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Abstract

Chronic Hepatitis C virus has the potential of inducing insulin resistance and type 2 Diabetes Mellitus in vitro as
well as in vivo . Structural and non-structural proteins of HCV modulate cellular gene expression in such a way that
insulin signaling is hampered, concomitantly leads toward diabetes mellitus. A number of mechanisms have been
proposed in regard to the HCV induced insulin resistance involving the upregulation of Inflammatory cytokine TNF-
o, hypophosphorylation of IRS-1 and IRS-2, phosphorylation of Akt, up-regulation of gluconeogenic genes,
accumulation of lipids and targeting lipid storage organelles. This review provides an insight of molecular
mechanisms by which HCV structural and non-structural proteins can induce insulin resistance.
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Background

HCV, a blood born pathogen, belongs to the family Flaviv-
ridae, infects hepatocytes and was discovered in 1989. The
genome size of HCV is 9.6 Kb that encodes about 3010
amino acids and gets translated into structural and non-
structural proteins [1-3].

HCV is a major cause of acute and chronic liver disease
worldwide [4-6]. Acute HCV infection becomes persistent
in about 85% of cases [7]. Chronic infection with HCV is a
multifaceted disorder associated with insulin resistance,
glomerulonephritis, B-cell lymphoma and type 2 diabetes
mellitus [8]. It is estimated that 3.3% of the population
globally (lower in Europe 1.03% and highest in Africa
5.3%) and 10% of the Pakistani population is chronically
infected with HCV [9-12]. Until now, there is no vaccine
against HCV that can provide effective immunization [13].

The process of glucose uptake is quite complicated that
involves binding of insulin to the insulin receptor and sub-
sequently binds to Insulin receptor substrate 1 (IRS-1),
activating a number of different kinds of proteins like
PIK3, PDC and PIP3 which in turns, activates GLUT4 and
causes the translocation of glucose from exoplasmic sur-
face to the inside of cell [14]. After glucose is internalized,
glucose gets phosphorylated by hexokinase, enters
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glycolysis and gets converted into pyruvate. This glucose is
taken up by the adipocytes and is utilized in the formation
of lipids while, in case of muscles, glucose is converted into
glycogen and glycogenolysis is inhibited by insulin. In liver,
insulin downregulates glucose level by inhibiting gluconeo-
gensis and glycogenolysis involving Phosphoenolpyruvate
carboxy kinase (PEPCK), key regulator of gluconeogensis
[15,16).

Any change in this signaling is likely to induce insulin
resistance which is associated with a number of patho-
physiological changes including glucose intolerance,
obesity, dyslipidemia and hypertension. During the
course of insulin resistance several inflammatory cyto-
kines and lipid metabolites like free fatty acids interrupt
with the normal insulin signaling and promote type 2
diabetes mellitus [14].

HCV Induced Insulin resistance

Insulin resistance is a pre-diabetic phase that is fre-
quently observed in chronic HCV patients (25%) and
lesser in case of other hepatic disorders including hepa-
titis B virus (10%) [17]. Non-alcoholic fatty liver disease
(NAFLD) is one of the most important causes of
chronic infections and Insulin resistance (IR) represents
the hallmark of NAFLD. It is a systemic disorder that
not only infects liver but also nervous system, pancreas,
heart, kidney and muscles [18]. IR is a condition where
adequate amount of insulin is required to maintain the
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glucose level or normal insulin concentration is unable
to maintain homeostasis [19,20]. Glucose intolerance is
related to diminish sustained virological response that
promotes insulin resistance, a step leading towards stea-
tosis and hepatocellular carcinoma [21,22]. Although the
characteristics and complications of HCV are well iden-
tified, but the molecular mechanisms of HCV induced
IR and hepatocellular carcinoma are yet to be fully
understood [23,24].

Hepatitis C virus infects the hepatocytes, progresses
through chronic phase and eventually leads towards IR,
Type 2 Diabetes mellitus and Steatosis. The prevalence
of Type 2 diabetes mellitus in chronic HCV patient
ranges from 24-50% and this frequency is about 5 times
greater than the rest of Hepatic cirrhosis [25,26].

Several studies revealed that HCV infection promotes
the release of tumor necrosis factor alpha (TNF-a).
These metabolic disorders like IR and steatosis are
dependent on the sustained virological response (SVR) i.
e. reduction of IR and steatosis will be favored in
response to the high SVR [27].

Role of HCV structural and non-structural
proteins in Insulin Resistance

The genome size of HCV is about 9.6 kb which gets trans-
lated into 10 different structural and non structural pro-
teins. These proteins help virus to replicate and damage
host machinery. However HCV proteins Core, NS-3 and
NS-5 are mainly involved in IR. The core protein is
involved in the formation of capsid, NS-3 contains helicase
and proteolytic activity, NS-5A downregulates interferon
stimulated genes and NS-5B is a RNA polymerase [28,29].
The structural organization of HCV genome is given the
figure. A brief role of HCV structural and non-structural
proteins in the induction of insulin resistance is discussed
here (Figure 1).

