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Abstract

Background: Influenza virus continues to cause significant hospitalization rates in infants and young children. A
2-dose regime of trivalent inactivated vaccine is required to generate protective levels of hemagglutination
inhibiting (HAI) antibodies. A vaccine preparation with enhanced immunogenicity is therefore desirable.

Methods: Mice were inoculated intramuscularly (IM) with live and inactivated preparations of A/Wisconsin/67/2005
(H3N2). Serum cytokine levels, hemagglutinin (HA)-specific antibody responses and nucleoprotein (NP)-specific
CD8+ T cell responses were compared between vaccinated groups, as well as to responses measured after
intranasal infection. The protective efficacy of each vaccine type was compared by measuring virus titers in the
lungs and weight loss of mice challenged intranasally with a heterosubtypic virus, A/PR/8/34 (HIN1).

Results: Intramuscular administration of live virus resulted in greater amounts of IFN-a, IL-12 and IFN-y, HA-specific
antibodies, and virus-specific CD8+ T cells, than IM immunization with inactivated virus. These increases
corresponded with the live virus vaccinated group having significantly less weight loss and less virus in the lungs
on day 7 following challenge with a sublethal dose of a heterosubtypic virus.

Conclusions: Inflammatory cytokines, antibody titers to HA and CD8+ T cell responses were greater to live than
inactivated virus delivered IM. These increased responses correlated with greater protection against heterosubtypic
virus challenge, suggesting that intramuscular immunization with live influenza virus may be a practical means to
increase vaccine immunogenicity and to broaden protection in pediatric populations.

Background

Influenza-infected infants and children younger than
2 years old are at increased risk for severe respiratory
disease, requiring hospitalization [1]. The mortality due
to infection is high for newborn infants and children
that are immuno-compromised, as well as children with
underlying heart or lung disease [2]. Treatment options
are limited since many influenza strains are resistant to
licensed antivirals [3]. In order to prevent this burden of
disease, vaccination against influenza is recommended
for all children older than 6 months [4].
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Both inactivated and live influenza virus vaccines are
available. The live vaccine preparation is licensed for use
in 2 - 49 year olds, but because it is administered intra-
nasally (IN), is not recommended for individuals who
have a history of wheezing or diagnosis of reactive air-
way disease. Individuals that cannot receive the live atte-
nuated vaccine due to age, immune status or respiratory
disease can be vaccinated intramuscularly (IM) with the
inactivated influenza preparation. Two doses are recom-
mended when children are vaccinated for the first time
to achieve desirable seroconversion [4,5]. While this
regimen offers immunity against influenza, it is often
difficult to achieve both doses [6], and therefore influ-
enza vaccine preparations that are more immunogenic
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and offer greater protection against different strains, are
desirable.

Immunogenicity of protein antigens is determined by
a plethora of events that follow the activation of patho-
gen sensors. For influenza, these sensors include TLR7
that binds to single-stranded RNA in the endosome or
NOD-like receptors (NLR) and retinoic acid inducible
gene I (RIG-I) receptors that bind to early replication
intermediates (double-stranded RNA or 5’ phosphate) in
the cytoplasm (reviewed in [7]). These sensors work in
co-operation with one another [8]: for example, prolL-
1B expression is induced through the TLR7 pathway but
must be activated by cleavage with caspase-1, a compo-
nent of the inflammasome. This results in innate
responses with characteristic signatures, depending on
the quantity and quality of these early signals. These
early inflammatory mediators influence the type and
magnitude of the resultant antigen-specific adaptive
response. For example, IL-1f is induced following influ-
enza infection, enhancing priming of CD4+ T cells and
induction of IgM [9].

Qualitatively distinct adaptive immune responses have
been noted following live and inactivated influenza vac-
cination [10,11]. These differences include induction of
virus-specific CD8+ T cells by live virus vaccines. We
hypothesized that discrete early cytokine responses are
elicited following live and inactivated influenza virus IM
vaccination, supporting distinct adaptive immune
responses. To test this idea, we compared cytokine, anti-
body and CD8+ T cell responses in mice immunized IM
with live and inactivated vaccine preparations. In addi-
tion, we compared the breadth of protection afforded by
each vaccine type by challenging immunized mice IN
with a heterosubtypic virus.

