
RESEARCH Open Access

Polymerase activity of hybrid ribonucleoprotein
complexes generated from reassortment between
2009 pandemic H1N1 and seasonal H3N2
influenza A viruses
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Abstract

Background: A novel influenza virus (2009 pdmH1N1) was identified in early 2009 and progressed to a pandemic
in mid-2009. This study compared the polymerase activity of recombinant viral ribonucleoprotein (vRNP) complexes
derived from 2009 pdmH1N1 and the co-circulating seasonal H3N2, and their possible reassortants.

Results: The 2009 pdmH1N1 vRNP showed a lower level of polymerase activity at 33°C compared to 37°C, a
property remenisence of avian viruses. The 2009 pdmH1N1 vRNP was found to be more cold-sensitive than the
WSN or H3N2 vRNP. Substituion of 2009 pdmH1N1 vRNP with H3N2-derived-subunits, and vice versa, still retained
a substantial level of polymerase activity, which is probably compartable with survival. When the 2009 pdmH1N1
vRNP was substituted with H3N2 PA, a significant increase in activity was observed; whereas when H3N2 vRNP was
substituted with 2009 pdmH1N1 PA, a significant decrease in activity occurred. Although, the polymerase basic
protein 2 (PB2) of 2009 pdmH1N1 was originated from an avian virus, substitution of this subunit with H3N2 PB2
did not change its polymerase activity in human cells.

Conclusions: In conclusion, our data suggest that hybrid vRNPs resulted from reassortment between 2009
pdmH1N1 and H3N2 viruses could still retain a substantial level of polymerase activity. Substituion of the subunit
PA confers the most prominent effect on polymerase activity. Further studies to explore the determinants for
polymerase activity of influenza viruses in associate with other factors that limit host specificity are warrant.
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Background
In April 2009, the Centers for Disease Control and Pre-
vention (CDC) at Atlanta reported that a new influenza
virus was found in Mexico and the United States [1].
The new influenza A H1N1 virus was soon character-
ized [2,3] to be a triple reassortant derived from human,
avian and swine influenza viruses [3-5]. The virus spread
rapidly worldwide [6] and the World Health Organiza-
tion (WHO) declared that the pandemic has reached
phase 6 on June 11 2009 [7]. Currently, the virus is still
circulating worldwide [7].

Influenza viruses exhibit a restricted host range with
limited replication in other species [8-10]. However, on
rare occasions, influenza viruses can cross species bar-
rier and adapt to a new host giving rise to a new line-
age. Adaptation to a new species is believed to require
multiple point mutations or reassortment of gene seg-
ments, or both. The molecular mechanism and genetic
determinants that restrict, or permit, the replication of
influenza viruses in humans remain unclear. While host
haemagglutinin receptor specificity is clearly an impor-
tant factor, it is not an absolute barrier to cross-species
infection [11-13]. Growing evidence suggests that viral
polymerase and nucleoprotein (NP) play a pivotal role
in determining host selection and adaptation [13,14].
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Replication and transcription of influenza RNA seg-
ments are regulated by a virus-encoded RNA-dependent
RNA polymerase [14]. The polymerase is a heterotri-
meric, multifunctional complex composed of three viral
proteins, polymerase basic protein 1 (PB1), polymerase
basic protein 2 (PB2), polymerase acidic protein (PA),
which together with the viral NP form the viral ribonu-
cleoprotein (vRNP) complex that is required for viral
mRNA synthesis and replication [14]. PA is an endonu-
clease [15-19], and involves in promoter and cap bind-
ing [20,21]. PB1 contains active sites for nucleotide
elongation [22,23] and binding to promoters of vRNA
and cRNA [22,24,25]. PB2 involves in cap-snatching
from host mRNA [26,27], and has been the focus of
host adaptation and pathogenicity study. PB2 mutation,
particularly the E627K, has been linked to the adaption
of avian viruses to mammalian host [28,29]. Another
PB2 mutation, D701N, has been associated with
increased virulence in mice [30,31].
Given the current co-circulation of the 2009 pandemic

H1N1 and seasonal H3N2 viruses, co-infection of these
viruses in humans may occur [32]. In this study, the
polymerase activity of recombinant vRNP complexes
that may be created from the reassortment between
these two viruses was examined.

