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Abstract

This study evaluates the immunogenicity of the HIV envelope protein (env) in mice presented either attached to g-
retroviral virus-like-particles (VLPs), associated with cell-derived microsomes or as solubilized recombinant protein
(gp160). The magnitude and polyfunctionality of the cellular immune response was enhanced when delivering HIV
env in the VLP or microsome form compared to recombinant gp160. Humoral responses measured by antibody
titres were comparable across the groups and low levels of antibody neutralization were observed. Lastly, we
identified stronger IgG2a class switching in the two particle-delivered antigen vaccinations modalities compared to
recombinant gp160.
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Findings
The induction of neutralizing antibodies remains key to
developing an efficient preventive HIV vaccine. The
strongest evidence in support of this comes from non-
human primate studies, which demonstrate that broadly
neutralizing antibodies can protect from infection [1,2].
The functional HIV envelope protein (env) complex
consists of three heterodimers of the surface subunit
gp120 and the transmembrane subunit gp41 arranged in
trimeric spikes [3]. Gp120 binds in a sequential manner
to CD4 and to a co-receptor (in most cases either
CXCR4 or CCR5) on the target cell. These interactions
promote extensive conformational changes in both
gp120 and gp41, which leads to fusion of the viral and
target-cell membranes. For vaccination purposes antibo-
dies raised to monomeric gp120 antigens primarily tar-
get the oligomeric interface, which is not exposed in the
functional trimeric structure [4]. Therefore, in order to
elicit neutralizing antibodies with high efficacy directed
towards the native forms of env, trimeric structure,

ideally in a membrane-bound form should be a crucial
property of env vaccine candidates for immunization.
The production and purification of soluble recombi-

nant env proteins having a native trimeric conformation
remains challenging [5]. As an alternative, HIV env can
be presented as membrane anchored trimers on virus-
like particles (VLPs) [6-8]. Several studies imply that
membrane-associated trimeric env can raise higher anti-
body titers with increased neutralization potency com-
pared to soluble recombinant gp120 or gp160 [9,10],
and a VLP-based vaccination strategy has previously eli-
cited some strain-specific neutralizing activity in mice
and macaques [11].
In order to efficiently pseudotype MLV particles with

HIV env, a cytoplasmic tail-truncated HIV env is
required [12,13]. This limits the retrograde trafficking of
HIV env localized on the cell surface by removing endo-
cytosis signals within the cytoplasmic tail of gp41 [14],
which in turn enhances env virion incorporation [15].
Importantly, several well-characterized neutralizing anti-
bodies are equally potent in inhibiting both native as
well as C-terminal truncated env [16].
The aim of this study was to compare the immuno-

genicity of env antigens delivered via g- retroviral-like
particles consisting of murine leukemia virus (MLV) gag
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and HIV env (termed HIV env/gag+), a purified cell
fraction containing microsomes and HIV env without a
viral core (termed HIV env/gag-) and recombinant
gp160 (uncleaved env precursor consisting of contiguous
gp120 and gp41 domains) produced in H9 cells, deter-
gent solubilized and immuno-affinity purified [17].
We produced Moloney MLV gag particles [18] dis-

playing env (HXB2 strain) with a truncated cytoplasmic
tail (termed gp150) as previously described [13,19]. Both
the VLPs and the microsome-associated HIV env were
prepared by transient transfection of 293T cells followed
by purification via ultracentrifugation of the supernatant
through a 20% sucrose cushion [20]. Western blotting of
the sedimented fractions revealed the presence of both
precursor gp150 and processed gp120 in HIV env/gag+
as well as HIV env/gag- fractions (Figure 1). Equal
amounts of env proteins, as determined by HIV env
ELISA, were used for vaccinating mice and compared to
rgp160 protein (derived from the HXB2 strain, Auto-
gen-bioclear, UK). Six to eight week-old female BALB/c
mice were handled and immunized under SPF condi-
tions at Pipeline Biotech (Trige, Denmark) according to
Danish laboratory animal legislation. Three experimental
groups of five animals each received two intra-peritoneal
injections 4 weeks apart with a final volume of 185 μl
PBS containing 10 ug of the murine TLR9 ligand CpG
oligonucleotide (ODN1826, InvivoGen) as adjuvant. The
groups were denoted as either HIV env/gag+ particles,
HIV env/gag- microsomes (both receiving 250 ng/injec-
tion) or soluble rgp160 (1 ug/injection, Autogen-bio-
clear, UK). A negative control group of three animals
were immunized with PBS alone. Blood samples for pre-
immune serum production were collected 5 days prior
to vaccination. Mice were sacrificed four weeks after the
last vaccination and blood and spleens were collected.
IFN-g/IL-2 fluorospot assays (Mabtech, Sweden) were

performed on splenocytes purified by ficoll-gradient
centrifugation. Splenocytes from all mice were either sti-
mulated with HIV env antigen (rgp160, 50 ng/mL) or
serum-containing media alone and the number of spot
forming units/106 splenocytes was determined (Figure
2). Vaccination of mice with HIV env/gag+ (median
143, range 96-439) or HIV env/gag- (median 120, range
60-276) elicited a 10-fold higher env-specific, IFN-g+ T-
cell response compared with rgp160 vaccinated animals
(median 10, range 7-134). For env-specific IFN-g+

secreting splenocytes there was a statistically significant
increase in the HIV env/gag+ group compared to the
rgp160 group (p = 0.03) whereas the increase between
the HIV env/gag- vs rgp160 groups failed to reach sig-
nificance (p = 0.056). Similarly, env-specific IL-2 secret-
ing splenocytes were significantly more numerous in
both HIV env/gag+ (median 401, range 209-991. p =
0.03) and HIV env/gag- (median 517, range 324-820. p