Methods

Virus preparation

Influenza virus A/Wisconsin/67/05 X161B (A/W1/05),
an H3N2 strain used in vaccine manufacture, and
mouse-adapted A/PR/8/34 were prepared by inoculation
of 10 day old embryonated chicken eggs. Virus was
inactivated by exposure to UV light for 30 minutes, or
by heating at 60°C for 1 hr. For UV inactivation, 1 ml
aliquots of virus were placed in a 12-well tissue culture
plate and incubated on ice approximately 2 inches from
the UV light source. Infectivity of each preparation was
determined by titration in MDCK cell monolayers as
previously described [12], with titer expressed as 50%
tissue culture infectious dose (TCIDs5() per ml. The ori-
ginal A/WI/05 virus stock contained 10" TCIDgo/ml.
UV and heat treatments reduced this to 10* and <10?
TCIDso/ml, respectively. Both live and inactivated pre-
parations were diluted 1:2 in PBS before immunization
of mice with 50 pl of inoculum. Each mouse therefore
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received the same number of particles i.e. the amount
present in 2.5 x 10° 50% tissue culture infectious dose
units (TCIDs).

Study Design

Female BALB/c mice (The Jackson Laboratories, Bar
Harbor, Maine) aged 8-10 weeks were used in experi-
ments following protocols approved by the CBER Ani-
mal Care and Use Committee in accordance with
federal guidelines. Mice were anesthetized by isoflurane
inhalation and inoculated with 50 pl of live or UV inac-
tivated A/W1/05 either IM or IN. Three animals per
group were sacrificed by CO, asphyxiation on days 1, 2,
3, 7, 14, 21, and 28 post-immunization. The remaining
animals were boosted on day 28 and sacrificed on days
2, 7, and 28 post-secondary immunization. Serum was
collected by tail-bleed, broncho-alveolar lavage fluid
(BAL) was collected by flushing lungs 3-times with 1 ml
of PBS-0.1%BSA, and nasal wash (NW) was collected by
flushing nasal passages with 0.2 ml PBS-0.1% BSA at
each time point. Cellular debris was pelleted and all
samples stored at < -20°C.

To evaluate CD8" T cell responses and protection
against disease, immunized mice were challenged IN
with a sub-lethal dose of A/PR/8/34 (0.1 LDso/mouse)
while anesthetized with isoflurane. Mouse weights were
measured daily. Mice were euthanized 9 days after chal-
lenge to enumerate CD8+ T cells in BAL, whole lung
and mediastinal lymph nodes (MLN). Virus titers were
determined in lungs collected on day 7 post-challenge.

Hemagglutination inhibition (HAI) Assay

Non-specific inhibitors were removed from serum by
overnight treatment with receptor destroying enzyme
(RDE, Accurate Chemical Corp, Westbury, NY) followed
by 30 min incubation with packed chicken red blood
cells (RBC, CBT Farms, Chestertown, MD). Following
centrifugation to remove the RBC, each serum sample
was serially diluted in 25 pl PBS and then mixed with
an equal volume of PBS containing 4 HAU A/WI/05.
After 30 min incubation at room temperature, 50 pl of
0.5% RBC was added and the mixture incubated for
45 minutes before evaluation of agglutination. The titer
was recorded as the inverse of the last dilution that
inhibited agglutination.

HA-specific antibody titers measured by ELISA

Recombinant HA of A/WI/05 was purchased from Pro-
tein Sciences Corp. (Meriden, CT). Plates (96-well,
IMMULON® 1B, Thermo Scientific) were coated over-
night at 4°C with 25 ng/well HA or left uncoated to
account for non-specific antibody binding to the plate.
Excess antigen was discarded and the plates blocked
during 1 hr incubation at room temperature with 1%
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BSA Blocking Solution (KPL, Gaithersburg, MD). After
washing the plates, 2-fold serial dilutions of samples
were added and the plates incubated for 2 hr at room
temperature. The plates were then washed and horse-
radish-peroxidase-conjugated goat anti-mouse Ig (H+L)
or individual Ig isotypes IgG1, IgG2a, IgG2b (Southern
Biotech, Birmingham, AL) added. After 1 hr incubation
the plates were washed and ABTS Peroxidase Substrate
(KPL, Gaithersburg, MD) added. Absorbance was read
at 450 nm (Victor V, PerkinElmer, Waltham, MA).
Titers were assigned as the inverse of the sample dilu-
tion in which absorbance was at least 2 times greater in
the HA-coated well than non-coated well. To compare
the proportion of HA-specific antibodies with a particu-
lar isotype, results were documented as the percent of
the titer attributed to each isotype, i.e. (titer of each
individual isotype/sum of individual titers)x100. Since
the sensitivity of each isotype-specific antibody may be
different, this calculation provides the means to com-
pare relative amounts of each isotype but does not
reflect absolute antibody quantities.