Results
Polymerase activity of pdmH1N1, H3N2 and WSN H1N1
vRNP complexes
The results of luciferase assays performed with the par-
ental 2009 pdmH1N1, H3N2, and WSN H1N1 vRNPs

are shown in Figures 1 and 2. All recombinant vRNPs
showed polymerase activity in both A549 and 293T cells
under 33°C or 37°C incubation. A significantly lower
level of polymerase activity for the 2009 pdmH1N1
vRNP was observed at 33°C compared to 37°C for both
cells (293T cells RLU ratio: 0.030 vs 0.298, P = 0.03;
A549 cells RLU ratio: 0.050 vs 0.371, P = 0.01) (Figure
1), whereas no significant differences with respect to
incubation temperature were observed for WSN and
H3N2 vRNPs (Figure 2).
The polymerase activity of 2009 pdmH1N1 vRNP as

recorded from 293T cells incubated at 37°C was signifi-
cantly lower than that of WSN H1N1 (RLU ratio: 0.498
vs 0.612, P = 0.01), and this observation was reproduced
in A549 cells (RLU ratio: 0.402 vs 0.533, P = 0.01).
Furthermore, in A549 cells, the polymerase activity of
2009 pdmH1N1 vRNP was significantly lower than that
of H3N2 at 33°C (RLU ratio: 0.358 vs 0.396, P = 0.04)
and at 37°C (RLU ratio: 0.402 vs 0.479, P = 0.01),
respectively (Figure 2).

Polymerase activity of reassortant vRNPs derived from
2009 pdmH1N1 and H3N2
Figure 3 shows that the results of luciferase assays
obtained from hybrid vRNPs derived from substituting
the 2009 pdmH1N1 vRNP with one H3N2 subunit at a
time. It was found that substitution with either H3N2
PB1 or H3N2 PB2 resulted in a slightly decrease in
polymerase activity, whereas substitution with either
H3N2 PA or H3N2 NP resulted in an increase in poly-
merase activity. The same trend of change in polymerase

 
Figure 1 Polyermase activity of vRNP complexes of 2009 pandemic H1N1 at 33°C and 37°C. (a) 293T cells, 37°C and 33°C. (B) A549 cells,
37°C and 37°C. Polymerase activity as reflected by the normalized relative light units ratio (mean ± standard deviation, n = 3) at 37°C compared
to 33°C, * represents statistical significance at p < 0.03, and # represents statistical significance at p < 0.01.
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activity was observed in both 293T and A549 cells.
When subjected to statistical analysis, only the substitu-
tion with H3N2 PA showed a significant increase in
polymerase activity of the 2009 pdmH1N1 vRNP in
293T cells (RLU ratio: 0.34 vs 0.43, P = 0.03).
The results of reciprocal substitution of H3N2 vRNP

with 2009 pdmH1N1 subunit are shown in Figure 4. All
hybrid vRNPs with either PB1, PB2, PA or NP derived
from 2009 pdmH1N1 showed a decrease in polymerase
activity. A statistically significant decrease in polymerase
activity was observed for the substitution with 2009
pdmH1N1 PA in 293T cells (RLU ratio: 0.57 vs 0.43, P
= 0.02).

Discussion
Viral polymerase has a key function in the virus replica-
tion cycle and likely to play a role in host adaptation.
Previous studies on polymerase activity of influenza
were mainly conducted on 293T cells [33]. The results
of this study showed that in addition to 293T cells,

A549 cells can also serve this purpose. Furthermore,
A549 cells could be more appropriate as they are
derived from human lung epithelial cells, which is the
primary site of replication of influenza viruses.
Our results showed that the polymerase activity of