= 0.008) vaccinated animals compared with animals
receiving rgp160 (median 98, range 267-69) (Figure 2).
There were no differences between the two particle-
sized antigen groups. All statistical group comparisons
were performed using a Mann Whitney test.
Analyzing the proportions of env-specific cells secret-

ing both IFN-g+ and IL-2+ demonstrated higher propor-
tions of dual positive cells in the HIV env/gag+ (5.4%, p
= 0.016) and HIV env/gag- (6.5%, p = 0.015) groups
compared to the rgp160 group (2.12%, Figure 3). Thus
vaccination with membrane-bound HIV env immuno-
gens both with and without a MLV viral core increased
both the magnitude and the polyfunctionality of the

Figure 1 Western blot of supernatant from transfected 293T
cells pelleted through 20% sucrose using goat anti-HIV-1
gp120 (Europe Bioproducts, UK) and mouse anti-MLV CA
produced by the hybridoma cell 548 (ATCC, USA). Primary
antibodies were probed with HRP-conjugated secondary antibodies
and visualized by enhanced chemoluminescence (Amersham
Biosciences). Band intensities were assessed by Molecular Dynamics
Storm software (GE Healthcare, DK).
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cellular immune response compared to recombinant
protein.
The antibody response to the different HIV env

immunogens was determined using two different ELISA
systems. Firstly, serum IgG from vaccinated mice was
analyzed for binding to rgp160. Briefly, Maxisorp

Immunoplates (Nunc, Denmark) were coated with sheep
anti-gp120 D7324 antibodies (Aalto Bio Reagents, Ire-
land) followed by incubation with 44 ng/well rgp160
(Autogen-bioclear, UK) in 5% low-fat milk PBS 0.1%
Tween. Bound murine antibodies were detected using
HRP-conjugated goat anti-mouse IgG (Southern Bio-
tech, USA). The three groups had comparable anti-
gp160 binding titers with mean endpoint dilutions of
HIV env/gag+ 2500, HIV env/gag- 4500 and rgp160
1400 (Figure 4). A value of at least 2× the average pre-
immune sera OD at each dilution from two mice was
used as the cut-off for a positive value.
To further address qualitative aspects of the immune

response, we determined the HIV env-specific IgG1 to
IgG2a isotype ratio in the three experimental groups
(Figure 5). Vaccination with either of the particle-sized
antigens HIV env/gag+ or HIV env/gag- promoted
class-switching of the antibody response to the IgG2a
isotype. This is in contrast to vaccination with recombi-
nant gp160 alone. Antibody class-switching to IgG2a
has previously been observed in DNA plasmid-based
vaccination regimens [21,22]. In the current study, we
believe the presentation of membrane-associated env
antigens promotes the efficient uptake and cross presen-
tation of env to antigen presenting cells and CD4+ T
cells thereby contributing to both the enhanced cellular
immunity observed as well as antibody class switching.
Lastly, the ability of sera to neutralize homologous

(HXB2) virus infectivity on TZM-bl cells was analyzed.
As the challenge virus we utilized HXB2 virus produced
in primary PBMC’s. Briefly, sera from vaccinated mice
and virus were incubated at indicated dilutions for 30
min at 37 C. Subsequently, virus was added to TZM-bl

Figure 2 FLUOROspot of splenocytes isolated from BALB/c mice vaccinated twice with VLPs, microsome-associated env (injecting
equal amounts as determined by densitometry) or rgp160 (1 ug/injection) four weeks apart. Box and whiskers plot with 5-95% percentile
showing IFN-g (dark) and IL-2 (light) positive counts in the three. Group medians compared with a Mann-Whitney test * p < 0.05; ** p < 0.01.

Figure 3 Fraction of total antigen specific splenocytes
producing both IFN-g and IL-2. All graphs show medians of
results from five mice assayed in triplicate. Group medians were
compared using the Mann-Whitney test * p < 0.05. All FLUOROspot
results depicted represent antigen specific stimulation with
background values (derived from unstimulated cells) subtracted.
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cells and incubated for 48 hrs upon which cells were
lysed and luciferase (BriteLite, PerkinElmer, Denmark)
activity was determined in a FluorStar Omega (BMG
Labtech, Germany). To control for unspecific sera activ-
ity pre-vaccination sera were included for each indivi-
dual mice. Neutralization was calculated as (1-[virus +
immune sera/virus + pre-vaccination sera]). Generally, a
low degree of neutralizing capability was observed across
all three immunization groups (Figure 6). Of interest,

sera from HIV env/gag+ vaccinated animals appeared to
display low level of neutralization at higher sera dilu-
tions although no statistical difference was observed.
In conclusion, these results indicate that relative to

recombinant protein immunogens, g-retroviral-based
VLPs and microsome incorporated env can stimulate
quantitative and qualitative improvements in T cell
responses targeting HIV env. Thus, a vaccine platform
using particle-delivered env trimers appears robust and
immunogenic, and also holds advantages as to vector
safety. The sequence similarity between g-retroviruses
and lentiviruses is very small, reducing the potential for
recombination. The microsome delivery of antigen
appear indistinguishable from the g-retroviral-based VLP
in terms of immunogenicity but incorporation of env
was less efficient posing challenges in terms of larger
scale production. Summarized, we believe these immu-
nogenic and safety features support further investiga-
tions of particle-delivered HIV env for vaccinations
against HIV.
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