Cytokine Quantitation

Cytokine analysis was performed on all samples using
the Meso Scale Discovery (MSD; Gaithersburg, MD)
platform. A multiplex 96-well plate format was used,
with simultaneous measurement of IL-1, IL-2, IL-4, IL-
5, mKC, IL-10, IL-12p70, IL-13, IFNYy, and TNFa. All
reagents and pre-coated plates were purchased from
MSD, and the manufacturer’s protocol was followed.
Briefly, all reagents were brought to room temperature
prior to use, and all incubations performed at room
temperature with shaking. Prior to the addition of sam-
ples and calibrators the plates were incubated with assay
diluent for 30 minutes. Samples and calibrators were
added and incubated for 2 hours. After washing the
plates three times with PBS-0.05% Tween-20, detection
antibody was added and the plates incubated for an
additional 2 hours. A final wash was performed, fol-
lowed by the addition of read buffer. The plates were
read using the MSD Sector Imager 2400. Cytokine con-
centrations were determined using a curve fit model
with software provided with the instrument.

Enumeration of virus-specific CD8+ T cells

BAL, MLN and lungs from 5 mice in each group were
pooled. Cells in the BAL were pelleted and resuspended
in 5 mL PBS/0.1% BSA. The cell suspension was trans-
ferred to a 100 mm non-tissue culture treated petri-dish
for macrophage depletion by plastic adherence for 90
minutes at 37°C. Following incubation, the cells that
remained in suspension were removed and pelleted
prior to treatment with RBC lysing buffer (Sigma, St
Louis, MO). To prepare a lymphocyte suspension from
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lungs, the tissue was cut into small fragments, then
forced through a metal strainer. Large particulates were
removed by passing the suspension over a 70 um nylon
cell strainer, and the cell suspension was pelleted prior
to RBC lysis. MLN were gently homogenized and the
cell suspension pelleted. Lymphocytes were counted in
each preparation and approximately 1 x 10° cells were
used for immunostaining with an antibody mixture spe-
cific for cell surface markers of lymphocyte subsets or
isotype controls. The antibody mixture contained anti-
CD3-APC-Cy7, anti-CD4-PE, anti-CD8-PerCP Cy5.5,
B220-PE-Cy7, and NK1.1-FITC. The antibody mixture
was only incubated with the cells after a 10 minute
incubation at room temperature with NP4, 155-MHC
class I Pentamer TYQRTRALV—HZKd (Prolmmune,
Oxford UK). Cells were finally resuspended in 0.5 ml
PBS-0.1% BSA and events collected on a FACSCanto
(Becton-Dickinson, Franklin Lakes, NJ). Results were
analyzed using FloJo 7.2.4.

Statistical Analysis

Student’s t test was used to compare amounts of cyto-
kines present in serum, BAL and nasal wash at each
time point within each vaccination group. ANOVA,
with Bonferroni post-test, was used to compare differ-
ences between groups. Statistical significance was
inferred when p < 0.05.

Results
Live virus vaccination IM induces more robust innate
cytokine responses
To compare innate responses following IM vaccination
with live and UV-inactivated influenza virus A/W1/05,
the concentrations of cytokines were measured in serum
and BAL collected at various times after one vaccine
dose (3 animals per time point in each group). The
kinetics of these cytokine responses were also compared
with cytokine levels after infection (intranasal) with live
A/W1/05. The sample (serum or BAL) in which cytokine
responses were measured reflected the site of inoculation
- increased amounts of inflammatory cytokines were
measured in BAL following IN infection with live virus,
whereas these cytokines were increased in serum after
IM vaccination (Figure 1). The amount of serum IFN-a,
IFN-y and IL-12 was significantly greater after IM vacci-
nation with live virus compared to UV-inactivated virus
(p < 0.05, Figure 1). In contrast to IM vaccination with
either live or inactivated virus, elevated levels of mKC, a
homolog of the neutrophil chemoattractant IL-8, was
measured in BAL after IN infection (Figure 1). Similar
results were obtained in a repeat experiment.