2009 pdmH1N1 vRNP was significantly lower than
WSN H1N1 and H3N2. The difference in activity was
more obvious in A549 cells. Although, one could not
infer on the transmissibility in humans based on poly-
merase activity alone, the implication of these in-vitro
observations deserves further exploration.
It has been reported that avian influenza viruses are

adapted for growth in the avian enteric tract with higher
temperature (37°C), whereas human influenza viruses
are adapted for growth at upper respiratory tract with
lower temperature (33°C). It has also been suggested
that zoonotic transmission may be limited by tempera-
ture differences between the two hosts [3]. In this
regard, we compared the polymerase activities of the
recombinant vRNPs at 33°C and 37°C. The results
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Figure 2 Polyermase activity of vRNP complexes of 2009 pandemic H1N1, seasonal H3N2 and WSN H1N1. (a) 293T cells, 37°C. (b) 293T
cells, 33°C. (c) A549 cells, 37°C. (d) A549 cells, 33°C. Polymerase activity as reflected by the normalized relative light units was expressed as
relative activity (mean ± standard deviation, n = 3) compared to the reference strain WSN H1N1, * represents statistical significance at p < 0.01
compared to WSN H1N1, and # represents statistical significance at p < 0.05 compared to H3N2.
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showed that the 2009 pdmH1N1 vRNP had a signifi-
cantly lower activity at 33°C compared to 37°C. It would
worthwhile to further investigate whether this was
attributed to the avian origin of the PB2 and PA seg-
ments of 2009 pdmH1N1 virus.

In addition to the avian-origin PB2 and PA, the vRNP
of 2009 pdmH1N1 virus is composed of a human-origin
PB1 and a classic swine-origin NP. We hypothesized
that substitution of one of these vRNP subunits with a
human (H3N2)-origin subunit could confer a change in
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Figure 3 Polymerase activity of 2009 pdmH1N1 vRNP substituted with H3N2 PB1, PB2, PA and NP. Recombinant vRNPs were transfected into
(a) 293T and (b) A549 cells at an incubation temperature of 37°C. Polymerase activity as reflected by the normalized relative light units was expressed
as relative activity (mean ± standard deviation, n = 3) compared to the parent pdmH1N1 vRNP, * represents statistical significance at p < 0.05.
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Figure 4 Polymerase activity of H3N2 vRNPs substituted with 2009 pdmH1N1 PB1, PB2, PA and NP. Recombinant vRNPs were
transfected into (a) 293T and (b) A549 cells at an incubation temperature of 37°C. Polymerase activity as reflected by the normalized relative
light units was expressed as relative activity (mean ± standard deviation, n = 3) compared to the parent H3N2 vRNP, * represents statistical
significance at p < 0.05.
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polymerase activity. The results of our vRNP subunit
substitution experiment showed that each of the 2009
pdmH1N1 vRNP subunit could be substituted by a cor-
responding H3N2 subunit, and the hybrid vRNPs still
retained a polymerase activity comparable (~ +/- 20%)
to the parent vRNP. Among these substitutions, an
H3N2-origin PA conferred a statistically significant
increase in the level of polymerase activity in 293T cells.
In reciprocal, a hybrid recombinant H3N2 vRNP substi-
tuted with 2009 pdmH1N1 PA subunit showed a signifi-
cant decrease in polymerase activity in 293T cells. The
increase in the level of polymerase activity in 293T cells
was more significant than that in A549 cells. Since PA
forms a dimer with PB1, the increase in activity
observed in our study might due to a better compatibil-
ity of H3N2 PA with 2009 pdmH1N1 PB1 and vice
versa. Our observations are in line with a previous study
on H5N1, H1N1 and H3N2 subtype viruses, where PA
was found to be a major determining factor responsible
for the enhanced polymerase activity of H5N1, while the
other subunits had little effect [34,35].
Since the 2009 pdmH1N1 PB2 was originated from an

avian subtype lacking the human adaptation mutation
E627K [12,36-40], one might expect that the PB2 subu-
nit of H3N2 could increase the polymerase activity of
2009 pdmH1N1 vRNP. As yet, when the 2009
pdmH1N1 vRNP was substituted with a human (H3N2)
PB2, a slightly decrease in polymerase active was
observed in both 293T and A549 cells. Nevertheless,
one should note that the subunits of vRNP are known
to interact with each other. For instance, PB2 interacts
with PB1 [41-43] and possibly with PA [44]. Substituting
the 2009 pdmH1N1 vRNP with a PB2 of H3N2 origin
may affect these interactions.

