation is in line with a recent report which
showed that pro-inflammatory cytokine expression in
the 2009 pandemic H1N1 virus-infected macrophages
was similar to that of seasonal H1N1/1999, and was
much lower than in H5N1/2004-infected cells [64-67].
In this study, we observed a similar temporal profile of

apoptosis as induced by different subtypes of influenza.
This is in contrast to previous studies based on whole
virions. For instance, Geiler et al. (2011) [67] reported a

Figure 3 Proportion of early apoptotic cells induced by transfection of NS1 mRNA of different influenza subtypes. NCI-H292 cells were
transfected with NS1 mRNA derived from seven subtypes of influenza A including seasonal H1N1 (H1), H2N2, H3N2, H5N1, H7N3, H9N2 and
2009 pandemic H1N1 (pdmH1). CC represents non-transfected controls. Cells at early apoptotic phase as stained positive for annexin V but not
propidium iodide were identified by flow cytometry ± SD (p* < 0.05).
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delay in the induction of apoptosis for 2009 pdmH1N1
compared to H5N1; whereas Mok et al. (2007) [68]
reported a delayed apoptosis of H5N1 compared to sea-
sonal H1N1. The reason for these different observations
remains to be verified. Both of these two studies [67,68]
used whole virions, and therefore the observation may
be partly related to the time required for sufficient virus
replication and hence the synthesis of a certain amount
of NS1 protein; whereas the current study used transfec-
tion where the same amount of NS1 was expected to be
synthesized at any one time for different subtypes. If
NS1 protein per se was the question of interest, using
transfection methods with the same transfection effi-
ciencies among different subtypes, might avoid biases
result from differences in replication efficiency of the
viruses being studied. Another major difference is that
in contrast to the lung epithelial cells used in our study,
the two previous studies used macrophages. These two
cell types may display differences in apoptotic response
to different subtypes of influenza.
Another remarkable observation of the current study

is the high apoptosis inducing ability conferred by NS1
protein encoded by H5N1 compared to all other sub-
types. This is reminiscent of the rapid development of
severe primary pneumonitis in patients infected with
H5N1 [4,13-16]. Our data showed that the apoptosis
inducing ability of NS1 protein encoded by 2009
pdmH1N1 virus was similar to H7, H9 and seasonal
subtypes; but much lower than H5N1. This is in line
with a previous observation based on macrophages
infected with whole virions, where the level of apoptosis
induced by 2009 pdmH1N1 was much lower than
H5N1 [67].
NS1 have both pro- and anti-apoptotic functions, and

the level of apoptosis observed reflects a balance
between the two [30,34,69-73]. It would be worthwhile
to further investigate whether the NS1 encoded by
H5N1 is more pro-apoptotic or less anti-apoptotic as
compared to other subtypes.

Conclusions
This study confirms that transfection of human lung
epithelial cell line with NS1 mRNA is a suitable in-vitro
model to delineate and compare the function of NS1 pro-
teins encoded by different influenza subtypes. Our data
indicates that NS1 protein is one of the keys for an excep-
tional higher pathogenicity of H5N1 compared to other
avian and human subtypes. The NS1 protein encoded by
2009 pdmH1N1 exhibits a similar pro-inflammatory and
apoptosis inducing ability as with other human seasonal
subtypes, reflecting their similarity in pathogenicity. It is
worthwhile to further explore the potential of using NS1
protein as a target of therapeutic intervention.
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