The route of inoculation also impacted the kinetics of
the response - serum IL-1P peaked on day 2 following
IM inoculation but peaked on day 1 in BAL after IN



Harris et al. Virology Journal 2011, 8:251 Page 4 of 11
http://www.virologyj.com/content/8/1/251

Serum BAL

501 # 60-
- IFN-a
wl IFN-a T
30- 401
—_—
40 T 40-
204 .-.-.-l-._-.-. 20
o
oL B 0 i B = ﬂ?ﬁfﬁhﬂ
2500- 25007 IL-12
2000 IL-12 -Ili.}E 2000{ '~
1500
1000
500-
L= Fﬁl i %

501

IL-1B

40-

4004
mKC mKC
300 300
200
100 T %
T 0 s
None Inact Live Live None Inact Live Live
IM IM IN IM IM IN

Figure 1 Average cytokine concentration (pg/ml) in serum and BAL before (none), 1 day after IM vaccination with inactivated and live
A/WI/05 and 1 day after IN inoculation with live virus. The results shown are the average concentration measured in sera or BAL from 3
mice in each group. Significant difference with non-immunized group denoted with *, significant difference with UV-inactivated IM immunized
group denoted with # (ANOVA with Bonferroni post-test, significantly different when p < 0.05).
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infection; IL-12 peaked on day 1 following IM inocula-
tion but on day 3 after IN infection (Figure 2). There
were 2 waves of IFN-y observed in BAL after IN infec-
tion with live virus - in the early phase, peak levels were
measured 1 day post-infection (p.i.), and in the later
phase, IFN-y peaked on day 7 p.i. (Figure 2). The cyto-
kine profile at early time points after vaccination reflects
an innate response, with cells such as natural killer cells
as a possible source of these cytokines, whereas the later
phase of the response or following boosting to obtain a
recall response, is indicative of cytokines secreted by
activated virus-specific T cells.

HA-specific titers are greatest following IM vaccination
with live virus

To evaluate differences in the adaptive immune
responses to live and inactivated vaccines, we compared
HA-specific antibody titers in serum and BAL. IM immu-
nization with both live and inactivated virus resulted in
HA-specific IgG responses measured by ELISA on day
28, with greater titers measured after both primary and
secondary immunization with live virus (Table 1). This
was most notable in BAL where IM immunization with
live virus resulted in 4-fold greater HA-specific IgG titers
than inactivated virus. The HA-specific IgG titer in BAL
after live virus IM vaccination was similar to the titer in
BAL of animals infected IN with live virus even though
the titer measured in serum of infected mice was not as
robust. IgA was not included in this assessment because
the assay lacked sufficient sensitivity to quantify this iso-
type in BAL.

Hemagglutination inhibition (HAI) titers, a measure of
functional activity of HA-specific antibodies, were also
measured for serum samples (Table 1). The HAI titers
after a single or second vaccine dose of live virus deliv-
ered IM were 4-fold greater than the inactivated virus-
vaccinated group. Serum HAI titers increased following
a second IM dose of either live or inactivated virus, but
were not boosted when mice previously infected were
rechallenged with live virus.

Qualities of the adaptive response following IM

vaccination with live and UV-inactivated virus are distinct
Protection against disease is often dependent on the
type of response and not just overall quantity. Others
have demonstrated that the quality of the influenza-spe-
cific T cell response induced in mediastinal lymph
nodes (MLN) draining the lungs of C57BL/6 mice is
dependent on the type of immunogen, with Thl type
cytokine IFN-y secreted in response to live virus and
Th2 type cytokine, IL-4, secreted in response to inacti-
vated virus [13], resulting in the induction of greater
numbers of IgG2a and IgG1 antibody secreting cells
respectively [14]. We therefore examined the type of
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response by determining the ratio of each isotype con-
tributing to the HA-specific antibody titer, and exam-
ined increases in cytokines representative of Thl and
Th2-type responses.

To compare the relative amounts of IgG isotypes,
ELISA HA-specific titers were measured using isotype-
specific secondary reagents. The titers of HA-specific
IgG1, IgG2a and IgG2b were presented as a simple ratio,
or as a percent of the summative titer. For example, a
pool of sera from mice boosted IM 28 days earlier with
live virus had an IgG1:IgG2a:IgG2b ratio of 50:3200:800
or 1%, 79% and 20%, respectively. [gG2a predominated in
serum after IM immunization, irrespective of whether
the virus was live or inactivated (Table 2). Unexpectedly,
HA-specific antibodies of IgG1 isotype that is character-
istic of Th2-type responses were present in greater pro-
portion in BAL after IM immunization with live virus
(44%), than inactivated virus (3%). The proportion of
IgG1, IgG2a and IgG2b in BAL of live virus-vaccinated
mice was the same as infected mice, suggesting this form
of antigen induced T cell help that is distinct from that
induced by non-replicating antigen.