Core Protein
HCYV Core protein is a pathogenic feature of this virus
that can induce several metabolic disorders in the host
cell. HCV induces insulin resistance by knocking out
PPAR 280 by the way of core protein induction. PPAR
280-/- core Ag leads to the hypophosphorylation of Insu-
lin receptor substrate (IRS)-1 as well as 2 and phosphory-
lation of Akt [30]. Another study has showed similar
results in which HCV core transgenic Huh 7 and HepG2
cells expressed low levels of IRS-1 and IRS-2 with the
concomitant increased expression of SOCS-3 [31]. HCV
Core transgenic mice were shown to block P85 subunit
of PI3K, a downstream insulin signaling molecule, and
impair insulin signaling pathways [32].

TNF-o, antioxidant gene, is found to be released in an
excess and is required for the phosphorylation of serine
residues of IRS-1 eventually leading to the downregulation
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of downstream insulin signaling molecule Akt. HCV core
protein increases the expression level of TNF-a and pro-
motes insulin resistance [33]. In response to this oxidative
stress, four major DNA glycosylases are unregulated i.e.
NTHI1, OGG1, NEIL1 and NEIL2. HCV Structural as well
as Non-Structural proteins interferes with these glycosy-
lases. Expression of NEIL1 is strongly down regulated by
Core protein and to a lesser extent by NS-3, NS-4A and
NS-5A [34].

NS-3 Protein

HCV Non structural protein 3 (NS-3) has been shown to
induce oxidative stress by the way of reactive oxygen spe-
cies (ROS). During viral replication, NS-3 induces the
upregulation of Nicotinamide adenine dinucleotide phos-
phate oxidase 2 (NOX2) which, in turns, accelerates the
production of ROS eventually leading to the modulation
in downstream signaling pathways like hepatic fibrosis
[35]. It has been found that NS-3 cans downregulate T-
cells and natural killer cells thereby promoting its proteo-
lytic activity [36]. Secondary structure of NS-3 has the
potential of inducing neoplastic transformation and can
lead towards carcinoma [37]. Yet its direct role in the
induction of insulin resistance has not been determined.

NS-5A Protein

NS5A potentially interacts with RNA dependant kinase
(PKR), linked to the IFN stimulated genes, downregu-
lates PKR and consequently diminishes the IFN
response against HCV RNA [28]. There is correlation
between the interferon responsiveness and the phos-
phorylation of elF-2a.. NS5A expression masks the effect
of PKR which, in turns, lowers the phosphorylation of
elF-2a and promotes interferon resistance [38].

HCV Non Structural protein 5A (NS-5A) co-localizes
on the ER membrane, promotes lipid accumulation and
reactive oxygen species (ROS) that modulate intracellu-
lar signaling involving transcriptional factors like NF-kB,
STAT3 and Ca*" ions and promote damage to the hepa-
tocytes [39]. By this way of damage to the hepatocytes,
NS5A induces ER stress which leads to insulin resis-
tance directly or indirectly by the upregulation of cellu-
lar gene protein phosphatase 2A (PP2A) [40,41]. PP2A
has been shown to downregulate Akt, which in turns,
hampers the insulin signaling as well as it induces inter-
feron resistance. Therefore, NS5A plays a pivotal role in
the developing interferon resistance and takes its path
towards IR [42,43].

Studies on transgenic mice expressing NS-5A reveals
that this protein interacts with Apolipoprotein-1 of the
fatty hepatocytes, hampers the lipid transport, accumu-
lates cholesteryl esters and thereby leads towards liver
pathology including Steatosis and hepatocellular carci-
noma [44].
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HCV NS-5A has great potential of interacting with ER
and inducing stress on the ER homeostasis by the way
of upregulating ER over load Response (EOR). During
this phenomenon, one of the key transcriptional factors
of untranslated protein response ATF6 is upregulated.
However, the exact mechanism by which NS5A is indu-
cing the EOR is still remaining unknown [38]. This Fig-
ure illustrates the sequential pathways involving HCV
induced insulin resistance (Figure 2).

Role of cellular factors contributing in HCV
Induced Insulin Resistance

Some of the cellular factors which are found to be
involved in promoting insulin resistance are explained
here.