Conclusions
Overall, our data suggest that hybrid vRNPs resulted
from reassortment between 2009 pdmH1N1 and H3N2
viruses could still retain a substantial level of polymerase
activity. Substituion of the subunit PA confers the most
prominent effect on polymerase activity. Further studies
to explore the determinants for polymerase activity of
influenza viruses in associate with other factors that
limit host specificity are warrant.

Methods
In-vitro cell models
Two human cell lines of different tissue origin were
used as an in-vitro model to examine the polymerase
activity of vRNP complexes. The A549 cells were
derived from human alveolar basal epithelial adenocarci-
noma (ATCC, CCL-185, Rockville, MD, USA), and the
293T cells were derived from human embryonic kidney
(ATCC, CRL-11268). These cells were maintained in

minimum essential medium (MEM) supplemented with
10% fetal bovine serum (FBS), 1% penicillin, and 1%
streptomycin (all from Gibco, Life Technology, Rock-
ville, Md., USA) at 33°C or 37°C in a 5% CO2 incubator.

Virus strains
Three influenza strains were used for preparing cDNA
clones correspond to the respective vRNP subunits. The
A/Auckland/1/2009 (H1N1) represented the 2009 pan-
demic H1N1 virus (2009 pdmH1N1), the A/HongKong/
CUHK-22910/2004 (H3N2) represented seasonal H3N2
virus, and the A/WSN/1933 (H1N1) (WSN H1N1) was
also included as a reference.

Expression of recombinant vRNPs
The PB1, PB2, PA and NP-expressing plasmids of WSN
H1N1 were kindly provided by Prof. George Brownlee
[20,34]. The full-length sequences of PB1, PB2, PA and
NP of 2009 pdmH1N1 and H3N2 were amplified using
Superscript III reverse transcriptase (Invitrogen, Carls-
bad, CA) and PCR with Fusion polymerase (Stratagene,
La Jolla, CA, USA). PB1, PA and NP PCR products were
inserted into pcDNA3A plasmids [33] using KpnI and
NotI restriction sites, whereas the HindIII and NotI
restriction sites were used for PB2 PCR product. The
DNA sequences of the cloned genes were checked by
direct sequencing.
The expression plasmids were used to generate

recombinant vRNPs as described previously [45]. Briefly,
1 μg of each plasmid was transfected into 293T or A549
cells by Lipofectamine 2000 (Invitrogen) according to
the manufacturer’s instructions. The medium of trans-
fected cells was replaced by MEM with 10% FBS, 1%
penicillin and 1% streptomycin (all from Gibco, Life
Technology) at 6 h post-transfection.

Luciferase reporter assay for viral polymerase activities
A series of different combinations of PB2, PB1, PA and
NP protein expression plasmids and the pPolI-NP-Luc
were co-transfected into 293T or A549 cells. In addition,
a reporter plasmid pGL4.73[hRluc/SV40], encoding a
Renilla luciferase gene, was co-transfected to serve as a
control for normalizing the transfection efficiency
between experiments. At 48 h post-transfection, the
polymerase activities of recombinant vRNPs were deter-
mined. According to the manufacturer’s instructions,
cells were lysed by using the Steady-Glo assay reagent
(Promega, Madison, WI, USA) for 10 min and the lumi-
nescence was measured by a microplate luminometer
(Wallac VICTOR3, PerkinElmer, Norwalk, CT).

Data analysis
All data were generated from three separate experi-
ments. The results of the luciferase reporter assay were
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recorded as relative light units (RLU). The ratio of RLU
normalized with the internal control were used for com-
paring the polymerase activities between different
vRNPs. Differences in normalized RLU ratio between
two vRNPs were compared by the Student’st-test. P-
values less than 0.05 were regarded as significant.
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