Switching to IgG1 and IgG2b isotypes is facilitated by
Th2-type cytokines, IL-4 and IL-5, respectively, while
Thl-type cytokines support switching to IgG2a. To
determine whether the cytokines that support IgG2a,
IgG1, as well as IgG2b responses were present following
vaccination with live virus, we measured Thl (IL-2 and
IFN-y) and Th2 (IL-4 and IL-5)-type cytokines in serum
and BAL on days 2 and 7 after a second dose of vaccine,
when antigen-specific memory T cells are likely to be
activated. No increase in IL-2 was detected in serum or
BAL at any time point (results not shown). As after pri-
mary immunization, increased concentrations of cyto-
kines were evident in the serum, not BAL of mice
vaccinated IM. The amount of Thl type cytokine, IFN-
v, but not Th2-type cytokines IL-4 and IL-5, was
increased on day 7 after a boosting dose with inactivated
virus. In contrast, IL-4 and IL-5 concentrations were
increased in the sera of mice immunized IM with live
virus (Figure 3).

Opverall, the cytokines measured in serum following a
second vaccine dose support the antibody isotypes iden-
tified: IM immunization with inactivated virus resulted
in increased serum IFN-y, supporting an IgG2a
response, while IM immunization with live virus
resulted in increased amounts of IL-4 and IL-5, support-
ing IgG1 and IgG2b responses, respectively.

NP-specific CD8" T cells are present after immunization
with live virus

Robust CD8+ T cell responses are measured after IN
infection [15]. To establish whether this type of cell-
mediated response is elicited following IM vaccination,
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Table 1 HA-specific antibody titers measured by ELISA
(Total IgG) or HAI in pooled sera and BAL of immunized
mice

IM vaccine type IN
infection
Test Sample Day post Inactivated Live Live
vaccination
ELISA (Total Serum 0 <25 <25 <25
19G)
7 <25 <25 <25
28 400 800 100
7 days post- 800 1600 400
boost
28 days post- 800 1600 800
boost
BAL 0 <2 <2 <2
<2 <2 <2
28 16 64 32
7 days post- 32 64 64
boost
28 days post- 16 64 64
boost
HAI Serum 0 <4 <4 <4
16 16 <4
28 64 256 256
7 days post- 128 256 128
boost
28 days post- 128 512 128
boost

the number of virus-specific CD8+ T cells was measured
by staining lymphocytes from whole lung, BAL and
mediastinal lymph nodes (MLN) with NPj47 155-peptide-
loaded H-2K? pentamer in conjunction with antibodies
specific for CD8. This peptide is an immunodominant
influenza epitope in BALB/c mice [16]. To facilitate the
quantitation of these memory cells, mice were chal-
lenged with the heterosubtypic A/PR/8/34 (HIN1) virus
28 days after IM vaccination. The sequence of NP147. 155
is identical in the immunizing (A/WI/05) and challenge

Table 2 Proportion of HA-specific antibodies with specific
isotypes in pooled sera and BAL measured by ELISA

Percent of titer attribute to

Sample Inoculation route/virus form  1gG1 lgG2a 1gG2b

Serum IM inactivated 1 88 11
IM live 1 79 20
IN live 8 61 31

BAL IM inactivated 3 77 20
IM live 44 44 12
IN live 44 44 12
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(A/PR/8/34) viruses. A control group of mice that had
previously been infected with A/W1I/05 was used as con-
trol. Cells and tissue were obtained 9 days after hetero-
subtypic challenge and the single cell preparations
stained and evaluated by flow cytometry. Table 3 shows
the percent of NP4;.155-specific CD8" T cells in MLN,
lung and BAL of mice immunized IM with live virus.
This percent was greater than the proportion of anti-
gen-specific CD8+ T cells activated in response to IM
UV-inactivated virus (approximately 3 vs 2% in MLN,
48 vs 27% in lung, 64 vs 33% in BAL). The number of
NP-specific CD8+ T cells calculated (percent x total
number of cells in each homogenate) showed that IM
vaccination with live virus and IN infection resulted in a
similar percentage as well as a similar number of anti-
gen-specific CD8+ T cells, suggesting IM vaccination
with live virus is an effective means to induce cell-
mediated immunity without replication of virus in the
lung. The percent as well as number of antigen-specific
CD8+ T cells in the UV-inactivated group was greater
than the group that had not been vaccinated. Since resi-
dual infectious virus in this UV-treated vaccine prepara-
tion may account for the induction of some CD8+ T
cells, mice were also vaccinated with heat-inactivated
virus. The numbers of NP-specific CD8+ T cells recalled
into MLN, lung and BAL of mice infected with this
latter preparation were minimal in comparison to the
non-vaccinated group, if present at all (Table 3). The
experiment was repeated with similar results.