Role of cytokines

Various HCV proteins interact with the endoplasmic
reticulum and mitochondria induces oxidative stress
with the concomitant upregulation of TNF-a and some
other cytokines like Interleukin8, Interleukin6, Tumor
growth factor-p and Fas ligand [45]. As TNF-a is criti-
cally important for the determination of HCV infection.
TNF-o is an inflammatory cytokine that is strongly

upregulated in HCV infection and downregulates the
insulin signaling mechanisms by blocking the phosphor-
ylation of key molecules Insulin receptor Substrates
(IRS) and hampers the GLUT4 translocation for the glu-
cose molecule across the plasma membrane of the host
cell. [46].

Role of IRS

Depending upon the genotype, HCV induced Insulin resis-
tance can be promoted by a number of mechanisms like
Genotype 1 can deteriorate IRS-1 by the ubiquitinylation
favored by SOCS-3. In case of genotype 1b, IRS-1 is down
regulated by mTOR (mammalian target of Rapamycin)
that causes the serine/threonine phosphorylation of IRS-1
and hampers normal insulin signaling. In genotype 3,
there is enhanced production of SOCS7 that diminishes
IRS-1 and promotes insulin resistance [47-49].

Role of Akt

Akt, the downstream insulin signaling molecule, effec-
tively governs the transport of glucose through a con-
trolled feedback mechanism involving PKC and protein
tyrosine phosphatase 1B (PTP1B). Insulin signaling is
favored by doing the phosphorylation of PTP-1B. As a
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Figure 2 Schematic Representation of HCV Induced Insulin Resistance: Figure demonstrates that HCV non-structural proteins (NS-3 and NS-
5A) and structural protein (Core Protein) modulate various cellular genes that are involved in insulin resistance.

negative feedback mechanism, PKC( can phosphorylate
the serine residues of IRS-1 thereby blocking the IRS-1/
PI3K complex and inhibit insulin signaling [50]. IRS can
activate a number of insulin linked proteins like Src2
homology domain containing proteins, Fyn, CSK, CRK,
NCK as well as Akt. However, Akt is given more impor-
tance because of its strong role in insulin signaling. As
far as IRS dependant Akt mediated signaling is con-
cerned, it activates PDK which, in turns, phophorylates
and activates two proteins Akt (also known as PKB) and
PKC with the dominant isoforms zeta and lambda.
Although Akt predominates in this pathway, still a num-
ber of other cellular factors have to be explored that are
crucially involved in this pathway [51]. Recent evidence
shows that Huh 8 cells expressing HCV NS-5A induced
IR by the way of downregulating serine-473residue of
Akt and Insulin receptor-f§ [52].

Role of lipogenic genes
Previously it was thought that insulin resistance is just
because of the excessive glucose or imbalanced glucose

metabolism. However, it is now revealed that insulin resis-
tance is strongly influenced by abnormalities in the lipid
metabolism. Any dysfunction of the leptin triggers lipo-
toxicity through the production of free fatty acids in skele-
tal muscles, myocardium and pancreatic islets thereby
promoting insulin resistance [53]. After the HCV infec-
tion, core protein down-regulates microsomal triglyceride
transfer protein (MTP), an enzyme that mediates lipids
translocation to the ER membrane and decreases the
assembly of very low density lipoproteins (VLDL) [54].
Consequently, there is an enhanced production of lipids
that promotes insulin dependent steatosis in a MAP kinase
pathway [55]. AMP-activated protein kinase (AMPK) is
involved in controlling lipid as well as glucose metabolism.
During the HCV replication, AMPK is phosphorylated at
threonine 172, promoting lipid accumulation thereby
favoring HCV induced insulin resistance [56].

Role of gluconeogenic genes
HCV infection promotes the expression of gluconeo-
genic genes which, in turns, enhances insulin resistance.
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It has been observed that HCV promotes fatty acid
synthesis by the upregulation of lipogenic gene sterol
regulatory element binding protein 1c¢ which promotes
the transcriptional activation of other lipogenic genes
like acetyl CoA carboxylase, ATP citrate lyase, hydroxy-
methylglutaryl CoA reductase etc [57].

Findings of a recent study have revealed that in HCV
infected cell line Huh.8, PEPCK which is a key regulator
of gluconeogenesis, as well as cellular lipids was strongly
upregulated under HCV NS-5A expression. This is indi-
cating a plausible role of NS-5A in gluconeogenesis and
imbalances in the glucose metabolism [45].

Conclusion

HCV is a multifaceted disorder that involves different cel-
lular and viral factors for the disease progression. Chronic
HCYV infection is more likely to favor IR by the way of
HCV core, NS-3 and NS-5A protein. These proteins are
under strict investigation because there analogues can
prove to be effective treatment against HCV infection. We
can conclude that HCV induced IR is not merely because
of glucose imbalances rather it involves upregulation of
the gluconeogenic and lipogenic genes that promote glu-
cose intolerance and progresses towards IR, a step towards
hepatocellular carcinoma.
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