IM immunization with live virus provides greater
protection against heterosubtypic virus challenge than
vaccination with inactivated virus

To determine whether induction of antigen-specific
CD8+ T cells in mice vaccinated IM with live virus
translated into greater protection against disease, mice
were challenged with a sub-lethal dose of A/PR/8/34
and animal weight and virus titers in lungs were mea-
sured 7 days post challenge. All immunized groups
showed some protection against weight loss and virus
replication (p < 0.05 when each group compared to
non-vaccinated group), however, mice immunized IM
with live virus had significantly less weight loss (p =
0.03) and lower virus titers (p = 0.03) than mice immu-
nized with inactivated virus (Figure 4). IM vaccination
with live virus provided a similar level of protection as
previous A/WI/05 infection of the respiratory tract (dif-
ferences in weight loss and lung virus titers were not
significant).

Discussion

Clinical studies show that both live, attenuated and inac-
tivated, split influenza vaccines are safe and effective,
although there are instances when greater protection
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Figure 3 Kinetics of cytokines present in (A) serum and (B) BAL following secondary IM immunization with live or inactivated A/WI/05,
or after a secondary dose of live virus delivered IN. The concentration of cytokine was measured in samples collected from individual mice
using multiplex MSD analysis. Mean values of IFN-y, IL-4 and IL-5 in sera and BAL of 3 mice per group are shown for each time point following
the boosting dose.

against disease has been observed in young children vac-
cinated with live, rather than inactivated vaccines [17,18].
This is likely due to differences in the immune mechan-
isms that contribute to protection: inactivated vaccines
induce robust antibody responses [19] that prevent infec-
tion or reduce spread of the virus, while live virus vac-
cines induce cellular responses [20] that probably
contribute to protection through secretion of anti-viral

cytokines or direct killing of infected cells. Unfortunately
the live, attenuated vaccine is administered intranasally,
and is therefore contraindicated for individuals with
asthma or other respiratory diseases, excluding many
children from the possible benefit of cell-mediated
immunity. In this report we show differences in the qual-
ity and quantity of immune responses to live and inacti-
vated influenza virus administered IM, and demonstrate

Table 3 Percent and number of NP-specific CD8+ T cells in pooled MLN, lung and BAL samples after challenge of

immunized mice with A/PR/8/34

Previous exposure to viral antigens

none Live virus IN live virus IM UV-inact virus IM heat-inact virus IM
Percent NP,4;.155-specific CD8+ T cells
MLN 0.2 42 30 17 03
Lung 9.6 520 47.9 269 220
BAL 155 60.2 635 325 256
Number of NP,4;.155-specific CD8+ T cells per mouse
MLN 431 10,028 6,296 5,608 1,451
Lung 60,597 231,304 183,918 113,603 62,890
BAL 14,940 23427 44,129 25473 13,612
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that as for live virus administered intranasally, IM vacci-
nation with live virus induces robust antibody as well as
CD8+ T cell responses, thereby providing protection
against challenge with a heterosubtypic virus.

Comparison of cytokine and antibody profiles in sera
of mice immunized IM with live and UV-treated virus
preparations showed quantitative and qualitative differ-
ences, with greater amounts of acute inflammatory cyto-
kines correlating with an increased antibody response
following exposure to live virus preparation. Since we
used a UV-inactivated virus preparation that retained
some live virus, it is possible that even greater differ-
ences would have been observed in the complete
absence of live virus.

The cytokines measured in this study are induced as a
result of signaling through TLR7, RIG-I, and inflamma-
somes [8]. IL-12 and IFN-y are usually TLR7-driven,
and since virus replication is not required for the inter-
action of this sensor with its ligand, single-stranded
RNA, one would expect both cytokines to be induced
following exposure to live and inactivated virus. How-
ever, significantly greater amounts of IL-12 and IFN- y
were present 1 day after IM vaccination with live virus
than UV-treated virus, even though the latter treatment
did not completely inactivate the virus. This may reflect
differences in uptake of virions into cells or synergism
with other responses that are replication-dependent, for
example, an effect of IFN-a that is induced following
immunization with the live virus preparation only. This
latter idea is in accord with work that demonstrates the
ligand for RIG-I is dsRNA [21], and therefore this signal
is replication-dependent. IFN-o. may contribute to the
enhanced immune response in direct as well as indirect
means. For example, others have demonstrated syner-
gism between IFN-a and IL-12 [22], and IFN-a is
known to increase immunogenicity by acting on B cells
to induce early antibody responses [23-25]. It is there-
fore not surprising that the magnitude of the antibody
response following IM immunization with live virus was
greater than UV-inactivated virus.

Both live and UV-inactivated virus preparations
induced Th1-type responses after the first vaccination,
resulting in expected IgG2a HA-specific antibodies.
Unexpectedly, IgG1 (IL-4-dependent) and some IgG2b
(IL-5 driven) HA-specific antibodies that are typically
associated with Th2-type responses were amplified after
a second dose of live but not inactivated vaccine. The
live virus preparation did indeed result in increased con-
centrations of IL-4 and IL-5 in serum that could explain
these responses.

Our results show that the most robust serum antibody
response - measured as either total HA-specific IgG or
HATI titers - is generated after IM immunization with
live virus. Intranasal inoculation with live virus resulted
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in similar HAI titers after one dose, but unlike IM vacci-
nation with live virus, HAI titers were not boosted after
a second IN exposure to live virus. Priming at the
mucosa and in the periphery certainly results in distinct
responses that are often important for establishing pro-
tection at the appropriate site of infection [26]; IN
immunization provides the advantage of inducing local
IgA and memory T cell responses that contribute to
protection against infection of the upper respiratory
tract, whereas IgG in the circulation provides effective
protection against influenza infection in the lower
respiratory tract of mice [27]. While IM vaccination
with live virus probably does not induce local antigen-
specific IgA, robust serum HAI titers would contribute
to vaccine-induced protection of the lung.

The proposal to administer a live vaccine parenterally
is not a new idea - it has long been established that the
live virus vaccine for measles, mumps and rubella
(MMR) administered intradermally, is an effective pedia-
tric vaccine. This vaccine has excellent immunogenicity
when a single dose is delivered at 12 months of age,
although a second dose is recommended, to provide a
boost to the small percent of recipients (5%) that do not
respond to one or more of the antigens after the first
dose. Vaccine efficacy is robust and has eliminated
endemic measles transmission in the United States [28].
Increasing influenza vaccine immunogenicity by chan-
ging the form that is delivered intramuscularly may pro-
vide an important increase in effectiveness in the
pediatric population.

Unfortunately, maternal antibodies inhibit responses
to live virus MMR vaccine delivered parenterally [29].
This is one reason the MMR vaccine is delivered at 1
year of age. Even though we demonstrate boosting of
the response to a second dose of live virus delivered IM,
careful studies need to be completed in order to estab-
lish whether the immune response to influenza can be
primed in the presence of influenza-specific antibodies,
whether of maternal origin or due to prior vaccination
or infection. This will determine whether parenteral
immunization with live virus is likely to be immuno-
genic in seropositive children and adults.

In summary, our results show that live virus is more
immunogenic than inactivated virus when delivered
intramuscularly. The increased antibody response corre-
sponds with induction of greater amounts of inflamma-
tory cytokines early after primary immunization. This
form of antigen allows for activation of antigen-specific
cytolytic CD8+ T cells that are the primary means of
clearing influenza A viruses that do not have the same
HA and NA subtype. Indeed, IM vaccination with live
virus of H3N2 subtype induced large numbers of NP-
specific CD8+ T cells and offered significantly more
protection against heterosubtypic HIN1 virus challenge.



Harris et al. Virology Journal 2011, 8:251
http://www.virologyj.com/content/8/1/251

Asthmatics or other individuals with respiratory ail-
ments are excluded from receiving live, attenuated influ-
enza vaccines, therefore, intramuscular delivery of this
vaccine type may be a useful strategy to increase immu-
nogenicity and efficacy in population groups that are
most at risk of disease.
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